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Parton distribution functions have been developed in a systematic way
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The NNPDF methodology
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The technology used in NNPDF3.1: 0.7 E
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e How to increase fit performance speed?
o faster fits = more fits
e How can we tune/learn the methodology?

o select the best model for our data/theory
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Challenges:

e How to increase fit performance speed?
o faster fits = more fits
e How can we tune/learn the methodology?

o select the best model for our data/theory

Solution = move towards deep learning

e in terms software/technology

e in terms of methodology



Towards a DL approach



Deep learning pipeline
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PDF determination is a supervised learning problem thus we need to
provide review for the following sectors:
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The n3fit model
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New features:

e Python/C++ implementation using TensorFlow
e Modular approach = easier and faster development

e Can vary all aspects of the methodology



Performance benefits - time per replica
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Benefits
e Gain on speed and efficiency, less CPU hours for a fit
o Usage of new technologies — hardware, libraries

o Usage of gradient descent optimization methods

= Possibility to learn and tune the methodology



Learning the methodology




How to determine the best methodology?
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Perform hyperoptimization scans:
Neural Network Fit options
Number of layers (¥) Optimizer (*)
Size of each layer Initial learning rate (¥)
Dropout Maximum number of epochs (*)
Activation functions (¥) Stopping Patience (*)
Initialization functions (*) Positivity multiplier (*)

e Optimize figure of merit: validation y?
e Use bayesian updating (hyperopt)



The overfitting problem

Using validation set x°:
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The choice of the right figure of merit is important:

o NNPDF wiggles — finite size , goes away as N,cp grows
e N3PDF wiggles — overfitting, correlations training-validation data!
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The choice of the right figure of merit is important:

o NNPDF wiggles — finite size , goes away as N,cp grows
e N3PDF wiggles — overfitting, correlations training-validation data!

= define a proper quality control criterion



Cross-Validation vs hyperoptimization

Define a completely uncorrelated Test Set

Target
Hyperoptimization low X\%al

) S Target
PDF fit optimization ——— low thrain

Quality | control

stable x2,,

| ]
: Quality control :

Test Set

Optimize on weighted average of validation and test.



Removing overfitting

Using test-validation set y:

Uat1.7 Gev

e No overfitting
e Greater stability

e Reduced uncertainties
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Quality control




Chronological fits

Idea:

@ Take a pre-HERA dataset
® Perform hyperoptimization

©® Compare predictions to “future” data
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Chronological fits

Idea:

@ Take a pre-HERA dataset
® Perform hyperoptimization

©® Compare predictions to “future”

Examples:
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= Results within PDF uncertainty!
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Defining a proper Test set

How to define a proper Test Set?

e we have a limited dataset with lots of features, Ng,t, ~ 5000
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Defining a proper Test set

How to define a proper Test Set?

e we have a limited dataset with lots of features, Ng,t, ~ 5000

= Potential solution: use k-fold cross-validation.

e Use k partitions in a rotation estimation for the Test Set
e hyperoptimize the mean value of the Test Set x?

dat 1.7 GeV g at1.7 GeV
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Defining a proper Test set

How to define a proper Test Set?

e we have a limited dataset with lots of features, Ng,t, ~ 5000

= Potential solution: use k-fold cross-validation.

e Use k partitions in a rotation estimation for the Test Set
e hyperoptimize the mean value of the Test Set y?

dat 1.7 GeV g at1.7 GeV

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

= Compatible with our previous Test Set definition. ,
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Future challenges




Extrapolation region

The current parametrization uses preprocessing:
f(x) = x*(1 — x)’NN(x)

If preprocessing is removed, we observe saturation at small-x:

z at1.7 Gev o g at 1.7 GeV
3.25 72 extrapolation f(x)=NNx/x * (1-x)"beta (68 c..+10) :
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Challenges:

e Modify neural network input architecture
e Generate pseudodata in the extrapolation region
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Extrapolation region

Gaussian pseudodata:
e use gaussian process to model DIS observables
e propagate a prior gaussian into extrapolation

e generate gaussian pseudodata and add it to fit

Small-x extrapolation Q (GeV) = 1.871
" s
12 = 250320-03-rs-extrapolation
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Final comments

Towards the NNPDF4.0 release:

e Faster run times and stable results
e Possibility to learn the methodology
e Quality control, reduced uncertainties

e Better understanding of model behavior
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Thank youl!
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