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Università degli Studi di Milano (UNIMI and INFN Milan)

Acknowledgement: This project has received funding from the European Unions Horizon
2020 research and innovation programme under grant agreement no. 740006.

PDFN 3
Machine Learning • PDFs • QCD



Why talk about machine learning?
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Why talk about machine learning?

because

• it is an essential set of algorithms for building models in science,

• fast development of new tools and algorithms in the past years,

• nowadays it is a requirement in experimental and theoretical physics,

• large interest from the HEP community: IML, conferences, grants.
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When apply machine learning in theoretical physics?
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When apply machine learning in theoretical physics?

when:

• Ambiguous choices.

• Lack of information.

• Interpolation, sampling.

• Performance acceleration.
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Labels are known

Supervised learning

Input Data

Processing

Output

Algorithm

Supervisor

Training Data Set

Desired Output
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Machine learning algorithms

Machine learning algorithms:

• Supervised learning:

regression, classification, ...

• Unsupervised learning:

clustering, dim-reduction, ...

• Reinforcement learning:

real-time decisions, ...

Reinforcement learning

Input Data

Output

Algorithm

Agent

Environment

Best Action Reward
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ML in HEP

Some remarkable examples are:

• Signal-background detection:

Decision trees, artificial neural networks, support vector machines.

• Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.

• HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.
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Some examples of ML in HEP theory

Supervised learning:

• The structure of the proton at the LHC*

• Theoretical prediction and combination

• Monte Carlo reweighting techniques*

• BSM searches and exclusion limits

• Generative models (GANs)*

Unsupervised learning:

• Clustering and compression

• Density estimation and anomaly detection

• Monte Carlo integration*

Reinforcement learning:

• Jet grooming*
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ML and Parton Density functions



Parton density functions

The parton model was introduced by Feynman in 1969 in order to

characterize hadrons (e.g. protons and neutrons) in QCD processes and

interactions in high energy particle collisions.

Partons are quarks and gluons characterized by a probability density

functions of its nucleon momentum.
6



Perturbative calculations

The Feynman Parton Model

• Photon probes the proton by striking a free massless ”parton” (quark,

gluon) that carries a fraction x of its parent proton.

• Value of x is fixed by final-state kinematics.

• Cross-section proportional to probability qi(x) of finding parton of species

i with momentum-fraction x in target proton.
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Perturbative QCD

• The Parton Model is the first order of a perturbative expansion

• PDFs are not calculable: reflect non-perturbative physics of confinement.

• PDFs are essential for a realistic computation of any particle physics

observable, σ, thanks to the factorization theorem

σ = σ̂ ⊗ f,

where the elementary hard cross-section σ̂ is convoluted with f the PDF.

• Can be proven rigorously using the OPE (Wilson expansion).
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Perturbative QCD

Factorization theorem is applied to several processes:

Drell-Yan (e.g. LHC) DIS

PDFs are extracted by comparing theoretical predictions to real data.
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Parton density functions

• PDFs are necessary to determine theoretical predictions for

signal/background of experimental measurements.

• e.g. the Higgs discovery at the LHC:
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PDF uncertainties

PDF determination requires a sensible estimate of the uncertainty, and not

only the central value, so not a well researched topic in ML.

CERN Yellow Report 4 (2016)

PDF uncertainties are a limiting factor in the accuracy of theoretical

predictions for several processes at LHC.

⇒ Need of precise PDF determination and uncertainty estimate.
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Parton density functions

Historical examples of the first PDF models:

where

• PDFs are very simple functional forms (polynomials).

• PDFs are constrained by few data points and low order theory.

• No uncertainties are provided.

• No cross-validation methods are implemented.
12



Parton density functions

Possible improvement: use ML in PDF determination.

NNPDF (Neural Network PDFs) created 10 years ago.
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Why ML in PDFs determination?

• PDFs are essential for a realistic computation of hadronic particle

physics observable, σ, thanks to the factorization theorem, e.g. in pp

collider:

σX(s,M2
X︸ ︷︷ ︸

Y

) =
∑
a,b

∫ 1

xmin

dx1dx2 σ̂a,b(x1, x2, s,M
2
X)︸ ︷︷ ︸

X

fa(x1,M
2
X)fb(x2,M

2
X),

where the elementary hard cross-section σ̂ is convoluted with f the PDF.

• fi(x1,M2
X) is the PDF of parton i carrying a fraction of momentum x at

scale M ⇒ needs to be learned from data.

• Constraints come in the form of convolutions:

X ⊗ f → Y

• Experimental data points is ˜5000 → not a big data problem

• Data from several process and experiments over the past decades

⇒ deal with data inconsistencies
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The NNPDF methodology

The NNPDF (Neural Networks PDF) implements the Monte Carlo

approach to the determination of a global PDF fit. We propose to:

1. reduce all sources of theoretical bias:

• no fixed functional form

• possibility to reproduce non-Gaussian behavior

⇒ use Neural Networks instead of polynomials

2. provide a sensible estimate of the uncertainty:

• uncertainties from input experimental data

• minimization inefficiencies and degenerate minima

• theoretical uncertainties

⇒ use MC artificial replicas from data, training with a GA minimizer

3. Test the setup through closure tests

15



Experimental data

The total number of data points for

the default PDF determination is

• 4175 at LO, 4295 at NLO and

4285 at NNLO.

• 7 physical processes from 14

experiments over ˜30 years (deal

with data inconsistencies)

• few data points at high and low

x (deal with extrapolation)

• range of 5 and 7 orders of

magnitude per PDF evaluation
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DGLAP evolution

Can we reduce the PDF input size? Yes, thanks to DGLAP:

fi(xα, Q
2) = Γ(Q,Q0)ijαβfj(xβ , Q

2
0)

We remove the Q2 dependence from PDF determination thanks to the

DGLAP evolution operator Γ.

f(x,Q2)→ f(x,Q2
0) := f(x)

• Precompute the DGLAP operator for all data points

• Apply the operator to the partonic cross section

• Store the results and perform fast convolutions

In NNPDF theoretical predictions are stored in APFELgrid tables:

σ =

nf∑
i,j

nx∑
α,β

Wijαβfi(xα, Q
2
0)fj(xβ , Q

2
0)
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Defining the ML problem

In comparison to a typical ML problem, a PDF fit

• requires a statistically sound uncertainty estimate

• is a regression problem but complex dependence on PDFs

• must satisfy physical constrains:

• f(x)→ 0 for x→ 1 (continuity)

• sum rules:

nf∑
i

∫ 1

0

dxxfi(x) = 1,

∫ 1

0

dx (u(x)− ū(x)) = 2

∫ 1

0

dx (d(x)− d̄(x)) = 1,

∫
dx (q(x)− q̄(x)) = 0, q = s, b, t
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PDF parametrizations

• Early models:

fi(x) = A · xα(1− x)β

• parameters are chosen based on Hessian minimization approach

• Can a simple model provide a reliable uncertainty estimate?

• Can it deal with data inconsistencies?

• NNPDF approach:

fi(x,Q0) = A · xα(1− x)βNN(x)

• fully connected MLP (2-5-3-1)

• two sigmoid hidden layers and linear output layer

• x8 independent PDFs ⇒ 296 free parameters

19
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Cost function

• We minimize the cost function:

χ2 =
∑
ij

(Di −Oi)σ−1
i,j (Dj −Oj)

• Di is the experimental measurement for point i

• Oi the theoretical prediction for point i (= σ̄ ⊗ f)

• σij is the covariance matrix between points i and j with corrections

for normalization uncertainties

• supplemented by additional penalty terms for positivity observables

20



Propagating experimental uncertainties

Generate artificial Monte Carlo data replicas from experimental data.

We perform Nrep O(1000) fits, sampling pseudodata replicas:

D
(r)
i → D

(r)
i + chol(Σ)i,jN (0, 1), i, j = 1..Ndat, r = 1...Nrep

We obtain Nrep PDF replicas. No assumptions at all about the

Gaussianity of the errors.
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PDF fit example

The procedure delivers a Monte Carlo representation of results:
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Optimization algorithm

The current approach is genetic optimization, based on nodal mutation

probabilities and more recently the covariance matrix evolution strategy

w → w + η
rδ
Nrite

ite

, η = 15, rδ ∼ U(−1, 1), rite ∼ U(1, 0)

At each iteration, generate 80 mutants and select best mutant.

Advantages

• Simple to implement and understand.

• Good dealing with complex analytic behavior.

• Doesn’t require evaluating the gradient.

Disadvantages

• May not be close to a global minimum.

• Requires many functions evaluations.

• Needs tuning.
23



Stopping

We have cross-validation implemented:

• We split data in a training and validation set.

• Training fraction is 50%, different for each replica.

• We perform the GA on the training set for a fixed number of

iterations O(30000).

• Stop at the minimum of the validation set, storing the parameters

from the replica at that iteration.

24



Validation with closure test

Closure tests

• Assume that the underlying PDF is known, generate data, fluctuations

around the prediction of the true PDF.

• Perform a fit and compare to underlying PDF.

• Check that the results are consistent.

Level 0: Fit predictions of the true PDF without fluctuations. χ2/Ndat → 0.

Level 2: Generate pseudodata replicas on top of replicas. χ2/Ndat → 1.
25



W and Z production cross-sections at LHC 13 TeV
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Higgs production cross-sections
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Towards deep learning PDFs



PDF challenges

Challenges:

• How to increase fit performance speed?

• faster fits ⇒ more fits

• How can we tune/learn the methodology?

• select the best model for our data/theory

Solution ⇒ move towards deep learning

• in terms software/technology

• in terms of methodology

28
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Deep learning pipeline

PDF determination is a supervised learning problem thus we need to

provide review for the following sectors:

Model

Optimizer

Cost function Best modelCross-validationTraining

Data
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Deep learning pipeline

PDF determination is a supervised learning problem thus we need to

provide review for the following sectors:
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The n3fit model

New features:

• Python/C++ implementation using TensorFlow

• Modular approach ⇒ easier and faster development

• Can vary all aspects of the methodology

30



Performance benefits - time per replica

Benefits

• Gain on speed and efficiency, less CPU hours for a fit

• Usage of new technologies → hardware, libraries

• Usage of gradient descent optimization methods

⇒ Possibility to learn and tune the methodology
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Learning the methodology



How to determine the best methodology?

Perform hyperoptimization scans:

• Optimize figure of merit: validation χ2

• Use bayesian updating (hyperopt)
32



The overfitting problem

Using validation set χ2:

The choice of the right figure of merit is important:

• NNPDF wiggles → finite size , goes away as Nrep grows

• N3PDF wiggles → overfitting, correlations training-validation data!

⇒ define a proper quality control criterion

33
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Cross-Validation vs hyperoptimization

Define a completely uncorrelated Test Set

Optimize on weighted average of validation and test.
34



Removing overfitting

Using test-validation set χ2:

• No overfitting

• Greater stability

• Reduced uncertainties
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Quality control



Chronological fits

Idea:

1 Take a pre-HERA dataset

2 Perform hyperoptimization

3 Compare predictions to “future” data

Examples:

⇒ Results within PDF uncertainty!
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Defining a proper Test set

How to define a proper Test Set?

• we have a limited dataset with lots of features, Ndata ≈ 5000

⇒ Potential solution: use k-fold cross-validation.

• Use k partitions in a rotation estimation for the Test Set

• hyperoptimize the mean value of the Test Set χ2

⇒ Compatible with our previous Test Set definition.
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Questions?
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ML and jet substructure



Boosted jets at the LHC

High energy collisions at the LHC ⇒ boosted objects:

• particles such as W, Z, H, t, . . . are produced with pjet
T � mjet,

• hadronic collimated decays often reconstructed into single jets.

Problem: identify hard structure of a jet from radiation patterns.

(Jet from W, Z, H, t or QCD?)

Jet drawings by G. Soyez
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Jet grooming techniques

How to identify hard structure of a jet?

• Look at the mass of the jet.

• Remove distortion due to QCD radiation and pileup.

Grooming goal ⇒ remove unassociated soft wide-angle radiation.

Jet grooming algorithms:

• modified MassDrop Tagger

Dasgupta et al., arXiv:1307.0007

• Soft Drop (SD)

Larkoski et al., arXiv:1402.2657

• Recursive Soft Drop (RSD)

Dreyer et al., arXiv:1804.03657

39
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(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

40
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Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

41



Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

41



Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

41



A deep learning approach



Grooming a jet tree with DRL

Input data:

Generate jet events with Monte Carlo. Define a

set of possible states in a five dimensional box:

st = {z,∆ab, φ,m, kt}

Methodology:

Jet grooming is characterized by a policy and a

sequential set of actions/cuts, so:

• Train a reinforcement learning agent which

learns how to decide which action to take.

• Define an environment reward which

motivates the agent to groom efficiently.

Reinforcement learning

Input Data

Output

Algorithm

Agent

Environment

Best Action Reward
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Choosing an DRL agent

Which agent?

Deep Q-Network → off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]

A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature’15:

43

https://arxiv.org/abs/1312.5602
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Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem
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Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

In practice we implement the DRL framework using:

• Python ∈ (Keras-RL, TensorFlow, OpenAI Gym, hyperopt)

• Public code available at https://github.com/JetsGame

44
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Environment

Defining a jet grooming game:

Game score ⇒ reward function (next slides)

Game environment:

1 Initialize list of all trees for training.

2 Each episode starts by randomly

selecting a tree and adding its root to

a priority queue (ordered in ∆ab).

3 Each step removes first node from

priority queue, then takes action on

removal of soft branch based on st.

4 After action, update kinematics of

parent nodes, add current children to

priority queue, and evaluate reward.

5 Episode terminates once priority queue

is empty.

1

2

3

4

a

b c
d ef

a
b
c
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Reward function

We construct a reward function based on two components:

R(m, at,∆, z) = RM (m) +
1

NSD
RSD(at,∆, z)

so the DQN agent is motivated to:

• improve jet mass resolution ⇒ increase RM ,

• replicate Soft-Drop behavior ⇒ increase RSD.

The mass reward is defined using

a Cauchy distribution:

RM (m) =
Γ2

π (|m−mtarget|2 + Γ2)

70 75 80 85 90
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM(m)
Cauchy
mtarget

46



Reward function

We construct a reward function based on two components:

R(m, at,∆, z) = RM (m) +
1

NSD
RSD(at,∆, z)

so the DQN agent is motivated to:

• improve jet mass resolution ⇒ increase RM ,

• replicate Soft-Drop behavior ⇒ increase RSD.

The mass reward is defined using

a Cauchy distribution:

RM (m) =
Γ2

π (|m−mtarget|2 + Γ2)

70 75 80 85 90
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM(m)
Cauchy
mtarget

46



Reward function

The Soft-Drop reward is defined as

RSD(at,∆, z) = at min
(

1, e−α1 ln(1/∆)+β1 ln(z1/z)
)

+ (1 + at) max
(

0, 1− e−α2 ln(1/∆)+β2 ln(z2/z)
)
,

so the DQN agent is motivated to:

• remove wide-angle soft radiation

• keep hard-collinear emissions

RSD  for  at = 1
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Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1 add to the training set signal and background samples

⇒ 500k W/QCD jets simulated with Pythia 8

2 at each episode randomly select a signal or background jet.

⇒ adjust RM (m) accordingly to signal/background

In the background case, the mass

reward term is changed to:

Rbkg
M (m) =

m

Γbkg
exp

(
− m

Γbkg

)
20 40 60 80 100

m

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Rbkg
M (m)
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Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

49



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

49



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

49



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

49



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

49



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

49



Hyperparameter tune

Validation loss for 2000 models
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Results



Optimal GroomRL model for W and top jets

Reward evolution during the training

of the GroomRL for W bosons and

top quarks:

• improvement during the first

300k epochs,

• stability after 300k epochs.

R(m, at,∆, z)
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DRL training animation

GroomRL-W predictions vs nepochs
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Optimal GroomRL model for W jets

GroomRL-W tested on QCD, W and Top jet data
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Optimal GroomRL model for W jets

GroomRL-Top tested on QCD, W and Top jet data
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Lund jet plane density

Lund jet plane before and after applying GroomRL

Inspecting (ln 1/∆ab, ln kt) ⇒ soft and wide-angle radiation removed.
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Towards transfer learning in HEP



Towards transfer learning

Some ideas towards the “transfer learning” concept:

1 Generalize models trained on specific data to new datasets.

• e.g. jet grooming

2 Build models specialized on the conversion between datasets.

• e.g. CycleGANs

3 Models that propagate higher-order correction to lower order.

• e.g. reweighting
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Cycle-consistent adversarial networks

[arXiv:1909.01359]

CycleGAN learns unpaired image-to-image mapping functions.
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Reinterpreting events with CycleGANs

Use CycleGAN to transform between two different jet datasets, e.g.

• parton-level simulation ↔ detector-level simulation

• W jet ↔ QCD jet

Transformed events in good agreement with true sample.
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MINLO t-channel single-top plus jet

[arXiv:1805.09855 - S.C., Frederix, Hamilton, Zanderighi ‘18]

Use neural nets to adjust unknown higher-order resummation terms.

Use NLO-matched single-top + jet (STJ) from the POWHEG-MINLO

formalism:

dσM = ∆(y12)
[
dσSTJ

NLO −∆(y12)|ᾱS
dσSTJ

LO

]

Advantage: enhance fixed-order calculation with matched NLL Sudakov

form factor.

Issue: this spoils the NLO accuracy of ST (single-top observables).

Solution: fix at NNLL, fit A2 with a Neural Network-based tuning of

degrees of freedom, and test universality at 8 TeV.

ln δ∆(y12) = −2

∫ Q2
bt

y12

dq2

q2
ᾱ2
SA2(Φ) ln

Q2
bt

q2
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MINLO t-channel single-top plus jet
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Accelerating MC with ML tools



VEGAS integration algorithm and tensorflow

ML frameworks such as TensorFlow can help theoretical computations.

• Automatic parallelization and code optimization.

• Distributed computation across multiple hardware accelerators.

Example: VegasFlow [arXiv:1909.01359]

Monte Carlo integration using Vegas algorithm and TensorFlow code.
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Thanks for your attention!
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