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Why talk about machine learning?
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Why talk about machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.
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Outline

Topics:

• A.I. and M.L. overview

• Non-linear models

• From physics to ML
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Artificial Intelligence



Artificial intelligence timeline
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Defining A.I.

Artificial intelligence (A.I.) is the science and engineering of making

intelligent machines. (John McCarthy ‘56)

Artificial intelligence

Machine learning

Natural language processing

Knowledge reasoning

Computer vision

Planning

Robotics

Speech

A.I. consist in the development of computer systems to perform tasks

commonly associated with intelligence, such as learning .
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A.I. and humans

There are two categories of A.I. tasks:

• abstract and formal: easy for computers but difficult for humans,

e.g. play chess (IBM’s Deep Blue 1997).

→ Knowledge-based approach to artificial intelligence.

• intuitive for humans but hard to describe formally:

e.g. recognizing faces in images or spoken words.

→ Concept capture and generalization
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A.I. technologies

Historically, the knowledge-based approach has not led to a major success

with intuitive tasks for humans, because:

• requires human supervision and hard-coded logical inference rules.

• lacks of representation learning ability.

Solution:

The A.I. system needs to acquire its own knowledge.

This capability is known as machine learning (ML).

→ e.g. write a program which learns the task.
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Machine Learning



Machine learning definition

Definition from A. Samuel in 1959:

Field of study that gives computers the ability to learn without being

explicitly programmed.

Definition from T. Mitchell in 1998:

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance on

T , as measured by P , improves with experience E.
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ML applications in our “day life”
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Machine learning examples

Thanks to work in A.I. and new capability for computers:

• Database mining:

• Search engines

• Spam filters

• Medical and biological records

• Intuitive tasks for humans:

• Autonomous driving

• Natural language processing

• Robotics (reinforcement learning)

• Game playing (DQN algorithms)

• Human learning:

• Concept/human recognition

• Computer vision

• Product recommendation
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ML applications in condensed matter
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ML in condensed matter

Some recent examples:

• Phase transitions and classification: unsupervised learning.

• State compression and representation: reinforcement learning.

• Experimental / numerical protocols: neural networks.

• Physics → ML: RTBMs, Tensor Networks.
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ML applications in HEP
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ML in experimental HEP

There are many applications in experimental HEP involving the LHC

measurements, including the Higgs discovery, such as:

• Tracking

• Fast Simulation

• Particle identification

• Event filtering

13



ML in experimental HEP

Some remarkable examples are:

• Signal-background detection:

Decision trees, artificial neural networks, support vector machines.

• Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.

• HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.
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ML in theoretical HEP

• Supervised learning:

• The structure of the proton at the LHC

• parton distribution functions

• Theoretical prediction and combination
• Monte Carlo reweighting techniques

• neural network Sudakov

• BSM searches and exclusion limits

• Unsupervised learning:

• Clustering and compression

• PDF4LHC15 recommendation

• Density estimation and anomaly detection

• Monte Carlo sampling
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are known

Supervised learning

Input Data

Processing

Output

Algorithm

Supervisor

Training Data Set

Desired Output
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are unknown

Unsupervised learning

Input Data

Processing

Output

Algorithm

No Training Data Set

Unknown Output

Discover 
Interpretation
from Features
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Reinforcement learning

Input Data

Output

Algorithm

Agent

Environment

Best Action Reward
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Machine learning algorithms

More than 60 algorithms.
17



Workflow in machine learning

The operative workflow in ML is summarized by the following steps:

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

The best model is then used to:

• supervised learning: make predictions for new observed data.

• unsupervised learning: extract features from the input data.
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Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

• Prediction accuracy vs interpretability:

→ e.g. linear model vs splines or neural networks.

• Optimal capacity/flexibility: number of parameters, architecture

→ deal with overfitting, and underfitting situations

Neural Nets

Accuracy

Interpretability

Support Vector Machines

Linear Regression

Decision Tree

K-Nearest Neighbors

Random Forest

19



Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

• Prediction accuracy vs interpretability:

→ e.g. linear model vs splines or neural networks.

• Optimal capacity/flexibility: number of parameters, architecture

→ deal with overfitting, and underfitting situations

19



ML in practice

Perform hyperparameter tune coupled to cross-validation:

Best solution

Grid/random search

Cross-validation Test set

Cross-validation Test set

Cross-validation Test set

... ...

Run I

Run II

Run n

Easy parallelization at search and cross-validation stages.

20



Artificial neural networks



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.
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Non-linear models timeline

1943
Neural Nets

1958
Perceptron

1980
Neocogitron
SOMs

1974
Backpropagation

1940 1950 1960 1970 1980 1990 2000 2010

1982
Hopfield 
Networks

1985
Boltzmann 
Machine

1986
Multilayer Perceptron
Restricted BMs, RNNs

1990
LeNet

1997
LSTMs
BRNNs

2006
Deep BMs
Deep Belief NNs

2014
GANs

2012
Dropout

2017
RTBMs

2020
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Neural networks

Artificial neural networks are computer systems inspired by the biological

neural networks in the brain.

Currently the state-of-the-art technique for several ML applications. 23



Neuron model

We can imagine the following data communication pattern:

Dendrite

Soma

Nucleus

Axon

Myelin sheath

Node of
Ranvier

Axion
terminal

Schwann cell

Input Output

Logical Unit

24



Neuron model

Schematically:

where

• each node has an associate weights and bias w and inputs x,

• the output is modulated by an activation function, g.

Some examples of activation functions: sigmoid, tanh, linear, ...

gw(x) =
1

1 + e−wT x
, tanh(wTx), x.

25



Neural networks

In practice, we simplify the bias term with x0 = 1.

Neural network → connecting multiple units together.

where

• a(l)
i is the activation of unit i in layer l,

• w(l)
ij is the weight between nodes i, j from layers l, l + 1 respectively.

26



Neural networks

• a(2)
1 = g(w

(1)
10 + w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3)

• a(2)
2 = g(w

(1)
20 + w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3)

• a(2)
3 = g(w

(1)
30 + w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3)

• Output → a
(3)
1 = g(w

(2)
10 + w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 )
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Neural networks

Some useful names:

• Feedforward neural network: no cyclic connections between nodes

from the same layer (previous example).

• Multilayer perceptron (MLP): is a feedforward neural network with

at least 3 layers.

• Deep neural networks: term referring to neural networks with more

than one hidden layer.

28



Artificial neural networks architectures

Some examples of neural network popular architectures:

• Recurrent neural networks: neural networks where connections

between nodes form a directed cycle.

• built-in internal state memory

• built-in notion of time ordering for a time sequence

29



Artificial neural networks architectures

• Convolutional neural networks: multilayer perceptron designed to

require minimal preprocessing, i.e. space invariant architecture.

• the hidden layers consist of convolutional layers, pooling layer, fully

connected layers and normalization layers

• great successful applications in image and video recognition.

30



Artificial neural networks architectures

• Generative adversarial network: unsupervised machine learning

system of two neural networks contesting with each other.

• one network generate candidates while the other discriminates.

31



Artificial neural networks architectures

Other popular examples:

• Recursive neural networks: a variation of recurrent neural network

where pairs of layers or nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural

networks composed by custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.

• Boltzmann Machines: is a generative stochastic recursive artificial

neural network.

• comes with energy-based model features and advantages.
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From physics to ML



Introduction

Lets try to build a model:

• well suited for pdf estimation and pdf sampling

• built-in pdf normalization (close form expression)

• very flexible with a small number of parameters

We decided to look at energy models, specifically Boltzmann Machines.
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Boltzmann machine

Graphical representation:

[Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

• Boltzmann machine (BM): T and Q 6= 0.

• Restricted Boltzmann machine (RBM): T = Q = 0.
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

State vectors Connection matrices Biases
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

Starting from the system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

The canonical partition function is defined as:

Z =
∑
h,v

e−E(v,h)

Probability the system is in specific state given by Boltzmann distribution:

P (v, h) =
e−E(v,h)

Z

with marginalization:

P (v) =
e−F (v)

Z
Free energy

36



Boltzmann machine

Learning: [Hinton, Sejnowski ‘86]

Theoretically, general compute

medium.

Via adjusting W,T,Q,Bh, Bv able

to learn the underlying probability

distribution of a given dataset.

However: practically not feasible

For applications only RBMs have been considered.
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous

valued ∈ R

Continuous

valued ∈ R

P (v) ≡ multi-variate gaussian (too trivial)
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous

valued ∈ R

“Quantized”

∈ Z

Something interesting happens

Under mild constraints on connection matrices (positive definiteness,...)

P (v) ≡

√
detT

(2π)Nv
e−

1
2 v

tTv−Bt
vv− 1

2B
t
vT

−1Bv
θ̃(Bth + vtW |Q)

θ̃(Bth −BtvT−1W |Q−W tT−1W )

Closed form analytic solution still available!
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Riemann-Theta Boltzmann machine

RTBM [Krefl, S.C., Haghighat, Kahlen ‘17]

Novel very generic probability density:

P (v) ≡

√
detT

(2π)Nv
e−

1
2 v

tTv−Bt
vv− 1

2B
t
vT

−1Bv
θ̃(Bth + vtW |Q)

θ̃(Bth −BtvT−1W |Q−W tT−1W )

Damping factor Riemann-Theta function

The Riemann-Theta definition:

θ(z,Ω) :=
∑

n∈ZNh

e2πi( 1
2n

tΩn+ntz)

Key properties: Periodicity, modular invariance, solution to heat

equation, etc.

Note: Gradients can be calculated analytically as well so gradient

descent can be used for optimization.
40



RTBM properties

We observe that P (v) stays in the same distribution under affine

transformations, i.e. rotation and translation

w = Av + b, w ∼ PA,b(v),

if the linear transformation A has full column rank.

PA,b(v) is the distribution P (v) with parameters rotated as

T−1 → AT−1At , Bv → (A+)tBv − Tb ,
W → (A+)tW , Bh → Bh −W tb .

where A+ is the left pseudo-inverse defined as

A+ = (AtA)−1At.
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RTBM Applications



Riemann-Theta Boltzmann machine

In the next we show examples of RTBMs for

• Probability determination

• Data classification

• Data regression

• Sampling

42



Riemann-Theta Boltzmann machine

RTBM P (v) examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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For different choices of parameters (with hidden sector in 1D or 2D).
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Riemann-Theta Boltzmann machine

Mixture model: [Krefl, S.C., Haghighat, Kahlen ‘17]

Expectation:

As long as the density is well enough

behaved at the boundaries it can be

learned by an RTBM mixture model.
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Riemann-Theta Boltzmann machine

Examples: [Krefl, S.C., Haghighat, Kahlen ‘17]

−4 −2 0 2 4
v

0.0

0.1

0.2

0.3

0.4

0.5

P

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.1

0.2

P(v1)

0.0 0.2
P(v2)

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)
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Top Nv = 1, Nh = 3, 2, 3, button Nv = 2, Nh = 1 (2x RTBM), 2. 45



Riemann-Theta Boltzmann machine

Feature detector: [Krefl, S.C., Haghighat, Kahlen ‘17]

Similar to [Krizhevsky ‘09]

New:

Conditional expectations of hidden

states after training

E(hi|v) = − 1

2πi

∇iθ̃(vtW +Bth|Q)

θ̃(vtW +Bth|Q)

The detector is trained in probability

mode and generates a feature vector.
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Feature detector example - jet classification

Jet classification: [Krefl, S.C., Haghighat, Kahlen ‘17]

Data from [Baldi et al. ‘16, 1603.09349]

Descriminating jets from single

hadronic particles and overlapping

jets from pairs of collimated

hadronic particles.

Data (images of 32x32 pixels)

• 5000 images for training

• 2500 images for testing

Classifier Test dataset precision

Logistic regression (LR) 77%

RTBM feature detector + LR 83%
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Riemann-Theta Boltzmann machine

Theta Neural Network: [Krefl, S.C., Haghighat, Kahlen ‘17]

Idea:

Use as activation function in a

standard NN. The particular form of

non-linearity is learned from data.

Key point:

smaller networks needed but

Riemann-Theta evalution is expensive.

Example (1:3-3-2:1):

y(t) = 0.02t+ 0.5 sin(t+ 0.1) + 0.75 cos(0.25t− 0.3) +N (0, 1)

0 20 40 60 80 100
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y
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y(t) TNN fit TNN activations 48



RTBM sampling algorithm

The probability for the visible sector can be expressed as:

P (v) =
∑
[h]

P (v|h)P (h)

where P (v|h) is a multivariate gaussian. The P (v)

sampling can be performed easily by:

• sampling h ∼ P (h) using the RT numerical

evaluation θ = θn + ε(R) with ellipsoid radius R so

p =
ε(R)

θn + ε(R)
� 1

is the probability that a point is sampled outside the

ellipsoid of radius R, while∑
[h](R)

P (h) =
θn

θn + ε(R)
≈ 1

i.e. sum over the lattice points inside the ellipsoid.

• then sampling v ∼ P (v|h)
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Sampling examples

RTBM P (v) sampling examples: [S.C. and Krefl ‘18]
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Top Nv = 1, Nh = 2, 3 (2x RTBM), 3, button Nv = 1, Nh = 3.
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Sampling distance estimators
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Sampling examples with affine transformation

RTBM P (v) sampling with affine transformation: [S.C. and Krefl ‘18]
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For a rotation of θ = π/4 and scaling of 2 (Nv = 2, Nh = 2).
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Conclusion



Summary and outlook

In summary:

• ML is becoming very popular and strongly used in our field.

• Results are encouraging, several application opportunities.

For the future:

• New models based on physical systems.

• Try to extend the ML usage in physics.
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Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

• Theta: the RTBM implementation library.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.
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