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Why talk about machine learning?
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Why talk about machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.
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When apply machine learning in theoretical physics?
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When apply machine learning in theoretical physics?

at least in two situations:

• Ambiguous choices. • Lack of information.
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Outline

Part I

• A.I. and M.L. overview

• Non-linear models

• Learning basics

Part II

• Theoretical physics inspiring ML models

• Examples in HEP-TH:

• ML applied to parton model

• ML in jet physics

• ML examples in Monte Carlo simulation
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Artificial Intelligence



Artificial intelligence timeline
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Defining A.I.

Artificial intelligence (A.I.) is the science and engineering of making

intelligent machines. (John McCarthy ‘56)

Artificial intelligence

Machine learning

Natural language processing

Knowledge reasoning

Computer vision

Planning

Robotics

Speech

A.I. consist in the development of computer systems to perform tasks

commonly associated with intelligence, such as learning .
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A.I. and humans

There are two categories of A.I. tasks:

• abstract and formal: easy for computers but difficult for humans,

e.g. play chess (IBM’s Deep Blue 1997).

→ Knowledge-based approach to artificial intelligence.

• intuitive for humans but hard to describe formally:

e.g. recognizing faces in images or spoken words.

→ Concept capture and generalization
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A.I. technologies

Historically, the knowledge-based approach has not led to a major success

with intuitive tasks for humans, because:

• requires human supervision and hard-coded logical inference rules.

• lacks of representation learning ability.

Solution:

The A.I. system needs to acquire its own knowledge.

This capability is known as machine learning (ML).

→ e.g. write a program which learns the task.

7



A.I. technologies

Historically, the knowledge-based approach has not led to a major success

with intuitive tasks for humans, because:

• requires human supervision and hard-coded logical inference rules.

• lacks of representation learning ability.

Solution:

The A.I. system needs to acquire its own knowledge.

This capability is known as machine learning (ML).

→ e.g. write a program which learns the task.

7



Machine Learning



Machine learning definition

Definition from A. Samuel in 1959:
Field of study that gives computers the ability to learn without being

explicitly programmed.

Definition from T. Mitchell in 1998:
A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance on

T , as measured by P , improves with experience E.
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ML applications in our “day life”
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Machine learning examples

Thanks to work in A.I. and new capability for computers:

• Database mining:

• Search engines

• Spam filters

• Medical and biological records

• Intuitive tasks for humans:

• Autonomous driving

• Natural language processing

• Robotics (reinforcement learning)

• Game playing (DQN algorithms)

• Human learning:

• Concept/human recognition

• Computer vision

• Product recommendation
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ML applications in HEP

11



ML in experimental HEP

Some remarkable examples are:

• Signal-background detection:

Decision trees, artificial neural networks, support vector machines.

• Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.

• HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.

12



ML in theoretical HEP

• Supervised learning:

• The structure of the proton at the LHC

• parton distribution functions

• Theoretical prediction and combination
• Monte Carlo reweighting techniques

• neural network Sudakov

• BSM searches and exclusion limits

• Unsupervised learning:

• Clustering and compression

• PDF4LHC15 recommendation

• Density estimation and anomaly detection

• Monte Carlo sampling
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are known

Supervised learning

Input Data

Processing

Output

Algorithm

Supervisor

Training Data Set

Desired Output
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are unknown

Unsupervised learning

Input Data

Processing

Output

Algorithm

No Training Data Set

Unknown Output

Discover 
Interpretation
from Features
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Reinforcement learning

Input Data

Output

Algorithm

Agent

Environment

Best Action Reward
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Machine learning algorithms

More than 60 algorithms. 15



Models and metrics



Workflow in machine learning

The operative workflow in ML is summarized by the following steps:

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

The best model is then used to:

• supervised learning: make predictions for new observed data.

• unsupervised learning: extract features from the input data.

16



Model representation in supervised learning

Examples of models:

→ Linear regression we define a vector x ∈ Rn as input and predict the

value of a scalar y ∈ R as its output:

ŷ(x) = wTx + b

where w ∈ Rn is a vector of parameters and b a constant.

→ Generalized linear models are also available increasing the power of

linear models:

→ Non-linear models: neural networks (talk later).
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Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

• Prediction accuracy vs interpretability:

→ e.g. linear model vs splines or neural networks.

• Optimal capacity/flexibility: number of parameters, architecture

→ deal with overfitting, and underfitting situations

Neural Nets

Accuracy

Interpretability

Support Vector Machines

Linear Regression

Decision Tree

K-Nearest Neighbors

Random Forest
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Assessing the model performance

How to check model performance?

→ define metrics and statistical estimators for model performance.

Examples:

• Regression: cost / loss / error function,

• Classification: cost function, precision, accuracy, recall, ROC, AUC

19



Assessing the model performance - cost function

To access the model performance we define a cost function J(w) which

often measures the difference between the target and the model output.

In a optimization procedure, given a model ŷw, we search for:

arg min
w

J(w)

The mean square error (MSE) is the most commonly used for regression:

J(w) =
1

n

n∑
i=1

(yi − ŷw(xi))
2

a quadratic function and convex function in linear regression.

20



Cost function minimization

Optimization algorithms minimize an objective

function, J(w), that depends on the model

internal learnable parameters w.

arg min
w

J(w)

w

J(w)

The most popular techniques are:

• normal equations (least squares)

• derivative based optimization

• evolutionary algorithms

The choice of a technique depends on the model and problem employed.
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Training and test sets

Another common issue related to model capacity in supervised learning:

• The model should not learn noise from data.

• The model should be able to generalize its output to new samples.

To observe this issue we split the input data in training and test sets:

• training set error, JTr(w)

• test set/generalization error, JTest(w)

Training Set Test Set

Total number of examples
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Bias-variance trade-off

From a practical point of view dividing the input data in training and test:

The training and test/generalization error conflict is known as

bias-variance trade-off.
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Bias-variance trade-off

If ŷ increases flexibility, its variance increases and its biases decreases.

Choosing the flexibility based on average test error amounts to a

bias-variance trade-off:

• High Bias → underfitting:

erroneous assumptions in the learning algorithm.

• High Variance → overfitting:

erroneous sensitivity to small fluctuations (noise) in the training set.
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Solution for the bias-variance trade off

A common way to reduce the bias-variance trade-off and choose the

proper learning hyperparamters is to create a validation set that:

• not used by the training algorithm

• not used as test set

Training Set Test Set

Total number of examples

Validation Set

• Training set: examples used for learning.

• Validation set: examples used to tune the hyperparameters.

• Test set: examples used only to access the performance.

25



ML in practice

Perform hyperparameter tune coupled to cross-validation:

Best solution

Grid/random search

Cross-validation Test set

Cross-validation Test set

Cross-validation Test set

... ...

Run I

Run II

Run n

Easy parallelization at search and cross-validation stages.
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Artificial neural networks



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.
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Non-linear models timeline

1943
Neural Nets

1958
Perceptron

1980
Neocogitron
SOMs

1974
Backpropagation

1940 1950 1960 1970 1980 1990 2000 2010

1982
Hopfield 
Networks

1985
Boltzmann 
Machine

1986
Multilayer Perceptron
Restricted BMs, RNNs

1990
LeNet

1997
LSTMs
BRNNs

2006
Deep BMs
Deep Belief NNs

2014
GANs

2012
Dropout

2017
RTBMs

2020
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Neural networks

Artificial neural networks are computer systems inspired by the biological

neural networks in the brain.

Currently the state-of-the-art technique for several ML applications. 29



Neuron model

We can imagine the following data communication pattern:

Dendrite

Soma

Nucleus

Axon

Myelin sheath

Node of
Ranvier

Axion
terminal

Schwann cell

Input Output

Logical Unit

30



Neuron model

Schematically:

where

• each node has an associate weights and bias w and inputs x,

• the output is modulated by an activation function, g.

Some examples of activation functions: sigmoid, tanh, linear, ...

gw(x) =
1

1 + e−wT x
, tanh(wTx), x.

31



Neural networks

In practice, we simplify the bias term with x0 = 1.

Neural network → connecting multiple units together.

where

• a(l)
i is the activation of unit i in layer l,

• w(l)
ij is the weight between nodes i, j from layers l, l + 1 respectively.

32



Neural networks

• a(2)
1 = g(w

(1)
10 + w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3)

• a(2)
2 = g(w

(1)
20 + w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3)

• a(2)
3 = g(w

(1)
30 + w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3)

• Output → a
(3)
1 = g(w

(2)
10 + w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 )
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Neural networks

Some useful names:

• Feedforward neural network: no cyclic connections between nodes

from the same layer (previous example).

• Multilayer perceptron (MLP): is a feedforward neural network with

at least 3 layers.

• Deep neural networks: term referring to neural networks with more

than one hidden layer.
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Artificial neural networks architectures

Some examples of neural network popular architectures:

• Recurrent neural networks: neural networks where connections

between nodes form a directed cycle.

• built-in internal state memory

• built-in notion of time ordering for a time sequence

35



Artificial neural networks architectures

• Convolutional neural networks: multilayer perceptron designed to

require minimal preprocessing, i.e. space invariant architecture.

• the hidden layers consist of convolutional layers, pooling layer, fully

connected layers and normalization layers

• great successful applications in image and video recognition.
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Artificial neural networks architectures

• Generative adversarial network: unsupervised machine learning

system of two neural networks contesting with each other.

• one network generate candidates while the other discriminates.
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Artificial neural networks architectures

Other popular examples:

• Recursive neural networks: a variation of recurrent neural network

where pairs of layers or nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural

networks composed by custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.

• Boltzmann Machines: is a generative stochastic recursive artificial

neural network.

• comes with energy-based model features and advantages.
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Theoretical physics inspiring ML



Introduction

We started this project aiming to build a model with:

• well suited for pdf estimation and pdf sampling

• built-in pdf normalization (close form expression)

• very flexible with a small number of parameters

We decided to look at energy models, specifically Boltzmann Machines.
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Boltzmann machine

Graphical representation:

[Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

40



Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

40



Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

40



Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}

Connection

matrices

40



Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

40



Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

• Boltzmann machine (BM): T and Q 6= 0.

• Restricted Boltzmann machine (RBM): T = Q = 0.
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

State vectors Connection matrices Biases
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]
Starting from the system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

The canonical partition function is defined as:

Z =
∑
h,v

e−E(v,h)

Probability the system is in specific state given by Boltzmann distribution:

P (v, h) =
e−E(v,h)

Z

with marginalization:

P (v) =
e−F (v)

Z
Free energy

42



Boltzmann machine

Learning: [Hinton, Sejnowski ‘86]

Theoretically, general compute

medium.

Via adjusting W,T,Q,Bh, Bv able

to learn the underlying probability

distribution of a given dataset.

However: practically not feasible

For applications only RBMs have been considered.
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous

valued ∈ R

Continuous

valued ∈ R

P (v) ≡ multi-variate gaussian (too trivial)

44



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous

valued ∈ R

“Quantized”

∈ Z

Something interesting happens

Under mild constraints on connection matrices (positive definiteness,...)

P (v) ≡

√
detT

(2π)Nv
e−

1
2 v

tTv−Bt
vv−B

t
vT

−1Bv
θ̃(Bth + vtW |Q)

θ̃(Bth −BtvT−1W |Q−W tT−1W )

Closed form analytic solution still available!
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Riemann-Theta Boltzmann machine

RTBM [Krefl, S.C., Haghighat, Kahlen ‘17]
Novel very generic probability density:

P (v) ≡

√
detT

(2π)Nv
e−

1
2 v

tTv−Bt
vv−B

t
vT

−1Bv
θ̃(Bth + vtW |Q)

θ̃(Bth −BtvT−1W |Q−W tT−1W )

Damping factor Riemann-Theta function

The Riemann-Theta definition:

θ(z,Ω) :=
∑

n∈ZNh

e2πi( 1
2n

tΩn+ntz)

Key properties: Periodicity, modular invariance, solution to heat

equation, etc.

Note: Gradients can be calculated analytically as well so gradient

descent can be used for optimization.
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RTBM applications



Riemann-Theta Boltzmann machine

In the next we show examples of RTBMs for

• Probability determination

• Probability sampling

• Conditional probability

• Feature detection for data classification

• Data regression
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Probability determination



Riemann-Theta Boltzmann machine

RTBM P (v) examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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For different choices of parameters (with hidden sector in 1D or 2D).
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Riemann-Theta Boltzmann machine

Mixture model: [Krefl, S.C., Haghighat, Kahlen ‘17]

Expectation:
As long as the density is well enough

behaved at the boundaries it can be

learned by an RTBM mixture model.
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Riemann-Theta Boltzmann machine

Examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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Probability sampling



RTBM sampling algorithm

The probability for the visible sector can be expressed as:

P (v) =
∑
[h]

P (v|h)P (h)

where P (v|h) is a multivariate gaussian. The P (v)

sampling can be performed easily by:

• sampling h ∼ P (h) using the RT numerical

evaluation θ = θn + ε(R) with ellipsoid radius R so

p =
ε(R)

θn + ε(R)
� 1

is the probability that a point is sampled outside the

ellipsoid of radius R, while∑
[h](R)

P (h) =
θn

θn + ε(R)
≈ 1

i.e. sum over the lattice points inside the ellipsoid.

• then sampling v ∼ P (v|h)
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Sampling examples

RTBM P (v) sampling examples: [S.C. and Krefl ‘18]
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Sampling distance estimators
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Sampling examples with affine transformation

RTBM P (v) sampling with affine transformation: [S.C. and Krefl ‘18]
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For a rotation of θ = π/4 and scaling of 2 (Nv = 2, Nh = 2).
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Conditional probability



Conditional probability estimation

[Papaluca, S.C., Krefl ‘19 in preparation]

Considering a probability function P (v) modelled by a RTBM, given

some observed data d and some future outcome y, i.e. v = (y, d):

P (y|d) =
P (y, d)

P (d)
=

√
t0

2π
e−

1
2 t0y

2−B0y+ 1
2t0

B2
0

θ̃(Bth − vtW |Q)

θ̃(Bth − rtW |Q−
W0W t

0

t0
)

Examples in 2D:
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Feature dectection



Riemann-Theta Boltzmann machine

Feature detector: [Krefl, S.C., Haghighat, Kahlen ‘17]
Similar to [Krizhevsky ‘09]

New:
Conditional expectations of hidden

states after training

E(hi|v) = − 1

2πi

∇iθ̃(vtW +Bth|Q)

θ̃(vtW +Bth|Q)

The detector is trained in probability

mode and generates a feature vector.
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Feature detector example - jet classification

Jet classification: [Krefl, S.C., Haghighat, Kahlen ‘17]
Data from [Baldi et al. ‘16, 1603.09349]

Descriminating jets from single

hadronic particles and overlapping

jets from pairs of collimated

hadronic particles.

Data (images of 32x32 pixels)

• 5000 images for training

• 2500 images for testing

Classifier Test dataset precision

Logistic regression (LR) 77%

RTBM feature detector + LR 83%
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Data regression



Riemann-Theta Boltzmann machine

Theta Neural Network: [Krefl, S.C., Haghighat, Kahlen ‘17]

Idea:
Use as activation function in a

standard NN. The particular form of

non-linearity is learned from data.

Key point:
smaller networks needed but

Riemann-Theta evalution is expensive.

Example (1:3-3-2:1):

y(t) = 0.02t+ 0.5 sin(t+ 0.1) + 0.75 cos(0.25t− 0.3) +N (0, 1)
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ML and Parton Density functions



Parton density functions

The parton model was introduced by Feynman in 1969 in order to

characterize hadrons (e.g. protons and neutrons) in QCD processes and

interactions in high energy particle collisions.

Partons are quarks and gluons characterized by a probability density

functions of its nucleon momentum.
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Perturbative calculations

The Feynman Parton Model

• Photon probes the proton by striking a free massless ”parton” (quark,

gluon) that carries a fraction x of its parent proton.

• Value of x is fixed by final-state kinematics.

• Cross-section proportional to probability qi(x) of finding parton of species

i with momentum-fraction x in target proton.
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Perturbative QCD

• The Parton Model is the first order of a perturbative expansion

• PDFs are not calculable: reflect non-perturbative physics of confinement.

• PDFs are essential for a realistic computation of any particle physics

observable, σ, thanks to the factorization theorem

σ = σ̂ ⊗ f,

where the elementary hard cross-section σ̂ is convoluted with f the PDF.

• Can be proven rigorously using the OPE (Wilson expansion).
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Perturbative QCD

Factorization theorem is applied to several processes:

Drell-Yan (e.g. LHC) DIS

PDFs are extracted by comparing theoretical predictions to real data.
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Parton density functions

• PDFs are necessary to determine theoretical predictions for

signal/background of experimental measurements.

• e.g. the Higgs discovery at the LHC:
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PDF uncertainties

PDF determination requires a sensible estimate of the uncertainty, and not

only the central value, so not a well researched topic in ML.

CERN Yellow Report 4 (2016)

PDF uncertainties are a limiting factor in the accuracy of theoretical

predictions for several processes at LHC.

⇒ Need of precise PDF determination and uncertainty estimate.
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Parton density functions

Historical examples of the first PDF models:

where

• PDFs are very simple functional forms (polynomials).

• PDFs are constrained by few data points and low order theory.

• No uncertainties are provided.

• No cross-validation methods are implemented.
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Parton density functions

Possible improvement: use ML in PDF determination.

NNPDF (Neural Network PDFs) created 10 years ago.
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Why ML in PDFs determination?

• PDFs are essential for a realistic computation of hadronic particle

physics observable, σ, thanks to the factorization theorem, e.g. in pp

collider:

σX(s,M2
X︸ ︷︷ ︸

Y

) =
∑
a,b

∫ 1

xmin

dx1dx2 σ̂a,b(x1, x2, s,M
2
X)︸ ︷︷ ︸

X

fa(x1,M
2
X)fb(x2,M

2
X),

where the elementary hard cross-section σ̂ is convoluted with f the PDF.

• fi(x1,M2
X) is the PDF of parton i carrying a fraction of momentum x at

scale M ⇒ needs to be learned from data.

• Constraints come in the form of convolutions:

X ⊗ f → Y

• Experimental data points is ˜5000 → not a big data problem

• Data from several process and experiments over the past decades

⇒ deal with data inconsistencies
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The NNPDF methodology

The NNPDF (Neural Networks PDF) implements the Monte Carlo

approach to the determination of a global PDF fit. We propose to:

1. reduce all sources of theoretical bias:

• no fixed functional form

• possibility to reproduce non-Gaussian behavior

⇒ use Neural Networks instead of polynomials

2. provide a sensible estimate of the uncertainty:

• uncertainties from input experimental data

• minimization inefficiencies and degenerate minima

• theoretical uncertainties

⇒ use MC artificial replicas from data, training with a GA minimizer

3. Test the setup through closure tests
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Experimental data

The total number of data points for

the default PDF determination is

• 4175 at LO, 4295 at NLO and

4285 at NNLO.

• 7 physical processes from 14

experiments over ˜30 years (deal

with data inconsistencies)

• few data points at high and low

x (deal with extrapolation)

• range of 5 and 7 orders of

magnitude per PDF evaluation

arguments (x,Q2)
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x

101

102
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104
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Q2 (
Ge

V2 )

Kinematic coverage
Fixed target DIS
Collider DIS
Fixed target Drell-Yan
Collider Inclusive Jet Production
Collider Drell-Yan
Z transverse momentum
Top-quark pair production
Black edge: New in NNPDF3.1
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DGLAP evolution

Can we reduce the PDF input size? Yes, thanks to DGLAP:

fi(xα, Q
2) = Γ(Q,Q0)ijαβfj(xβ , Q

2
0)

We remove the Q2 dependence from PDF determination thanks to the

DGLAP evolution operator Γ.

f(x,Q2)→ f(x,Q2
0) := f(x)

• Precompute the DGLAP operator for all data points

• Apply the operator to the partonic cross section

• Store the results and perform fast convolutions

In NNPDF theoretical predictions are stored in APFELgrid tables:

σ =

nf∑
i,j

nx∑
α,β

Wijαβfi(xα, Q
2
0)fj(xβ , Q

2
0)
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Defining the ML problem

In comparison to a typical ML problem, a PDF fit

• requires a statistically sound uncertainty estimate

• is a regression problem but complex dependence on PDFs

• must satisfy physical constrains:

• f(x)→ 0 for x→ 1 (continuity)

• sum rules:

nf∑
i

∫ 1

0

dxxfi(x) = 1,

∫ 1

0

dx (u(x)− ū(x)) = 2

∫ 1

0

dx (d(x)− d̄(x)) = 1,

∫
dx (q(x)− q̄(x)) = 0, q = s, b, t
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PDF parametrizations

• Early models:

fi(x) = A · xα(1− x)β

• parameters are chosen based on Hessian minimization approach

• Can a simple model provide a reliable uncertainty estimate?

• Can it deal with data inconsistencies?

• NNPDF approach:

fi(x,Q0) = A · xα(1− x)βNN(x)

• fully connected MLP (2-5-3-1)

• two sigmoid hidden layers and linear output layer

• x8 independent PDFs ⇒ 296 free parameters
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Cost function

• We minimize the cost function:

χ2 =
∑
ij

(Di −Oi)σ−1
i,j (Dj −Oj)

• Di is the experimental measurement for point i

• Oi the theoretical prediction for point i (= σ̄ ⊗ f)

• σij is the covariance matrix between points i and j with corrections

for normalization uncertainties

• supplemented by additional penalty terms for positivity observables
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Propagating experimental uncertainties

Generate artificial Monte Carlo data replicas from experimental data.

We perform Nrep O(1000) fits, sampling pseudodata replicas:

D
(r)
i → D

(r)
i + chol(Σ)i,jN (0, 1), i, j = 1..Ndat, r = 1...Nrep

We obtain Nrep PDF replicas. No assumptions at all about the

Gaussianity of the errors.
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PDF fit example

The procedure delivers a Monte Carlo representation of results:
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The central value of observables based on PDFs are obtained with:

〈O[f ]〉 =
1
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Nrep∑
k=1

O[fk]
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W and Z production cross-sections at LHC 13 TeV
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NNPDF3.1 have smaller PDF uncertainties than NNPDF3.0. 76



Higgs production cross-sections
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ML in jet physics



Jet grooming with reinforcement learning

Boosted objects at LHC energies, EW-scale particles (W/Z/t...) are

often produced with pt � m, leading to collimated decays.

Problem: hadronic decay products are often reconstructed into single

jets. Identification of boosted objects by looking at the mass of the jet.

Mass peak can be partly reconstructed by removing unassociated soft

wide-angle radiation (grooming).
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Jet grooming with reinforcement learning

[arXiv:1903.09644 - S.C. and Dreyer ‘19]

ML idea: use reinforcement learning to the problem of jet grooming.

• Cast jet as clustering tree where state of each note T (i) is a tuple

with kinematic information on splitting

st = {z,∆ab, ψ,m, kt}

• Grooming algorithm defined as a function πg observing a state and

returning an action {0, 1} on the removal of the softer branch, e.g.

πRSD(st) =

{
0 if z > zcut

(
∆ab

R0

)β
,

1 else
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Jet grooming with reinforcement learning

We use a Deep Q-Network as a RL algorithm which uses a table of

Q(s, a), determining the next action as the one that maximizes Q.

A NN is used to approximate the optimal action-value function:

Q∗(s, a) = max
π

E[rt + γrt+1 + ...|st = s, at = a, π]
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Jet grooming with reinforcement learning

• To test the grooming algorithm derived from the DQN agent, we

apply our groomer to three test samples: QCD, W and Top jets.

• Improvement in jet mass resolution compared to heuristic methods

(RSD)

• Algorithm performs well on data beyond its training range such as

the top sample.
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ML in Monte Carlo simulation



MINLO t-channel single-top plus jet

[arXiv:1805.09855 - S.C., Frederix, Hamilton, Zanderighi ‘18]

Use neural nets to adjust unknown higher-order resummation terms.

Use NLO-matched single-top + jet (STJ) from the POWHEG-MINLO

formalism:

dσM = ∆(y12)
[
dσSTJ

NLO −∆(y12)|ᾱS
dσSTJ

LO

]

Advantage: enhance fixed-order calculation with matched NLL Sudakov

form factor.

Issue: this spoils the NLO accuracy of ST (single-top observables).

Solution: fix at NNLL, fit A2 with a Neural Network-based tuning of

degrees of freedom, and test universality at 8 TeV.

ln δ∆(y12) = −2

∫ Q2
bt

y12

dq2

q2
ᾱ2
SA2(Φ) ln

Q2
bt

q2
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dσSTJ

LO

]
Advantage: enhance fixed-order calculation with matched NLL Sudakov

form factor.

Issue: this spoils the NLO accuracy of ST (single-top observables).

Solution: fix at NNLL, fit A2 with a Neural Network-based tuning of

degrees of freedom, and test universality at 8 TeV.

ln δ∆(y12) = −2

∫ Q2
bt

y12

dq2

q2
ᾱ2
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MINLO t-channel single-top plus jet
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Thanks for your attention!
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