
UNIVERSITÀ DEGLI STUDI DI MILANO
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And as we danced among the ashes of our lives
we laughed it off
and then we burnt our tiny worlds
and found the ocean just beyond those paper walls.

Radical Face
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Introduction

In this thesis work we consider the transverse momentum spectrum for the
production of a massive colorless object in hadron collisions, focusing our
attention on the physically more relevant case of Higgs boson production in
proton-proton collision. In particular we exploit the known analytic struc-
ture of the fixed order cross section in Mellin space to derive an approxima-
tion for the fixed order p⊥ distribution from the resummed cross section in
the threshold limit.

We study the following scattering process:

h1 + h2 −→ H +X (0.0.1)

where the collision of two hadrons h1 and h2 produces one Higgs boson H
together with some extra radiation X.

This is arguably the most important process being studied at hadron col-
liders such as LHC. Indeed, the proton-proton collision is the first process in
which a signal directly attributable to the production of Higgs bosons has
been measured[2].

Higgs’ discovery has been a fundamental step in the study of high energy
particles and, in general, for physics as a whole, providing the last necessary
building block for a consistent Standard Model (SM) of particle physics.
Therefore the importance of pursuing a high precision test of the Standard
Model’s Higgs against collider’s data cannot be overstated.

In order to accomplish such a task one needs both high precision experi-
mental data and reliable theoretical predictions for the process at hand. We
will be concerned with the latter.

The simplest measurable quantity in a given scattering process involv-
ing the production of a given particle is the inclusive cross section. This is
the total probability of finding the particle of interest in the final state of
the scattering given a fixed initial state. The inclusive cross section has the
largest possible statistics in a given experimental setting since it includes
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every possible final state containing the particle to be studied. On the other
hand, differential cross sections are less inclusive and therefore have less
statistics but can contain more information than their inclusive counterpart.

We consider the transverse momentum spectrum, also called p⊥ distri-
bution or p⊥ differential cross section which we denote as:

dσ

dp2⊥
=

1

m2

dσ

dξ
, ξ ≡

p2⊥
m2

(0.0.2)

where m is the mass of the particle of interest, in our case the Higgs boson,
and p⊥ is its transverse momentum with respect to the axis of collision of
the two hadrons.

Standard cross section computations rely on a perturbative expansion in
the coupling constant: as long as the coupling constant is less than 1, higher
orders in this expansion are numerically less and less important and trun-
cating the series after the first few terms should give a good approximation
for the full cross section. Such an approximation is called fixed order cross
section and is the main procedure for producing quantitative predictions
from a QFT in high energy particle physics.

Fixed order calculations lose their predictive power if the coupling con-
stant is not small (e.g. in the low energy region of QCD) and when the
convergence of the perturbative series is spoiled by the presence of large
terms of kinematical origin. These usually appear when a cross section de-
pends on multiple energy scales: the dependence on the different scales is in
the form of logarithms of the ratio of two scales, and when these are different
from each other (in some kinematical region) the logarithms become large.

The latter happens during the fixed order computation of the cross sec-
tion we are interested in. In the threshold region, when the center-of-mass
energy of the initial state is barely enough to produce one Higgs boson with
a certain transverse momentum p⊥ (and some radiation needed to recoil
against it) the fixed order cross section contains terms like ln(1− x) where
x = Q2/s is the ratio of the invariant mass of the final state and the initial
state center-of-mass energy. These logarithms are due to gluon emission and
become large when Q2 ≃ s, i.e. in the threshold limit.

Those logarithms appear at all orders in the perturbative expansion of
the cross section and spoil its convergence. As a result, in the threshold
region standard perturbative approaches are not reliable and a procedure
that consistently takes into account these logarithmic terms is needed.
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A proper treatment of the logarithmic contributions is provided by re-
summation theory. This amounts to the classification of these terms in a
hierarchy, followed by the summation of all the logarithms in a given hierar-
chy level. The result of this procedure is again a perturbative approximation
of the cross section (albeit derived from a different power expansion) which
does not contain any logarithmic term, and therefore properly regularizes
the threshold logarithms.

The resummed cross section provides a reliable result in the kinemati-
cal region where the logarithmic terms that are resummed are actually big.
In other kinematical regions the resummed cross section is not reliable and
needs to be matched with the corresponding fixed order result to give an
overall acceptable prediction.

The faulty behavior of the resummed cross section far away from the
relevant kinematical limit is due to the fact that only the most divergent
terms are considered in the resummation process, while all of the subleading
contributions are disregarded. This blatantly manifests itself in the analytic
structure of the cross section in Mellin space: the resummed cross section
(when expanded at fixed order) presents cut singularities caused by ln(N)
terms while the fixed order counterpart has pole singularities.

The objective of this thesis is to exploit the all-order information con-
tained in the resummed cross section to provide an approximation for the
fixed order p⊥-spectrum. This is achieved by identifying the terms that gen-
erate the logarithms in the fixed order result: these reproduce the correct
threshold behavior of the cross section while still manifesting the correct
analytic structure. Once identified, their substitution in spite of the ln(N)
in the resummed cross section provides the desired approximation.

This approximation is expected to reproduce the correct threshold be-
havior of the cross section at any fixed order while also being fairly reliable
far from the threshold region. In particular, we expect it not to introduce
any artificial divergences at low N .
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Chapter 1

QCD and Resummation in a
nutshell

This chapter is devoted to a quick overview over basic QCD concepts and
resummation theory. It does not by any means try to encompass all of
the knowledge that is present in the literature about these subjects, neither
should it be viewed as a complete review of these theories. Nevertheless
I will try to be as self-contained as possible, at least conceptualwise, and
will aim at highlighting the main features that are necessary to ground the
original work of this thesis.

1.1 QCD in the Standard Model

Quantum Chromo Dinamics (QCD for short) is the theory that describes the
strong interaction in the context of the Standard Model of particle physics
(SM). It is widely used in the study of particle collisions involving hadrons
in the initial and/or final state, allowing the computation of quantum cor-
rections for the related measurable quantities.

QCD is a SU(3) gauge theory whose radiation modes (the gauge bosons)
are called gluons; these live in the adjoint representation of SU(3) and come
in 8 possible color combinations. The matter fields that are subject to the
strong interaction are the quarks, which live in the fundamental representa-
tion of SU(3) and carry a SU(3) charge called color. Up to now six flavors
of quarks are known (together with the corresponding anti-quarks) which
are classified in three families, each containing one quark of electrical charge
2
3 and one of electrical charge −1

3
1.

1In this work the electrical charges are always written in units of the electron’s charge
e.
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flavor
u

“up”
d

“down”
c

“charme”
s

“strange”
t

“top”
b

“bottom”

charge 2/3 -1/3 2/3 -1/3 2/3 -1/3

mass ∼2.5 MeV ∼5 MeV 1.3 GeV 0.1 GeV 4.2 GeV 173 GeV

Table 1.1: The six known quarks with corresponding electric charges in units
of e and masses in the MS scheme.

The six known quarks, with corresponding electrical charge and mass,
are listed in table 1.1.

1.1.1 Asymptotic freedom and confinement in QCD

The computation of transition amplitudes with QCD quantum corrections
involves loop integrations that diverge. The UV divergences (i.e. the ones
appearing when integrating over high energy momenta in a loop) can be
regularized through the renormalization process. A side effect of renormal-
ization, analogous to what happens in Quantum ElectroDinamics (QED),
is the running of the strong coupling constant αs described by the Callan-
Symanzik equation (or RG equation):

µ2
d

dµ
αs(µ

2) = β(αs(µ
2)) (1.1.1)

where β admits a perturbative expansion in the coupling constant1:

β = −α2
s(β0 + β1αs + ...) (1.1.2)

The leading coefficient is:

β0 =
11CA − 2nf

12π
(1.1.3)

which is positive for nf < 17. This is actually the case since nf is the num-
ber of (active) quark flavors and so far only six flavors are known to exist.
Therefore the function β expanded to second order in (1.1.2) is negative and
the perturbative Callan-Symanzik equation implies that αs decreases as the
energy scale increases.

There are two main consequences of the running of αs, namely confine-
ment and asymptotic freedom.

1While this is the most common expansion for the β-function we will be using different
convention throughout this work in an attempt to adhere to the literature we refer to.
Every time we introduce a new convention or present some result, we will make sure to
explicit the convention we are using.

5



The property of asymptotic freedom states that, since the coupling con-
stant becomes smaller and smaller as µ increases, then the intensity of the
strong interaction dies off at high energies and in the high energy limit the
colored particles are essentially free (non interacting). The only caveat to
this thought process is the following: since the perturbative expansion of β is
only valid when αs is “small” the line of reasoning that leads to asymptotic
freedom needs a “starting point” from which to take off. On the other hand,
once a certain energy scale is found to exhibit a low intensity strong interac-
tion, therefore rendering a perturbative approach viable, we are guaranteed
that the coupling constant will decrease as we increase the energy. More-
over, the perturbative approach will continue to be valid at higher energies
as αs only gets smaller, enabling us to iterate the same reasoning over and
over and leading us to asymptotic freedom.

The property of confinement states that, since the intensity of the strong
interaction increases at low energies, the only propagating particles are white
(with no color charge), i.e. the colored quarks and gluons are confined inside
white bounded states. For the same perturbative nature that limited the
discussion about asymptotic freedom, the treatment of confinement from
an a priori prospective is not that simple either. Indeed, a full theoretical
proof of QCD confinement is not available. The reason for this is that as the
coupling constant gets larger with decreasing energies it eventually “exits
the perturbative regime” and we are not able to make any claim about the
behavior of the constant itself anymore. Nevertheless, we may make the
statement that the running of the QCD coupling constant, as computed via
perturbative expansions, is compatible with the property of confinement.

If we insist in computing the running coupling through the perturbative
Callan-Symanzik equation, using for example as initial condition the mea-
sured value of αs at the energy scale of the mass of the Z boson, we find
that it diverges at some energy scale Λ. This scale is usually referred to as
the Landau pole and denoted with ΛQCD and it can be thought of as an
indicative scale at which the strong interaction can no longer be treated per-
turbatively. The specific value of ΛQCD varies with the perturbative order
used throughout the computation and the renormalization scheme adopted,
but is usually around a few hundreds MeV.

The property of confinement is phenomenologically observed, indeed it
might be the most evident aspect of strong interaction: no colored particle
nor long distance strong interaction is observed in nature. The colored mat-
ter and radiation particles only appear in nature as components of “larger”,
composite white particles: the hadrons. We will be focused on the proton
since we are primarily interested in providing theoretical predictions for the
LHC, which is a proton-proton collider; other hadrons include the neutron,
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the mesons (pions, kaons...) and heavy barions. The hadrons are bounded
states kept together by strong interaction, although a theoretical-based de-
scription of the low energy dynamics that achieve this effect is not available.

1.1.2 The parton model

Even if a complete description of the structure of the hadrons is missing, one
is interested in studying phenomena including them: for example an effective
description of the behavior of protons undergoing collisions is desirable. This
description is provided by the parton model, which models the hadrons as
made up of its elementary constituents (partons), each carrying a fraction
of the hadron’s momentum zi:

pi = phzi, (1.1.4)

The partons’ momenta are not fixed: rather we expect each parton to
have a certain probability to be found with a fraction zi of the hadron’s
momentum. This is modeled by a probability distribution fi(zi), one for
each parton type, called the parton distribution functions (PDFs). Then a
cross section involving one hadron h in the initial state is assumed to be the
incoherent sum of the hadron’s partons’ cross sections, also called partonic
cross sections, weighted by the corresponding PDFs:

σ(ph) =
∑
i

∫ 1

0
dzifi(zi)σ̂i(ziph) (1.1.5)

This is a näıve model as it does not take quantum corrections into ac-
count. In particular, QCD cross sections in the massless approximation
(adopted in the context of the parton model) show infrared divergences
which do not completely cancel between virtual and real emission diagrams.
We won’t go in more details regarding this issue, let us just mention that
the collinear singularities emerging from QCD quantum corrections have to
be regularized. This is achieved via the renormalization of the parton den-
sity functions, similar to the coupling constant renormalization necessary to
regularize UV divergences. Indeed, the PDFs are not theoretically derived,
as already discussed, and must be fitted to experimental data in order to
make the parton model (1.1.5) useful. The newly defined PDFs acquire a
scale dependence, as is usual with renormalization.

This improved parton model enables us to express the hadron’s cross
sections in terms of the partonic counterparts:

dσh1h2 =
∑
a1,a2

∫∫ 1

0
dx1dx2fa1/h1

(x1, µF )fa2/h2
(x2, µF )dσ̂a1a2 (1.1.6)
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Equation (1.1.6) is usually called QCD factorization theorem. As already
stated, the PDFs fai/hj

(zi) describing the probability of finding a parton ai
in the hadron hj with momentum fraction zi are experimentally determined,
while the partonic cross section dσ̂a1a2 can be safely computed via pertur-
bation theory, as will be described in the next section.

Finally, µF is the arbitrary energy scale introduced during the process
of factorization, and is called factorization scale.

1.2 Fixed order computations in QFT

The main procedure to perform quantitative computations in an interacting
Quantum Field Theory (QFT) is the fixed order expansion. This amounts
to expanding the desired quantity to be computed (e.g. a cross section)
as a power series in the coupling constant of the theory α, then retaining
only the first few orders. If α is “small”, namely substantially smaller than
1, then each term in the expansion becomes less and less important as the
order grows and, at least from a näıve comparison of the various order, can
be disregarded.

If all of these assumptions turn out to be true, then the result of this pro-
cedure is an approximation to the full quantity that one wishes to compute.
Assuming that the perturbative expansion described above is well behaved,
than the fixed order approximation gets closer and closer to the true value
of the desired quantity the more terms one includes in the calculation.

Mathematically speaking this simply amounts to writing some quantity
R(α) as:

R(α) =

∞∑
k=0

αkRk (1.2.1)

where Rk are some coefficient which does not depend on α. Then one can
formally write:

R(α) =
n∑

k=0

αkRk +O(αm+1) (1.2.2)

and, assuming α < 1, the O(αm+1) may be discarded without spoiling the
result too much. The result is called fixed order result, and throughout this
thesis we will denote it with a fix subscript1:

Rfix(α) ≡
n∑

k=0

αkRk ≃ R(α) (1.2.3)
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This last step can obviously be justified only if one knows the values of
the O(αm+1) terms. This is usually not the case since one generally is only
able to compute some of the terms in the expansion (1.2.1); the power series
is then assumed to behave well under truncation at any arbitrary order.

This constitutes both the weakness and the main strength of fixed order
calculations. On the one hand one is never able to compute the true value
of the quantity he is interested in, and can only hope that his fixed order
result will reproduce it well enough. On the other hand, the computation
of some of the Rk coefficients will provide a concrete physical prediction for
R, which may not be available otherwise. Practically speaking, any given
quantity R is treated with a presumption of convergence and computed via
a fixed order approximation, while alternative provisions are applied if it
shows terms that spoil the convergence of its perturbative expansion.

1.2.1 Nomenclature

In this subsection we fix some notation used to refer to fixed order quanti-
ties. The first non-zero (and non-trivial) term in the perturbative expansion
(1.2.1) is called leading order (LO), while the following terms are conse-
quently denoted as next-to-leading order, next-to-next-to-leading order and
so on.

Which term actually constitutes the leading order is sometimes not clear
and should always be specified. For example, in the partonic cross section for
Higgs production via gluon fusion the first non-zero term in the expansion
is the one where two incoming gluons collide and (via a quark loop) produce
one Higgs boson with no additional radiation. This term is proportional to
α4
s and constitutes the leading order of the inclusive cross section:

σgg→H(αs) = σLOgg→Hα
4
s + σNLO

gg→Hα
5
s +O(α6

s) (1.2.4)

On the other hand when considering the p⊥ distribution for the same pro-
cess this term is not generally considered since the kinematical constraints
(namely the 4-momentum conservation) forces the transverse momentum of
the Higgs boson to vanish. The O(α4

s) term in the p⊥ spectrum is therefore
proportional to δ(p⊥) and has a trivial distribution.

For this reason the leading order of the p⊥ distribution is generally con-
sidered to be the O(α6

s) term, and the perturbative expansion of the distri-

1We may occasionally drop the subscript when the context makes its use superfluous,
and the fixed order nature of some quantity is obvious.
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p z̃p

z1p z1z2p
z1...znp

· · ·

Figure 1.1: Emission of multiple gluons from a single line. After N emis-
sions the incoming particle is left with a fraction z̃ = z1z2...zn of its initial
momentum

bution is written as:

dσgg→H(αs)

dp2⊥
=
dσLOgg→H

dp2⊥
α6
s +

dσNLO
gg→H

dp2⊥
α7
s +O(α8

s) (1.2.5)

1.3 Large logarithms - the Uprising

Let us now discuss a particular instance where, despite the coupling con-
stant being small, the standard perturbative expansion is not well behaved
and the fixed order result is unreliable in a specific kinematical region.

Consider the production of a system S with squared invariant mass M2

within a gauge theory such as QED or QCD. The inclusive cross section
sigma(α, z) will depend on the adimensional variable z defined as:

z =
M2

s
(1.3.1)

where s is the center-of-mass energy square of the incoming particles.

Suppose the cross section admits a power series expansion (for QCD
scattering processes this will be true for the partonic cross section):

σ(α, z) =
∞∑
k=0

Ck(z)α
k
s (1.3.2)

The coefficients Ck will be kinematically enhanced when z → 1 due to the
emission of soft photons (or gluons). Indeed, the coefficients Ck with k > 1
will contain Feynman diagrams with multiple gauge boson emissions from
the particles involved in the scattering process. Each emission carries an
energy fraction 1− zi of the emitting particle; after n emissions the original
particle’s energy will be a fraction z̃ = z1z2...zn of its initial value.

10



Upon integration over the phase space of the emitted bosons these emis-
sions will give rise in the coefficient Ck to terms proportional to:

lnm(1− z)

1− z
0 ≤ m ≤ 2k − 1 (1.3.3)

These terms are logarithmically enhanced in the threshold (z → 1) region
and are present at all orders in the perturbative expansion. In the case of a
QCD partonic cross section the region z ≃ 1 is always encountered during
the convolution of the cross section itself with the PDFs (1.1.6).

Therefore when z is such that:

αs ln(1− z) ∼ 1 (1.3.4)

all the terms proportional to (αs ln(1 − z))k are roughly of the same
magnitude and any fixed order truncation would not be justifiable.

Therefore the presence of these logarithmic contributions spoils the fixed
order result in the threshold region and renders the fixed order cross section
unreliable. This makes the need to find an alternative way of computing
this cross section evident and is the primary motivation for the resumma-
tion procedure.

Resummation theory enables us to include the logarithmic contribu-
tions at all orders by providing an alternative perturbative expansion of the
cross section that produces reliable results when truncated. This is accom-
plished by factorizing and then exponentiating the contributions from real
soft emission[20]; the result is a perturbative expansion in α with α ln(1−x)
fixed (formally α ln(1 − x) is considered of order unity). Loosely speaking
each “large” logarithm is paired with a “small” coupling constant and what
is left is not affected by large kinematical terms anymore.

1.4 Large logarithms - the Factorization

The possibility of obtaining a finite, reliable result even when large loga-
rithms appear is due to the fact that the perturbative series has to converge
to the true cross section when all the perturbative terms are included. The
large logarithms are just an artifact of the fixed order truncation and should
sum to a physically acceptable result if we were able to take into account
their contribution at all orders.

The first step in this direction is the factorization of the soft (and
collinear) contributions to the cross section. In order to achieve this, one
has to be able to factorize both the phase space and the matrix element of
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a given cross section.

While the phase space factorization depends on the particular process
at hand, the matrix element always factorizes in the soft and/or collinear
limit. In this section I give a brief overview over this universal factoriza-
tion of QCD matrix elements in order to justify, at least conceptually, the
resummation procedure and its reliability in the appropriate limit.

1.4.1 Weinberg soft photon theorem

Let us first consider the simpler example of QED soft emission. I will present
a simple proof of soft matrix element factorization following a paper from
Weinberg[17]. Although this does not include collinear emissions, which
needs to be considered when computing a QCD cross section1, it represents
a fairly general statement about soft emission. Indeed, this same proof can
be applied to gauge theories (both abelian and Yang-Mills), gravity and a
variety of other theories[18].

Consider a tree level process with N external legs of momenta pi, i =
1, 2, ..., N and spin 0. Attaching a photon of momentum q to the i−th leg
accounts to adding a vertex factor and a propagator of momentum p + ηq
to the matrix element.

Overall this gives a factor:

ei(2p
µ
i + ηiq

µ)

(pi + ηiq)2 +m2
i − iε

(1.4.1)

where η = ±1 depending on whether the i−th particle is incoming or out-
going and mi is the mass of said particle. In the limit q → 0 this factor
becomes

eiηip
µ
i

pi · q − iηiε
(1.4.2)

While Eq. (1.4.2) is only true for spin-0 hard particles, the soft version Eq.
(1.4.3) holds for any spin[17].

Attaching the photon to an internal line will give contributions that are
negligible in the soft limit, since they lack the p · q factor in the denomi-
nator. Therefore we only need to consider the diagrams where the photon
is attached to an external line; adding all these together, we find that the

1More on this in the remarks at the end of this Section.
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factor acquired when emitting a soft photon is:

N∑
i=1

eiηip
µ
i

pi · q − iηiε
(1.4.3)

If the emission of multiple soft photons is considered, it turns out[17]
that we simply get the product of several factors of the form (1.4.2), one for
each emitted photons.

When computing an amplitude that contains soft photon emissions we
can therefore approximate it by the tree level amplitude times the soft factor:

Mµ({pi}, q) ⋍ M0({pi})
N∑
i=1

eiηip
µ
i

pi · q − iηiε
(1.4.4)

In order to compute the scattering amplitude one then has to contract
Mµ with the photon’s “wave function” and integrate over its 4-momentum.
As already discussed, the factorized form of Eq. (1.4.4) will still hold at the
cross section level only if the phase space factorizes accordingly.

A couple of remarks are due before proceeding to the QCD counterpart
of the factorization theorem:

• Since a soft photon emitted during a scattering process can’t be de-
tected by any experimental piece of equipment, when computing any
scattering amplitude

p1 + p2 + ...+ pm −→ pm+1 + pm+2 + ...+ pn (1.4.5)

one also has to include in the calculation all of the related processes
where one or more photons of soft momenta k1, k2, ...kr are emitted:

p1 + ...+ pm −→ pm+1 + ...+ pn + k1 + ...+ kr (1.4.6)

This justifies the need to consider multiple soft photon emissions,
never mind how inclusive one’s cross section is. On the other hand
a collinear, hard photon changes the final state in a way that is mea-
surable, therefore it should not be included in the computation of M.

• The classification of the various soft emissions tacitly assumed that
only the hard external lines could emit soft photons, while other al-
ready emitted soft photons could not do so. This is true in QED (and
gravity) since the photon does not carry any electric charge, but will
not be true in non-abelian Yang-Mills theories such as QCD where the
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gauge bosons, the gluons, do carry a color charge.

As a result, the soft emissions of QCD become more and more con-
voluted as one tries to include correlations between various emission.
Nevertheless, a factorized form of a generic QCD matrix element is
known un to NNLL precision [8].

1.4.2 QCD Matrix element factorization

We can now derive a factorized form of a QCD matrix element when soft
and collinear gluon emissions occur. Because of the confined nature of QCD,
a gluon collinear to final state (colored) momentum p will not be detectable
in an experimental setting. Indeed, it will be impossible to distinguish it
from the gluons present in the hadron associated to the momentum p after
the hadronization process.

Since we have to include real collinear gluon emissions in our calcula-
tion, we can no longer rely solely on the soft factorization theorem as we
did in QED since a collinear gluon is generally not soft. Nevertheless the
matrix element can be factorized in a universal fashion; in this Section we
prove factorization of the matrix element with respect to the emission of one
gluon, the generalization to multiple gluon emissions is straightforward1.

Consider a process initiated by two quarks of momenta:

pµ1 =

√
s

2
(1, 0, 0, 1), pµ2 =

√
s

2
(1, 0, 0,−1), (1.4.7)

then suppose one of the particles, say p1, radiates a gluon of momentum q.
The matrix element for this process is:

iM(p1, p2) = i
√
αsM(p1 − q, p2)

/p1 − /q

(p1 − q)2
γµtau(p1)εµ(q) (1.4.8)

where M(p1 − q, p2) is the Born level matrix element with the correct in-
coming momenta, εµ(q) is the gluon’s polarization vector and u(p1) is the
polarization vector of the first quark.

We parametrize the 4-momentum q in terms of the incoming momenta
and a transverse spacelike momentum q⊥:

q = (1− z)p1 + q⊥ + ξp2 (1.4.9)

1This is only true if uncorrelated gluon emissions are considered. The proof of matrix
element becomes more convoluted when one also considers emissions from other emitted
soft and/or collinear gluon. Luckily these can be classified in a hierarchy: at LL accuracy
one only need to consider uncorrelated emissions, at NLL one has to include two-particles
correlations and so on. More details can be found in Ref.[13].
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The on-shell condition for the gluon fixes:

ξ =
q2⊥

2(p1 · p2)(1− z)
(1.4.10)

Substituting in Eq.(1.4.8) and retaining only the most singular terms in q⊥
we get:

iM(p1, p2) = i
√
αsM(p1 − q, p2)

(1− z)(/p1 − /q)

−q2⊥
γµtau(p1)εµ(q) (1.4.11)

We then rewrite the momentum p1 as:

p1 =
q − q⊥ − ξp2

(1− z)
(1.4.12)

and, after some algebra, using the Dirac equation for u(p1) and {/q⊥, γ
µ} =

2qµ⊥ we obtain for the matrix element:

iM(p1, p2) = i
√
αsM(p1 − q, p2)

−2zqµ⊥ − (1− z)/q⊥γ
µ

−q2⊥
γµtau(p1)εµ(q)

(1.4.13)
Taking the square modulus of the amplitude and summing over polar-

izations we get:

|M(p1, p2)|2 = αsCF
(1 + z2)

q2⊥
|MB|2 (1.4.14)

Where:

|MB|2 =
∑

|u(p1 − q)M(p1 − q, p2)|2 (1.4.15)

Therefore we see that the emission of a soft and/or collinear gluons from
a quark contributes to the matrix element squared with a factor:

αsCF
(1 + z2)

q2⊥
(1.4.16)

In general the soft/collinear emission of a colored particle brings a factor:

αs
pij(z)

q2⊥
(1.4.17)

where pij is the numerator of the Atarelli-Parisi splitting function.

This result can be straightforwardly extended to the emission of multi-
ple gluons as long as one does not consider correlations between different
emissions. Including these corrections is actually needed to perform the re-
summation at the NNLL accuracy and further; a complete discussion can
be found in Ref.[13].
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1.4.3 Phase space factorization

In order to proceed with the resummation program one has to multiply the
matrix element with the phase space and integrate over the radiation’s de-
grees of freedom. If the cross section obtained this way can be written in a
factorized form, one is able to exponentiate the soft/collinear contributions
as will be discussed in the next section.

In the case of threshold resummation the phase space for the emission of
m gluons with momentum fractions z1, z2, ..., zm from an incoming/outgoing
leg will be proportional to1:

dz1 · · · dzmδ(z − z1 · · · zn) (1.4.18)

which clearly does not factorize. The Dirac delta can be brought into a
factorized form taking the Mellin transform of the cross section, indeed:

M [δ(z − z1 · · · zn)] (N) =

∫ 1

0

dz

z
δ(z − z1 · · · zn)

=zN−1
1 · · · zN−1

m

(1.4.19)

Then the zi integration included in the i−th gluon’s phase space inte-
gration became, thanks to the zN−1 terms in (1.4.19), a Mellin transform
with respect to zi.

This is a simple argument showing that in general threshold factoriza-
tion (and thus threshold resummation) has to be performed in Mellin space.
The factorization of the phase space is not trivial by any means and I will
not discuss further the issues related to it since they have been discussed
heavily in the literature[7, 8, 20].

The most important feature of the soft/collinear factors is that they are
logarithmically enhanced. This shows that the origin of the large logarithms
that spoil the perturbative expansion can be traced back to the emission of
soft and collinear gluons, as we had already anticipated.

1.5 Large logarithms - the Resummation

Once the factorization of the large logarithmic terms has been properly ac-
complished, one can proceed with their exponentiation, which concludes the

1The Dirac delta comes from the longitudinal component of the 4-momentum conser-
vation law.
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resummation procedure.

Suppose that the emission of a single gluon amounts to a factor:∫
d3qσ({pi}, q) = σ({pi})S(αs lnN,αs) (1.5.1)

where I will call S the Sudakov form factor for historic reasons and I am
implicitly assuming that the cross sections are considered in the Mellin space
where factorization occurs. The Sudakov form factor has a logarithmic ex-
pansion:

S(λ, αs) =
1

αs
g1(λ) + g2(λ) + αsg3(λ) + ... (1.5.2)

Since we assume complete factorization holds at the cross section level
the emission of M gluons amounts to:∫ ∏

d3qjσ({pi}, {qj}) =
1

M !
σ({pi})

∏
S(αs, x) (1.5.3)

Where the 1/M ! is the combinatorics factor forM bosons. Summing over all
possibleM we get a power series in S which can be written as an exponential:

σrad({pi}) = σ({pi})g0(αs) exp {S(αs, x)} (1.5.4)

The cross section σrad contains the soft and collinear contributions from
every possible number of gluon emission. The function g0 takes into account
the virtual contributions and can be computed as a power expansion in αs.
The resummed cross section can be computed perturbatively by truncating
the expansion (1.5.2). This expansion, however, is different from the fixed
order one, indeed by including the function g1 we are actually including a
complete tower of logarithms, namely all the terms:

lnN2nαn
s (1.5.5)

Including those terms (for every n) together with the 0-th order of g0 cor-
respond to a leading logarithm (LL) computation.

Correspondingly, including all the g functions up to gk+1 together with
g0 computed up to order αk

s will result in a NkLL computation, and will
properly resum all the lnN2n−jαn

s terms with j ≤ k.

A quick remark about the process of exponentiation: since in general
S will be a matrix in color space, the exponential will be well defined only
with a proper path ordering.
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LO NLO NNLO · · ·
LL - αs ln

2 α2
s ln

4 ...
NLL - αs ln α2

s ln
3 ...

NNLL - αs α2
s ln

2 ...
· · · - - ... ...

Table 1.2: Logarithmic towers in fixed order and resummed accuracy.

1.6 Threshold resummation in p⊥-spectrum for Higgs
production

In this section I will present the results for the threshold resummation at
fixed p⊥ for the transverse momentum distribution in Higgs production.
This was developed at NLL accuracy in Refs. [6, 7] for every partonic
channel: we are interested in the gluon fusion channel and therefore we will
only present the results for the particular subprocess:

g1 + g2 −→ H +X (1.6.1)

The resummed p⊥ distribution can be written as:

dσresgg

dp2⊥
=
dσLOgg

dp2⊥
g0,gg(p

2
⊥) exp[G(N, p2⊥)] (1.6.2)

with

G(N, p2⊥) = ∆g(N) + ∆g(N) + Jg(N) + ∆int(N, p
2
⊥) (1.6.3)

The Sudakov exponent G gets contributions from gluon radiation off the
incoming gluons (the ∆ terms), the outgoing gluon (the J term) and from
an interference term related to large-angle emission (the ∆int term). In par-
ticular, the only p⊥ dependence in the Sudakov exponent is the one coming
from the interference term ∆int.

From now on we will drop the partonic subscript since we will only in-
vestigate the gluon fusion channel where both the incoming partons and the
LO radiation are gluons1.

The various contributions to the Sudakov exponent (1.6.3) are defined
as2:

1Moreover there is only one possible color structure, rendering the Sudakov exponent
diagonal in color space and making the exponentiation in (1.6.2) a simple exponential
function.

2We change a sign in the ∆int term found in Ref. [8], Eq. (2.3.5) since it does not
match with the original paper where the result was firstly derived[6]. We have checked

18



∆(N) =

∫ 1

0
dz
zN−1 − 1

1− z

∫ Q̃2(1−z)2

µ2
F

dq2

q2
A(αs(q

2)) (1.6.4)

J(N) =

∫ 1

0
dz
zN−1 − 1

1− z

∫ Q̃2(1−z)

Q̃2(1−z)2

dq2

q2
A(αs(q

2)) +B
(
αs

(
Q̃2(1− z)

))
(1.6.5)

∆int(N, p
2
⊥) =

∫ 1

0
dz
zN−1 − 1

1− z
A
(
αs

(
Q̃2(1− z)2

))
ln

(
√
1 + ξ +

√
ξ)2

ξ
(1.6.6)

where ξ = p2⊥/m
2 is an adimensional variable for the transverse momentum,

Q̃2 = Q2(
√
1 + ξ+

√
ξ)2 is the relevant hard scale of the process and A(αs),

B(αs) can be computed as power series in αs:

A(αs) =Ag(αs) = A(1)αs +A(2)α2
s +O(α4

s) (1.6.7)

A(1) =
CA

π
(1.6.8)

A(2) =
CA

2π2

[
CA

(
67

18
− ζ2

)
− 5

9
nf

]
(1.6.9)

B(αs) =Bg(αs) = B(1)αs +O(α4
s) (1.6.10)

B(1) =− β0 = −
11CA + 2nf

12π
(1.6.11)

These coefficients enable us to compute the resummed cross section up
to NLO accuracy: the interested reader may find the explicit expressions for
the g1 and g2 functions in Ref. [6].

We will rather compute explicitly the fixed order expansion of the re-
summed cross section:

dσres

dξ
=
dσres

dξ

⏐⏐⏐⏐
LO

+
dσres

dξ

⏐⏐⏐⏐
NLO

+ ... (1.6.12)

The LO term is simply:

dσres

dξ

⏐⏐⏐⏐
LO

=
dσLO

dξ
(1.6.13)

In order to compute the NLO term one has to compute the exponential
in Eq.(1.6.2) up to O(αs) and the function g0 up to the same order. We

that the definitions of the Sudakov exponent in the two papers match by setting µ2
F = m2ã

provided one changes the sign of the ∆int term.
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will not bother to compute the contributions coming from the g0 functions,
since they are not logarithmically enhanced in the large N region1.

The power series for the Sudakov form factor and the corresponding
series for its exponential are, up to O(αs):

G(N, ξ) =αsG(1)(N, ξ) +O(α2
s) (1.6.14)

exp [G(N, ξ)] =1 + αsG(1)(N, ξ) +O(α2
s) (1.6.15)

There are two ways of computing the functions G(k). One can compute
them from the logarithmic expansion of G, analogous to the one presented
for the general case Eq.(1.5.2), by expanding the gi functions to fixed order.
Then from the NLL resummed cross section that includes the g1 and g2
functions one is able to compute the single and double logarithmic behavior
of G(1), while in order to compute the constant term one also needs to know
the g3 function (which is included in the NNLL cross section).

We will not adopt this method, although we have checked that the results
obtained in this way match the ones we are about to present. We are rather
going to compute the Sudakov terms Eqs. (1.6.4)-(1.6.6) at fixed order
accuracy:

G(1)(N, ξ) = 2∆(1)(N) + J (1)(N) + ∆
(1)
int(N, ξ) (1.6.16)

where the terms on the right hand side are obviously the coefficients of the
corresponding Sudakov terms in a fixed order expansion. For the sake of
briefness we will compute J (1) explicitly and will only give the final result
for the other two coefficients, since their computations is very similar.

Expanding A up to first order in (1.6.4) we get:

J (1)(N) =

∫ 1

0
dz
zN−1 − 1

1− z

∫ Q̃2(1−z)

Q̃2(1−z)2

dq2

q2
A(1) +B(1)

=

∫ 1

0
dz
zN−1 − 1

1− z

(
−A(1) ln(1− z) +B(1)

) (1.6.17)

The z integrations can be thought of as special cases of the integral:∫ 1

0
dz

(
lnk(1− z)

1− z

)
+

zN−1 (1.6.18)

1The interested reader will find the expression for g0 up to O(αs) in Ref.[8], Appendix
C.
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Where the plus distribution is defined as in Appendix A. These integrals
can be solved for all k from a generating integral in a systematic way1. The
specific results we are going to need are:

∫ 1

0
dz

(
1

1− z

)
+

zN−1 =− ψ0(N)− γE (1.6.19)∫ 1

0
dz

(
ln(1− z)

1− z

)
+

zN−1 =
1

2

[
ψ2
0(N)− ψ1(N) + 2γEψ0(N) + ζ2 + γ2E

]
(1.6.20)

where ψ are Poligamma functions, γE is Euler’s constant and ζ2 = ζ(2) is
Riemann’s zeta function evaluated at 2 + 0i. Therefore the J term is:

J (1)(N) =− A(1)

2

[
ψ2
0(N)− ψ1(N) + 2γEψ0(N) + ζ2 + γ2E

]
+B(1) [−ψ0(N) + ψ0(1)]

(1.6.21)

In the large N limit, where the resummed cross section gives reliable
informations, it amounts to:

J (1)(N) = −A
(1)

2

[
ln2N + 2γE lnN + ζ2 + γ2E

]
−B(1) [lnN + γE ] (1.6.22)

where we used the asymptotic behavior of the Poligamma functions, namely
ψ0(N) ∼ lnN and ψi(N) → 0 for i ≥ 1 in the large N region.

After computing the remaining terms in the Sudakov exponent one ob-
tains for the resummed cross section expanded at NLO:

dσres

dξ

⏐⏐⏐⏐
NLO

(N, ξ) =

dσLO

dξ
(N, ξ)

αs

2π

{
c2 ln

2N + c1(ξ) lnN + c0(ξ) +O
(

1

N

)} (1.6.23)

Where2:

c2 =3CA (1.6.24)

c1(ξ) =6CAγE + 2πβ0 − CA ln
ã

ξ
− 2CA ln

Q2

µ2F
(1.6.25)

c0(ξ) =3CA(ζ2 + γ2E) + 2πβ0γE − CAγE ln
ã

ξ
− 2CAγE ln

Q2

µ2F
(1.6.26)

1 The computation of these and other integrals involving plus distributions can be
found in Ref.[9].
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where ã = ã(ξ) = (
√
1 + ξ +

√
ξ)2.

2We remind the reader that we are still using conventions where β0 =
11CA−2nf

12π
.
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Chapter 2

Higgs boson inclusive
production beyond NNLO

This chapter is the review of an article from Ball, Bonvini, Forte, Marzani
and Ridolfi[1]. The article proposes an approximation for the N3LO inclu-
sive cross section for Higgs production via gluon fusion in p-p collisions.

This thesis aims to extend the results found in this article for the inclu-
sive cross section to the semi-differential one, namely the p⊥ distribution.
This task will be tackled in Chapter 4 but the main concepts that lead to
this result are already there in the simpler case of the inclusive cross section
reviewed in this Chapter.

The approximation is achieved by exploiting the all-order threshold in-
formations contained in the resummed cross section and the known analytic
structure of the fixed order cross section in Mellin space. It is argued that the
resummed cross section is unreliable far away from threshold (in the large
N region) largely because it does not have the correct singularity structure.
Loosely speaking, the large logarithms that appear in the resummed cross
section when expanded at fixed order have cut singularities in the N com-
plex plane, while the fixed order cross section has pole singularities.

By backtracking the origin of those large logarithms, one is able to find
the functions that generates them in the N → ∞ limit. This function has to
have the correct pole structure while still be unambiguously paired with a
threshold logarithm1. One can then substitute this function in place of the
ln(N) in the resummed cross section obtaining the desired approximation.

1Since our approximation is technically a prescription for including terms that are
subleading in the threshold region, this last statement could be rephrased as “We need to
keep only subleading terms that we know will appear with every corresponding logarithm
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h2(P2)

h1(P1)
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X
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X
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fa2/h2

fa1/h1

dσ̂a1a2

Figure 2.1: Factorization theorem for the production of an Higgs particle.
The vertical dashed line separates the low energy, non-perturbative dynamic
on the left from the high energy partonic cross section in the right.

Throughout this chapter I will adopt the same notation as Ref.[1], may
the reader be aware that the variables definitions contained in this chapter
do not necessarily hold in the remaining of this body of work.

2.1 Large logarithms in Mellin space

Consider the production of an Higgs boson in a p-p collision schematically
represented in Fig.2.1.

The cross section for this process, thanks to the factorization theorem,
can be written as:

σ(τ,m2) = τ
∑
ij

∫ 1

τ

dz

z
Lij(

τ

z
, µ2F )

1

z
σ̂ij

(
z,m2, αs(µ

2
R),

m2

µ2F
,
m2

µ2R

)
(2.1.1)

where τ ≡ m2/s and Lij are the parton luminosities.

We define the coefficient functions C as:

σ̂ij

(
z,m2, αs(µ

2
R),

m2

µ2F
,
m2

µ2R

)
= zσ0(m

2, αs(µ
2
R))Cij

(
z, αs(µ

2
R),

m2

µ2F
,
m2

µ2R

)
(2.1.2)

while still keeping enough subleading terms in order to preserve the original fixed order
cross section.”.
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and normalize the parton luminosities in order for the 0-th order gg
coefficient function to be a Dirac delta:

Cij(z, αs) = δ(1− z)δigδjg + αsC
(1)
ij (z) + α2

sC
(2)
ij (z) + α3

sC
(3)
ij (z) +O(α4

s)
(2.1.3)

2.1.1 NLO fixed order cross section

We only consider the gluon fusion channel, therefore setting i, j = g in all
our equations and dropping the corresponding labels from now on.

The O(αs) coefficient is given by[13, 8]:

C(1)(z) =4Ag(z)D1(z) + dδ(1− z)− 2Ag(z)
ln z

1− z
+Rgg(z), (2.1.4)

Dk(z) ≡

(
lnk(1− z)

1− z

)
+

, (2.1.5)

Ag(z) ≡
CA

π

1− 2z + 3z2 − 2z3 + z4

z
(2.1.6)

Where R is a regular function of z in z = 1 and both R and d depend
on m/mt.

The threshold region corresponds in Mellin space to the N → ∞ limit.
Therefore in order to study the threshold behavior of the NLO cross section
we are only interested in those terms that give contribution al large N . Since
the Mellin transform of an ordinary function vanished as N → ∞[9] the last
two terms in (2.1.4) do not contribute to the threshold limit. The delta
term is constant in Mellin space while the D1 term is divergent as N → ∞.
Indeed[9]:

D1(N) ≡
∫ 1

0
xN−1D1(x)dx

=
1

2
[ψ2

0(N)− ψ1(N) + 2γEψ0(N) + ζ2 + γ2E ]

(2.1.7)

D1(N)
N→∞−−−−→ 1

2
[ln2(N) + 2γE ln(N) + ζ2 + γ2E ] (2.1.8)

We can already see that in this last limit we are modifying the singular-
ity structure, loosing the correct pole structure in favor of branch cuts. This
can be rephrased as saying that we are discarding some subleading terms
which do not change the threshold limit but greatly affect the low N region.
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The objective is then to find a prescription for retrieving systematically
those terms, or roughly speaking to “invert” the approximation made in
Eq.(2.1.8).

2.1.2 Resummed cross section

The contributions to the coefficient function that do not vanish in the thresh-
old limit can be computed at all orders from the resummed cross section.

The resummed coefficient function can be written as:

Cres(N,αs) = g0(αs) exp

[
1

αs
g1(αs lnN) + g2(αs lnN) + αsg3(αs lnN) + ...

]
(2.1.9)

When expanded at any fixed order it gives the logarithmically enhanced
and constant terms in the threshold limit. Expanding Cres up to O(αs) we
get:

Cres(N,αs) = 1 + αsC
(1)
res(N) +O(α2

s), (2.1.10)

C(1)
res(N) =

2CA

π
[ln2N + 2γE lnN + g0,1] (2.1.11)

As expected, the large N behavior of the fixed order and resummed
coefficient are the same1:

lim
N→∞

[
C(1)
res(N)− C(1)(N)

]
= 0 (2.1.12)

While the large N behavior is the same, the two coefficients C(1) and

C
(1)
res differ greatly in the low N region. Indeed the resummed result is ex-

pected to be reliable only in the threshold limit.

More precisely, the fixed coefficient has pole singularities given by the
Poligamma functions while the resummed one has cut singularities given by
the lnN . While both these singularities do lie outside the physical region
N > 0 they are close enough to it to produce wildly different results for the
cross section at low N .

In the low N region the fixed order cross section is not affected by large
kinematic terms and is therefore reliable. We can thus say that the cor-
rect singularity structure to be had is the one given by C(1) while the cuts
exhibited by the resummed coefficients are artifacts of the resummation pro-
cedure.

1The logarithmic behavior is correcly predicted from general arguments while the
constant g0,1 is fixed by requiring Eq.(2.1.12) to hold
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If we were to know the resummed coefficient but not the fixed order one,
and wanted to make an approximation to the former we would do a much
better job by substituting the lnN with Poligamma functions.

2.2 Refined approximation

The approximation we just proposed is justified by backtracking the kine-
matical origin of the large logarithms. Indeed, just from comparing the fixed
order and resummed coefficients at NLO we did’t obtain informations about
the structure of the threshold logarithms at higher orders, although it en-
abled us to make an educated guess.

The large threshold logarithms originate from the integration of real
emission diagrams over the emitted gluon’s transverse momentum:

pgg(z)

∫ M(1−z)√
z

Λ

dk⊥
k⊥

=
Ag(z)

1− z

(
ln

1− z√
z

+ ln
M

Λ

)
(2.2.1)

where Λ is a collinear cutoff and:

pgg(z) =
Ag(z)

1− z
(2.2.2)

Therefore the logarithmically enhanced terms at all orders are of the
form:

1

1− z
ln

1− z√
z

=
1

1− z
[ln(1− z) +O(1− z)] (2.2.3)

This not only justifies the approximation proposed in the previous sec-
tion, but also suggests a more refined one. Namely, instead of identifying
solely the D1 function as the origin of the large logarithms we can instead
take:

D̂1(z) ≡
(
ln(1− z)

1− z

)
+

− ln
√
z

1− z
(2.2.4)

or more precisely its Mellin transform to be the proper substitute for the
lnN terms.

Both D̂1 and D1 correctly reproduce the large N behavior1and have a
pole singularity structure, yet the former reproduces the double poles in
N = 0,−1,−2, ... that are present in the fixed order result while the latter
only has single poles.

1For the constant term matching, we redirect the interested reader to the original
article[1], especially the first appedix.

27



In summary the approximation is constructed in the following way. The
resummed coefficient is rewritten as:

Cres(N,αs) = g0(αs) exp
∞∑
n=1

αn
s

n∑
k=0

bn,kDlog
k (N) (2.2.5)

Where:

Dlog
k (z) ≡

(
lnk ln 1

z

ln 1
z

)
+

, Dlog
k (N) ≡ M

[
Dlog

k (z)
]
(N) (2.2.6)

and M [f ] is the Mellin transform of any function f .

Then one of two substitutions is done1, resulting in:

Csoft1(N,αs) =ḡ0(αs) exp

∞∑
n=1

αn
s

n∑
k=0

bn,kD̂k(N + 1) (2.2.7)

Csoft2(N,αs) =ḡ0(αs) exp

∞∑
n=1

αn
s

n∑
k=0

bn,k×

×
[
2D̂k(N)− 3D̂k(N + 1) + 2D̂k(N + 2)

]
(2.2.8)

Equations (2.2.7)-(2.2.8) give the desired approximation for the NNLO
fixed order inclusive cross section satisfying all of the properties required:
they correctly reproduce the threshold logarithmic behavior while still ex-
hibiting the desired pole structure; moreover they can be computed solely
from the resummed cross section.

Since the NNLO fixed order cross section is known[15, 16, 5], it is possible
to check numerically the goodness of the approximation. The interested
reader may find this comparison in the original paper[1].

1The two approximations soft1 and soft2 differ in that the former takes into account
the threshold expansion of Ag(z) up to second order while the latter up to first order[1].
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Chapter 3

Higgs p⊥-spectrum at NLO

In order to adopt a similar strategy to the one presented in Ref.[1]1in the
context of p⊥ distributions we need to compare the logarithmic terms arising
in the fixed order computation to the ones predicted by resummation theory.

The lowest perturbative order in which this comparison is possible is the
NLO order2, since it is the first order where real, soft gluon emissions do
contribute to the p⊥-spectrum.

Unfortunately, the NLO p⊥ distribution for Higgs production via gluon
fusion is only available in literature in numerical form. Since we are in-
terested in the precise form of the logarithmic terms and their singularity
structure we will need to derive the analytic form of the NLO p⊥-spectrum
first, at least in the threshold limit.

The closest result available in analytic form in the literature to the one
we are interested in is the double differential cross section in rapidity y and
transverse momentum p⊥. This distribution was computed by Glosser up to
NLO[3] using elicity techniques, the final results were presented by Glosser
and Schmidt[4].

This Chapter will be devoted to the rapidity integration of the result
from Glosser regarding the gluon fusion channel. The techniques used dur-
ing the computation are applicable also to the other partonic channels; we
leave this exercise to future researchers.

1We quickly reviewed the content of this article in Chapter 2, the interested reader
may find more informations in the original paper.

2We remind the reader of the different “order terminology” used in inclusive and
differential cross sections explained in Sec.1.2.1.
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3.1 Notation and Mandelstam variables

As already stated before we will consider the process:

h1(P1) + h2(P2) → H(p) +X(Q) (3.1.1)

where hi are the incoming hadrons, H is the Higgs boson we are interested
in and X is any extra radiation.

The corresponding partonic process in the gluon fusion channel is:

g1(p1) + g2(p2) → H(p) +X(Q) (3.1.2)

We parametrize the momenta in the partonic center of mass frame:

p1 =

√
s

2
(1, 0, 0, 1), p2 =

√
s

2
(1, 0, 0,−1),

p = (EH ,
−→p⊥, pL), Q = (Q0,−−→p⊥,−pL)

(3.1.3)

The rapidity along the z axis of the Higgs boson is defined as:

y ≡ ln
EH + pL
m⊥

, m2
⊥ = m2 + p2⊥ (3.1.4)

where m is the mass of the Higgs boson and m⊥ is called the transverse
mass. In terms of the rapidity and the transverse mass the Higgs’ boson
momentum can be written as:

p = (m⊥ cosh(y),−→p⊥,m⊥ sinh(y)) (3.1.5)

We stress that, even if all of the radiation is made up of massless particles,
the 4-momentum Q is the sum of all the radiated particles’ momenta and
therefore in general:

Q2 ≥ 0 (3.1.6)

and the equality holds if all the radiation is either soft or collinear to the
Higgs momentum.

The partonic Mandelstam variables are defined as:

s ≡ (p1 + p2)
2, t ≡ (p1 − p)2, u ≡ (p1 −Q)2 (3.1.7)

i.e. by considering all the radiation Q as a single particle; they are well
defined for any number of radiated gluons.
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In terms of the rapidity and the transverse momentum these can be
written as:

t =m2 −m2
⊥e

−y, (3.1.8)

u =m2 −m2
⊥e

y, (3.1.9)

Energy momentum conservation at the partonic level implies:

s+ t+ u =
∑

m2
i = m2 +Q2 (3.1.10)

Therefore we can write Q2 as a function of y and p⊥:

Q2 = s+ t+ u−m2 = s+m2 −m⊥
√
s
(
ey + e−y

)
(3.1.11)

In accordance to the literature[8] we define:

τ =
m2

s
, 0 ⩽ τ ⩽ a(ξ)

ξ =
p2⊥
m2

, 0 ⩽ ξ ⩽
(1− τ)2

4τ

(3.1.12)

Where either of the kinetically allowed range is considered at fixed value
of the other variable. As we can see from Eq.(3.1.12) the variable τ , which
was identified as the threshold variable in the inclusive case, does not range
from 0 to 1 but rather is bounded from above by[8]:

a(ξ) ≡ (
√
ξ − 1−

√
ξ)2 (3.1.13)

It is convenient to define a threshold variable that ranges from 0 to 1,
and more importantly whose range does not depend of p⊥ (or equivalently
on ξ):

x ≡ τ

a(ξ)
=
m2

s
(
√
ξ − 1 +

√
ξ)2 (3.1.14)

With respect to the variables x and ξ the physical region is:

0 ⩽ x ⩽ 1, 0 ⩽ ξ (3.1.15)

Finally, for future convenience we define:

ã(ξ) ≡ (
√
ξ − 1 +

√
ξ)2 =

1

a(ξ)
(3.1.16)
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3.2 p⊥ and y differential distribution up to NLO

The factorization theorem for the double differential cross section states that
the hadronic cross section can be written as:

dσ

dp2Tdy
=
∑
i,j

∫ 1

0
dx1dx2fi,h1(x1, µF )fj,h2(x2, µF )

dσ̂ij
dp2Tdy

(3.2.1)

where f are the parton distribution functions (PDF) and dσ̂/dp2Tdy is the
partonic differential cross section.

The partonic cross section admits the perturbative expansion1:

dσ̂ij
dp2Tdy

=
σ0
s

[
αs(µR)

2π
G

(1)
ij +

(
αs(µR)

2π

)2

G
(2)
ij +O((αs)

3)

]
(3.2.2)

where σ0 is the tree level inclusive cross section:

σ0 =
π

64

(
αs(µR)

3πv

)
(3.2.3)

The coefficient G(1) correspond to the LO differential distribution while
G(2) to the NLO one. The coefficient related to the gluon fusion channel
(i, j = g) are[4]:

G
(1)
ij =gijδ(Q

2), (3.2.4)

ggg =Nc

(
m8

H + s4 + t4 + u4

uts

)
(3.2.5)

The NLO coefficient is conveniently decomposed into a singular and a
non-singular part:

G
(2)
ij = G

(2s)
ij +G

(sR,ns)
ij (3.2.6)

where G
(sR,ns)
ij is regular for Q2 → 0 and does not contain ε-poles from the

dimensional regularization procedure adopted in the computation. Since

1We draw reader’s attention to the fact that, adhering to the notation of the original
paper[4], we are adopting an expansion in powers of αs/2π, differently to the one we have
been using so far. This should be kept in mind when comparing results from this Chapter
and from the rest of this thesis.
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we are interested in the threshold logarithms which only appear in the sin-

gular part of the cross section we will not consider G
(sR,ns)
ij . The singular

coefficient for the gluon initiated process is[4]:

G
(2s)
gg = δ(Q2)

{
(∆ + δ +NcU)ggg

+(Nc − nf )
Nc
3 [(m4/s) + (m4/t) + (m4/u) +m2]

} (I)

+

{(
1

−t

)[
−Pgg ln

µ2F zt
−t

+ pgg

(
ln 1− zt
1− zt

)
+

]
ggg,t(zt) (II)

+

(
1

−t

)[
−2nfPqg(zt) ln

µ2F zt
−t

+ pgg(zt)

(
ln 1− zt
1− zt

)
+

]
(III)

+
(

zt
−t

)((
ln 1−zt
1−zt

)
+
− ln(Q⊥zt/(−t)

(1−zt)+

)
×

×N2
c
2

[
(m8+s4+Q8+u4+t4)+ztzu(m8+s4+Q8+(u/zu)4+(t/zu)4)

sut

] (IV )

−
(
zt
−t

)(
1

1− zt

)
+

β0
2
Nc

(
m8 + s4 + ztzu((u/zu)

4 + (t/zu)
4)

sut

)
(V )

+ [(t↔ u)]

}
+N2

c

[
(m8 + s4 +Q8 + (u/zu)

4 + (t/zu)
4)(Q2 +Q2

⊥)

s2Q2Q2
⊥

+
2m4((m2 − t)4 + (m2 − u)4 + u4 + t4)

sut(m2 − t)(m2 − u)

]
1

p2⊥
ln
p2⊥
Q2

⊥
(3.2.7)

where Pij and pij are respectively the Atarelli-Parisi splitting function and
its numerator:

Pgg(z) =Nc

[
1 + z4 + (1− z)4

(1− z)+z

]
+ β0δ(1− z), (3.2.8)

pgg(z) =Nc

[
1 + z4 + (1− z)4

z

]
(3.2.9)

and we defined:

zt,u =
−t, u

Q2 − t, u
(3.2.10)

Q2
⊥ = Q2 + p2⊥ (3.2.11)
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The functions gij,a(z) are shorthand notation for the LO coefficient
(3.2.4) where the explicit dependence on the parton momentum fractions
x1 and x2 is made explicit. They are defined as:

gij,t(zt) ≡ gij(x1zt, x2),

gij,u(zu) ≡ gij(x1, x2zu)
(3.2.12)

The plus distributions (f)+ are defined in Appendix A.

Finally δ and U give regular contributions to the threshold limit, the
interested reader may find their definitions in Ref.[4], Eqs. (3.18)-(3.19).

As an important practical remark we say that, following the same con-
ventions as Glosser, throughout this chapter we use conventions where the
first coefficient of the QCD beta function β0 is:

β0 =
11CA − 2nf

6
(3.2.13)

3.3 Kinematics for y integration

In order to obtain the single differential p⊥-distribution we need to integrate
Eq.(3.2.2) in rapidity:

dσ

dp2⊥
=

∫ ymax

ymin

dσ

dp2⊥dy
dy (3.3.1)

where the boundaries of the integral are:

ymax = −ymin =
1

2
ln

⎛⎝1 +
√
1 + 4sm2

⊥/(s+m2)2

1−
√
1 + 4sm2

⊥/(s+m2)2

⎞⎠ (3.3.2)

3.3.1 Change of variable: y → Q2

As suggested by Ravindran, Smith and van Neerven[5] the integration vari-
able may be changed to be Q2. This renders the process easier and singles
out the divergent term in the x→ 1 limit associated to the LO behavior.

By solving Eq.(3.1.11) for the rapidity we find:

sinh y = ±

√
(s+m2 −Q2)2 − 4sm2

⊥

2
√
sm⊥

(3.3.3)

where the two solutions correspond to the two configurations with opposite
rapidity at fixed value of Q2 and p⊥.
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Therefore we can rewrite Eq.(3.3.1) as:∫ ymax

ymin

dσ

dp2⊥dy
dy =

∫ Q2
max

0
|Jy→Q2 |

(
dσ

dp2⊥dy
(s, u, t) +

dσ

dp2⊥dy
(s, t, u)

)
dQ2

(3.3.4)
where the two terms between the brackets correspond to the two possible
choices for the rapidity. Since the cross section we are interested in is sym-
metric under (t↔ u) this can be written as:∫ ymax

ymin

dσ

dp2⊥dy
dy =

∫ Q2
max

0
2|Jy→Q2 |

(
dσ

dp2⊥dy
(s, t, u)

)
dQ2 (3.3.5)

The upped bound of the Q2 integration corresponds to the configurations
with y = 0:

Q2
max = s+m− 2

√
s(p2⊥ +m2) (3.3.6)

and J is the jacobian of the change of variable1:

Jy→Q2 =
∂y

∂Q2
=

(
∂Q2

∂y

)−1

=
(
s+m2 −m⊥

√
s
(
ey − e−y

))−1

=
1√

(s+m2 −Q2)2 − 4s(p2⊥ +m2)
(3.3.7)

=
1√

(Q2
max −Q2)(Q̃2 −Q2)

with:

Q̃2 = s+m+ 2
√
s(p2⊥ +m2) (3.3.8)

When expressing the Mandelstam variables as functions of Q2 and p⊥
one has two possibilities:

t =
1

2

[
Q2 +m2 − s+

√
(s+m2 −Q2)2 − 4s(p2⊥ +m2)

]
(3.3.9)

u =
1

2

[
Q2 +m2 − s−

√
(s+m2 −Q2)2 − 4s(p2⊥ +m2)

]
(3.3.10)

corresponds to the “+” solution in (3.3.3), while choosing the “-” solution
simply exchanges t and u. We already exploited this fact when writing
Eq.(3.3.5), therefore in the rest of this thesis we will always consider t and
u as defined in Eqs.(3.3.9)-(3.3.10).

1Here we correct a mistake present in the paper where this change of variable was first
proposed[5].
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3.3.2 LO p⊥ distribution

We can readily derive the LO distribution by integrating the coefficient G(1)
gg .

The Dirac delta in Eq.(3.2.4) renders the q-integration trivial. By using the
expressions of the Mandelstam variables in terms of x and ξ we obtain:

dσLO

dξ
(x, ξ) = m2dσ

LO

dp2⊥
(x, ξ)

=σ0
αs

2π

{
4Nc(1− τ + τ2)2√

(1− τ)2 − 4ξτ

1

ξ
+

4Ncξτ
2 − 8Nc(1− τ)2τ√
(1− τ)2 − 4ξτ

} (3.3.11)

This is, as expected, in accordance with the corresponding results found
in the literature. When comparing with Ref.[8], for example, one has to keep
in mind that the double differential cross section computed by Glosser[4]
does not include Feynman diagrams with a trivial p⊥ spectrum.

For this reason Equation (3.3.11) cannot be safely integrated in the trans-
verse momentum since it lacks the virtual diagrams needed to regularize the
non integrable divergences as ξ → 0. This will still be true for the NLO
cross section that we are going to compute in the remaining of this Chapter.

3.3.3 Change of variable: Q2 → q

We perform another convenient change of variable, namely we define:

q ≡ Q2

Q2
max

(3.3.12)

in terms of which the rapidity integration can be written as:∫ ymax

ymin

dσ

dp2⊥dy
dy =

∫ 1

0

2Q2
maxdq√

Q2
maxQ̃

2

1√
(1− q)(1− kq)

dσ

dp2⊥dy
(s, t, u)

(3.3.13)
with:

k =
Q2

max

Q̃2
(3.3.14)

Let us focus on Eq.(3.3.13), since many of the properties of the p⊥ dis-
tribution can be argued directly from it.

The first term does not depend on q, so it can be pulled out of the in-
tegral and will multiply the rest of the cross section. As we will shortly
see, the Q2

max in the numerator cancels against an identical factor in the
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denominator of the plus distributions contained in dσ/dp⊥dy.

The square root in the denominator can be written as a function of x
and p⊥ as: √

Q2
maxQ̃

2 =
√

(s+m2)2 − 4sm2
⊥

=s
√

(1− x)(1− ax)
(3.3.15)

which reproduces the threshold divergence of the LO cross section Eq.(3.3.11).
Therefore in the threshold region the NLO cross section will behave as the
LO cross section does, multiplied by whichever large x behavior is contained
in dσ/dp⊥dy.

By looking at the expression for the resummed cross section expanded
at fixed order we can thus expect that dσ/dp⊥dy will contain double loga-
rithms, single logarithms and constant terms up to O(1− x) corrections.

This threshold behavior could of course be a non-trivial result of the q
integration. As we will see when explicitly tackling the integrals involved in
this calculation, this is not the case and the correct logarithmic terms can
be identified directly from the double differential cross section. This task
will be accomplished in the next sections.

3.3.4 Change of variable in the plus distributions

Expressing the plus distributions that appear in Eq.(3.2.7) in terms of the
new variable q is not entirely trivial. In this subsection we limit ourselves to
showing the final result while the full derivation can be found in Appendix A.

Consider the plus distributions:(
1

1− zt

)
+

,

(
ln(1− zt)

1− zt

)
+

(3.3.16)

In terms of the variable q, related to z by Eqs. (3.2.10), (3.3.12) they
can be written as:

zt
−t

(
1

1− zt

)
+

=
1

Q2
max

{[
1

q

]
+

+ δ(q) ln
Q2

max

−t

}
(3.3.17)

zt
−t

(
ln(1− zt)

1− zt

)
+

=
1

Q2
max

×

×
{[

ln(q)

q

]
+

+ ln
Q2

maxzt
−t

[
1

q

]
+

+
δ(q)

2
ln2

Q2
max

−t

} (3.3.18)
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and analogously for the zu distributions.

The factor 1/Q2
max cancels against the corresponding factor in the ja-

cobian(3.4.6), as already anticipated. Moreover we will see that the q in-
tegration of the q plus distribution does not affect the threshold behavior,
meaning that no large x divergent terms are produced.

By substituting the expressions of the Mandelstam variables Eqs.(3.3.9)-
(3.3.10) in the coefficient function one can see that the “body” of the various
factors, i.e. the terms multiplying the plus-distributions, do not contain any
threshold logarithm. The jacobian does not contain any large logarithms
either so the x → 1 enhanced behavior of the NLO cross section can be
entirely attributed to the logarithms in Eqs. (3.3.17)-(3.3.18)1.

3.4 Threshold behavior

As already stated, the threshold limit for the p⊥-distribution is x→ 1. The
fundamental large x behavior is the one exhibited by Q2

max:

Q2
max =s+m2 − 2

√
s(p2⊥ +m2)

=s(1 + ax− 2
√
ax(ξ + 1))

=s(1− x)
1− a

2
+O(1− x)2 (3.4.1)

The Mandelstam variables and the corresponding z-functions can be
expanded in the threshold limit as:

Q2 =Q2
maxq = O(1− x) (3.4.2)

t, u = t, u|Q2=0 +O(1− x) (3.4.3)

zt, zu =1 +O(1− x) (3.4.4)

ln(Q2
⊥) = ln(p2⊥) +O(1− x) (3.4.5)

|Jy→q| =
Q2

max√
(Q2

max −Q2)(Q̃2 −Q2)

=
Q2

max√
Q2

maxQ
2
+

1√
1− q

(1 +O(1− x))

=
Q2

max

s
√
(1− x)(1− a2x)

1√
1− q

(1 +O(1− x)) (3.4.6)

1We will see in the next Section that Q2
max ∼ (1− x).
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Because q only appears through the combination Q2 = qQ2
max, we can

approximate every quantity that admits an expansion in q near q = 0 to
0-th order, since every other term in the expansion will be multiplied by
Q2

max ∼ O(1− x):

f(Q2, x, ξ) =
∞∑
k=0

1

k!

∂kf(Q2, x, ξ)

∂kQ2
Q2=0

(Q2)k

=
∞∑
k=0

1

k!

∂kf(Q2, x, ξ)

∂kQ2
Q2=0

(qQ2
max)

k

=f(Q2, x, ξ)Q2=0 +O(Q2
max)

=f(q, x, ξ)q=0 +O(1− x)

(3.4.7)

Armed with these asymptotics, we see that the logarithms appearing in
the plus distributions’ expansions Eqs.(3.3.17)-(3.3.18) can be written in the
threshold limit as:

ln
Q2

max

−t, u
= ln(1− x) +O(1− x) (3.4.8)

ln
Q2

maxzt,u
−t, u

= ln(1− x) +O(1− x) (3.4.9)

Actually a more refined, less general asymptotic expansion can be written
for these logarithms:

ln
Q2

max

−(t, u)
= ln

(
1 + ax−

√
x(1 + a)

1
2(1− ax)

)

= ln

(
(1−

√
x)(1− a

√
x)

1
2(1− ax)

)

= ln

(
(1− x)

2

1 +
√
x

1− a
√
x

1− ax

)
(3.4.10)

The two threshold expansions Eqs.(3.4.8), (3.4.10) differ by O(1 − x)
terms, therefore one cannot be resolved from the other with only threshold
informations. From the study of the resummed cross section alone one would
not be able to recognize that the large logarithms actually come from terms
that look like Eq.(3.4.10).

However, we have already shown that all of the threshold logarithms
at NLO have this form1, furthermore general kinematical arguments about
the origin of the large logarithms at all orders show that one can expect
them to have this form even at higher orders, rendering Eq.(3.4.10) a useful
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threshold expansion from the prospective of constructing our approximation.

3.5 q integration

In this section we will finally perform the rapidity integration (q integration)
in the threshold limit, and obtain the p⊥-distribution at NLO. It should be
kept in mind that the techniques used here could be applied to perform the
same integration in the full x range, and not only in the threshold region.

However, at least in the particular case of Higgs production at NLO
that we have examined, the results obtained are expressed in terms of single
or double power series. These cannot be written in closed form, rendering
them at the very least hard to read (and most likely useless to be computed
analitically).

The threshold approximation of the full cross section corresponds to the
0-th order of these series since, fortunately, they correspond to power ex-
pansions in Q2

max or k = Q2
max/Q̃

2 both of which are O(1− x) quantities.

Consider for simplicity the term in the seventh row of the NLO coefficient
function (3.2.4), which we will call the V term:

GV,t = −
(
zt
−t

)(
1

1− zt

)
+

β0
2
Nc

(
m8 + s4 + ztzu((u/zu)

4 + (t/zu)
4)

sut

)
(3.5.1)

The rapidity integral can be written, up to O(1− x) corrections, as:∫ 1

0
2|Jy→q|

(
− zt
−t

)(
1

1− zt

)
+

β0
2
Nc

(
m8 + s4 + ztzu((u/zu)

4 + (t/zu)
4)

sut

)
dq

=
−2
(
Nc

m8+s4+t4+u4

sut

)⏐⏐⏐
Q2=0

s
√
(1− x)(1− a2x)

β0
2

∫ 1

0

1√
1− q

{[
1

q

]
+

+ δ(q) ln
Q2

max

−t

}
dq

=
2ggg

s
√
(1− x)(1− a2x)

β0
2

∫ 1

0

1√
1− q

{[
1

q

]
+

+ δ(q) ln
Q2

max

−t

}
dq

=
dσLO

dp2⊥

β0
2

∫ 1

0

1√
1− q

{[
1

q

]
+

+ δ(q) ln
Q2

max

−t

}
dq (3.5.2)

where we used the definition of the LO coefficient function Eq.(3.2.4) in the
second equality and that of the LO cross section(3.3.11) in the third equality.

1See subsection 3.3.4.
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We are now left with a fundamental integral in q. The techniques used
to perform this integration, and the corresponding ones needed to obtain
the full p⊥ distribution, are outlined in Appendix A.

The specific result for the integration (3.5.2) turn out to be:∫
GV,tdy =

dσLO

dp2⊥

β0
2

{
−Θ1 − ln

Q2
max

−tq=0

}
+O(1− x) (3.5.3)

Where Θ1 is one of the numerical coefficient that appear during the q
integration:

Θ1 =ψ0(1)− ψ0

(
1

2

)
(3.5.4)

Θ2 =
1

2
ψ2
0

(
1

2

)
+

1

2

(
ψ1(1) + ψ2

0(1)
)
− 1

2
ψ1

(
1

2

)
− ψ0(1)ψ0

(
1

2

)
(3.5.5)

and ψi are the Poligamma functions.

3.5.1 Threshold p⊥ distribution

All of the terms in the NLO coefficient functions can be integrated with the
strategy outlined above. The terms III and VI vanish in the threshold
region; the term I does contribute to the threshold limit but is not loga-
rithmically enhanced and corresponds to the virtual contributions.

The remaining terms contribute to the threshold cross section according
to:

II → 2Nc

{
Θ2 +Θ1Lt +

1

2
L2
t

}
− ln

µF
−t

{2NcΘ1 + 2NcLt + β0}+ [t↔ u] (3.5.6)

IV → Nc

{
Θ2 +Θ1Lt +

1

2
L2
t − ln

p2⊥
−t

(Θ1 + Lt)

}
+ [t↔ u] (3.5.7)

V → − β0
2

{Θ1 + Lt}+ [t↔ u] (3.5.8)

Where for the sake of visual polish we have defined:

Lt,u ≡ ln
Q2

max

−(t, u)q=0
(3.5.9)

Up to O(1− x) corrections we can simplify this further by using:
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Lt,u = ln(1− x) +O(1− x) (3.5.10)

−(t, u)q=0 =s

(
1− a

2
+O(1− x)

)
=m2

(
ã− 1

2
+O(1− x)

)
(3.5.11)

By adding together the terms II , IV and V we obtain the complete
large-x-enhanced p⊥ distribution in the threshold limit:

dσNLO

dp2⊥
(x, p2⊥) =

dσLO

dp2⊥
(x, p2⊥)

{
g2 ln

2(1− x) + g1(p
2
⊥) ln(1− x)

+g0(p
2
⊥) +O(1− x)

} (3.5.12)

Where the direct space coefficients gi are
1:

g2 =3Nc (3.5.13)

g1 =6NcΘ1 − β0 − 2Nc ln(ξa)−Nc

(
ln

s

−t
+ 2 ln

µ2F
−t

+ [t↔ u]

)
(3.5.14)

g0 =6NcΘ2 −Θ1β0 − 2NcΘ1 ln(ξa)

−
(
NcΘ1 ln

s

−t
+ (2NcΘ1 + β0) ln

µ2F
−t

+ [t↔ u]

)
(3.5.15)

Where we have used:

ln
p2⊥
−t

= ln
p2⊥
s

+ ln
s

−t
= ln axξ + ln

s

−t
x→1−−−→ ln ξa+ ln

s

−t
(3.5.16)

1We remind the reader that we are using conventions where β0 =
11CA−2nf

6
.

42



Chapter 4

Higgs p⊥-spectrum beyond
NLO

In this Chapter we will finally construct our approximation for the fixed
order p⊥-distribution for Higgs production via gluon fusion. In order to do
this, we will exploit the correct threshold behavior for the NLO fixed order
cross section found in Chapter 3 by relating it to the resummed cross section
expanded to fixed order Eq.(1.6.23). This will give us a prescription relating
logarithms in N space, which we can compute directly from resummation
theory, and the corresponding logarithmic functions in x space which exhibit
the correct analytic behavior far from threshold.

Once this relation is established we will be able to build our approxima-
tion for the NLO fixed cross section and compare it to the full cross section,
obtained via numerical rapidity integration. This will tell us, at least at
NLO accuracy, how good our approximation actually is.

We will also compare our approximation to the one obtained by simply
expanding the resummed cross section to fixed order. We expect that in the
low N region our approximation will be significantly better than the former
since it shares the same pole structure as the full fixed order cross section.

4.1 Fixed order cross section in Mellin space

The first step to be taken is to perform the Mellin transform, defined
as in Appendix B, of the fixed order cross section in the threshold limit
Eq.(3.5.12).

In Mellin space the threshold region x ∼ 1 is mapped to the large N
region and logarithmic terms in x space are mapped to a tower of logarithmic
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and constant terms; schematically:

lnn(1− x)
Mellin−−−−→ lnkN, k ≤ n (4.1.1)

The objective of this section is to determine this relation exactly.

Let us remind the reader that every computation from now on will only
be valid in the threshold limit, indeed the fixed order cross section we are
working with, Eq.(3.5.12), has already been computed in the x → 1 limit.
For this reason we will discard every term that is power suppressed in the
N → ∞ limit with respect to the LO cross section.

4.1.1 LO cross section in Mellin space

The LO fixed order cross section Eq.3.3.11 can be Mellin-transformed exactly[6].
Explicitly we have:

dσLO

dξ
(N, ξ) ≡M

[
dσLO

dξ
(x, ξ)

]
(N, ξ) = (4.1.2)

σ0
αs

2π

∫ 1

0
xN−1

{
4Nc(1− τ + τ2)2√

(1− τ)2 − 4ξτ

1

ξ
+

4Ncξτ
2 − 8Nc(1− τ)2τ√
(1− τ)2 − 4ξτ

}
dx

where τ = a(ξ)x. By factorizing the argument of the square roots at the
denominator, seen as a polynomial of degree 2 with respect to x:√

(1− τ)2 − 4ξτ =
√
(1− x)(1− a2x) (4.1.3)

we see that the Mellin transform involves integrals of the type:∫ 1

0
xN−1 xm√

(1− x)(1− a2x)
dx (4.1.4)

These can be readily computed by means of the Euler-Type integral
Eq.(C.2.4), giving for the LO cross section in Mellin space[6]:

dσLO

dξ
(N, ξ) = σo

4αsCA

2π

1

ξ
β

(
1

2
, N

)
×

×
{
FN (0, a2)− 2a(1− ξ)

N

N + 1
2

FN (1, a2)

+ a2(1 + ξ)(3 + ξ)
N(N + 1)(

N + 1
2

) (
N + 3

2

)FN (2, a2) (4.1.5)

− 2a3(1 + ξ)
N(N + 1)(N + 2)(

N + 1
2

) (
N + 3

2

) (
N + 5

2

)FN (3, a2)
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+ a4
N(N + 1)(N + 2)(N + 3)(

N + 1
2

) (
N + 3

2

) (
N + 5

2

) (
N + 7

2

)FN (4, a2)

}
where F is a shorthand for a specific Hypergeometric function, defined in
Appendix C1:

FN (k, a2) ≡ 2F 1

(
1

2
, N + k;N + k +

1

2
; a2
)

(4.1.6)

We note that the large N behavior of this cross section, given by the
Beta function in the initial factors, is:

dσLO

dξ
(N, ξ) ∼ β

(
1

2
, N

)
∼ 1√

N
, N → ∞ (4.1.7)

Thus both the LO cross section and the logarithmic corrections that ap-
pear in higher order perturbative orders vanish at large N . Nevertheless, we
will still refer to the logarithms in expressions like Eq.1.6.23 as logarithmic
divergences because they are logarithmically enhanced with respect to the
LO cross section.

4.1.2 Logarithmic corrections

We are interested in taking the Mellin transform of logarithmic corrections
to the LO cross section:

M
[
dσLO

dξ
(x, ξ) lnk(1− x)

]
(N, ξ) (4.1.8)

which involve performing the fundamental integrals:∫ 1

0
xN−1 xq√

(1− x)(1− a2x)
lnk(1− x)dx (4.1.9)

The presence of xq can be easily taken care of exploiting the property of
the Mellin transform Eq.(B.1.6). Let us then set q = 0, the corresponding
integrals up to O

(
1
N

)
terms are:

Da
k(N) ≡

∫ 1

0

xN√
(1− x)(1− a2x)

lnk(1− x)dx (4.1.10)

In order to perform the Mellin transform of the NLO cross section, we
only need to compute Eq.(4.1.10) for k = 0, 1, 2; the full derivation can be
found in Appendix B, Equations (B.3.8)-(B.3.10), the results are:

1Here we correct a misprint present in the original paper by De Florian et al., Ref [6].
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Da
0(N) =

Γ (N) Γ
(
1
2

)
Γ
(
N + 1

2

) 2F 1

(
1

2
, N ;N +

1

2
; a2
)

(4.1.11)

Da
1(N) = Da

0(N)

[
ψ0

(
1

2

)
− ln(N) +O

(
1

N

)]
(4.1.12)

Da
2(N) = Da

0(N)

[
ψ2
0

(
1

2

)
+ ln2(N) + ψ1

(
1

2

)
− 2ψ0

(
1

2

)
ln(N) +O

(
1

N

)] (4.1.13)

A couple of remarks are due before computing the Mellin transform of
the full cross section:

• The Mellin transform does not influence the p⊥ dependence of the
logarithmic corrections. Indeed the functions Da

k(N) only depend on
p⊥ through a(ξ) = a(p⊥) which only appears in the common fac-
tor Da

0(N). This could have been argued by noting that the inte-
gral Eq.(4.1.10) only depends on the transverse momentum through
(1 − a2x) ∼ 1 + O(1 − x) therefore the p⊥ dependent terms would
necessarily have been O

(
1
N

)
.

Nevertheless, had one made this approximation to begin with, it could
not have been clear why the factor Da

0(N) should appear in front of
every Da

k. As we will shortly see, this factor is necessary to write the
fixed order cross section in a factorized form which can be compared
to the resummed one.

• When considering q ̸= 0 in Eq.(4.1.9) one can exploit the property of
the Mellin transform Eq.(B.1.6) to immediately find the result from
Eqs.(4.1.11)-(4.1.13). Furthermore it is easy to show that in the large
N region:

ln(N + n) = ln(N) +O
(

1

N

)
(4.1.14)

where n is any fixed real number. Then one can write:

Da
1(N + n) = Da

0(N + n)

[
ψ0

(
1

2

)
− ln(N) +O

(
1

N

)]
(4.1.15)

and similarly for Da
2(N + n).
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We are now ready to compute the Mellin transform of the single and dou-
ble logarithmic corrections (altought this same procedure can be straight-
forwardly extended to any logarithmic correction). From the last remark it
is easy to see that, given a generic polynomial p(x) of x we can write:

∫ 1

0
xN−1 p(x)√

(1− x)(1− a2x)
ln(1− x)dx =

M

[
p(x)√

(1− x)(1− a2x)

]
×
(
ψ0

(
1

2

)
− ln(N) +O

(
1

N

))
(4.1.16)

and similarly for the double logarithmic corrections.

Since our original integral can be written in such a way, we immediately
obtain, up to O

(
1
N

)
corrections:

M
[
dσLO

dξ
(x) ln(1− x)

]
(N) =

dσLO

dξ
(N)

(
ψ0

(
1

2

)
− ln(N)

)
(4.1.17)

M
[
dσLO

dξ
(x) ln2(1− x)

]
(N) =

dσLO

dξ
(N)×

×
(
ψ2
0

(
1

2

)
+ ln2(N) + ψ1

(
1

2

)
− 2ψ0

(
1

2

)
ln(N)

)
(4.1.18)

where we suppressed the dependence on p⊥ for the sake of visual polish.

4.1.3 Explicit results for the NLO p⊥ distribution

Using results from the previous section, the Mellin transform of the NLO
p⊥ distribution in the threshold limit Eq.(3.5.12) can be computed as:

dσNLO

dξ
(N, p2⊥) =

dσLO

dξ
(N, p2⊥)

{
c2 ln

2(N) + c1(p
2
⊥) ln(N) + c0(p

2
⊥) +O

(
1

N

)}
(4.1.19)

The coefficients of the logarithms are:

c2 = g2 (4.1.20)

c1(p
2
⊥) = −g1(p2⊥)− 2ψ0

(
1

2

)
g2 (4.1.21)

c0(p
2
⊥) = g0(p

2
⊥) + ψ0

(
1

2

)
g1(p

2
⊥) +

[
ψ2
0

(
1

2

)
+ ψ1

(
1

2

)]
g2 (4.1.22)
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and gi are the direct space coefficients, defined in Eqs.(3.5.13)-(3.5.15). By
substituting them in the cj coefficients we find their explicit expression1:

c2 =3Nc (4.1.23)

c1(p⊥) =6NcγE + β0 + 2Nc ln(ξa)

+Nc

(
ln

s

−t
+ 2 ln

µ2F
−t

+ [t↔ u]

)
(4.1.24)

c0(p⊥) =3Nc(ζ2 + γ2E) + γEβ0 + γE2Nc ln(ξa)

+ γENc

(
ln

s

−t
+ 2 ln

µ2F
−t

+ [t↔ u]

)
−
(
β0 ln

µ2F
−t

+ [t↔ u]

)
(4.1.25)

and we remind the reader of the definition of a = a(ξ):

a(ξ) = [ã(ξ)]−1 = (
√
ξ + 1−

√
ξ)2, ξ =

p2⊥
m2

(4.1.26)

We can further simplify these expressions by substituting the t and u
Mandelstam variables evaluated at x = 1:

− (t, u)q=0,x=1 = s
1− a

2
= m2 ã− 1

2
(4.1.27)

Therefore:

ln
µ2F
−t

= ln
µ2F
m2

− ln
ã− 1

2
(4.1.28)

ln
s

−t
=− ln

1− a

2
(4.1.29)

When comparing these coefficients with the ones obtained from resum-
mation theory, Eqs.(1.6.24)-(1.6.26) one needs to keep in mind the following
facts:

• The coefficients obtained from the fixed order cross section are ex-
pressed according to the conventions adopted in the paper by Glosser
and Schmidt[4], in particular:

β0 =
11CA − 2nf

6
(4.1.30)

The corresponding coefficients derived from the resummed cross sec-
tions instead follow the convention:

β0 =
11CA − 2nf

12π
(4.1.31)

1We remind the reader that we are using conventions where β0 =
11CA−2nf

6
.
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• The Mandelstam variables are always assumed to be evaluated for
q = 0 and in the threshold limit x = 1. These could not be otherwise,
or we should have considered the x dependence of t and u during the
Mellin transform.

Instead, this dependence was shown to be of order O(1−x), therefore
its contribution in Mellin space is power suppressed with respect to
the logarithmic terms.

• We still find a mismatch between the coefficients obtained from the
fixed order cross section and those derived from resummation theory.
In particular the terms

ln
1− a

2
(4.1.32)

don’t seem to appear in the resummed expression, neither they cancel
against each other in the fixed order cross section with any sensible
choice of the factorization scale µF .

The origin of this mismatch is still unclear. The original paper were
the relevant resummation theory for this cross section has been devel-
oped by De Floria, Kulesza and Vogelsang claims to find a match (at
least for the c0 coefficient) between the resummed result and the fixed
order one.

We lean towards thinking that this mismatch is an effect of a wrong
choice of the relevant scales of the process in the resummed cross sec-
tion, a mistake on our part during our computations or the presence of
some logarithmic terms in the non-singular part of the NLO coefficient
GsR,ns

gg (see Eq.(3.2.6)) that we have not investigated.

4.2 Approximation for dσ
dξ

fix

We are now ready to build our approximation for the NkLO fixed order p⊥
distribution in the production of a massive colorless particle. As always we
will refer to the main process of interest, namely the production of a Higgs
boson via gluon fusion.

Firstly one writes the resummed cross section at desired logarithmic ac-
curacy, say up to NmLL and expands it to fixed order up to NkLO. It should
be kept in mind that the only corrections that are reliable in such an ex-
pansion are those belonging to the tower of logarithms that are actually
resummed at the logarithmic accuracy one is working within (see for exam-
ple Table 1.2).
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dσresNmLL

dξ
(N) =

dσLO

dξ
(N)

[
1 + αsG

2
res(N) + · · ·+ αk

sG
k
res(N)

+O(αk+1
s ) + (Nm+1LL)

] (4.2.1)

where we have suppressed the xi dependence for ease of the eye.

Each coefficient Gj
res will be a sum of logarithmic terms:

Gj
res(N) =

2(j−1)∑
i=0

cj,i ln
iN (4.2.2)

One can find the correspondence between the logarithms in N and those
in x space by inverting the relations (4.1.20)-(4.1.22) or the corresponding
relations at the desired fixed order. At order k this only involves solving
a system of 2(k − 1) + 1 linear equations, i.e. the number of c coefficients.
Otherwise one could compute the inverse Mellin transform of the threshold
logarithms and arrive to the same relations.

After this operation, one is left with the coefficients gj,i, then the ap-
proximation for the NkLO fixed order cross section is simply:

dσN
kLO

soft1

dξ
(x) =

dσLO

dξ
(x)

[
1 + αs

2∑
i=0

g2,iL
i + αk

s

2(k−1)∑
i=0

gk,iL
i

]
(4.2.3)

where we defined:
L = ln(1− x) (4.2.4)

Actually, L can be any logarithmic function associated at all orders to
the threshold logarithms lnN ; the crudest function one can consider is sim-
ply ln(1 − x), but since the correspondence between logarithms in Mellin
space and in direct space is uniquely defined from their threshold limit, any
function L such that:

L− ln(1− x) = O(1− x), x→ 1 (4.2.5)

will reproduce the correct threshold behavior with the same coefficients gi,j
1.

It should be noted that this approximation depends not only on the fixed
order k, but also on the logarithmic accuracy available m. For simplicity we
have assumed that the logarithmic accuracy saturates the fixed order one,

1On the other hand if one wishes to obtain a reliable approximation, it is necessary to
motivate why a specific function L is expected to appear at all orders in the perturbative
expansion, for example through kinematical analysis.
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i.e. that it predicts all of the threshold contributions present at NkLO.

Finally, comparing this expression with the explicit one obtained for
the NLO cross section, Eq.(3.5.12), we note that the original gi coefficients
correspond to the NLO coefficients g2,i in Eq.(4.2.3).

4.2.1 Matching with fixed order results

Since Eq.(4.2.3) is only an approximation for the fixed order cross section
it should only be adopted when the full fixed order cross section is not
available. Suppose that the fixed order cross section in known up to order
n, then we can write a better approximation for the k-th order cross section
(k > n) as:

dσN
kLO

dξ
(x, ξ) ≃dσ

NnLO

dξ
(x, ξ) +

dσLO

dξ
(x, ξ)× (4.2.6)

×
[
αn+1
s

2n∑
i=0

gn+1,i(ξ)L
i + · · ·+ αk

s

2(k−1)∑
i=0

gk,i(ξ)L
i

]
where we reintroduced the ξ dependence for completeness.

The question arises on whether one should exploit completely the thresh-
old information available with the known resummed cross section. In order
to give an answer to this question let us clarify the nature of our approxi-
mation.

As any approximation to a fixed order quantity, at the end of the day we
are only including some subleading term, i.e. some part of the cross section
computed at higher orders. How numerically important those terms are in
relation with the full (unknown) cross section is not known a priori and
should be gauged with some care.

For example we know that, in the threshold limit, the logarithmic terms
are numerically important at all orders, and when the kinematical configu-
ration of the process is such that:

αs ln(1− x) ∼ 1 (4.2.7)

the logarithmic terms in the first order are just as big as the ones, say, at the
20-th order. In this scenario we are justified in including those corrections
at all orders (indeed, this is mandatory in order to obtain a reliable result).

The situation we are dealing with in our approximation is quite differ-
ent. Although the subleading terms we are including are derived from the
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resummed cross section, they are not “big” and we have no reason to think
that they remain relevant at any order with respect to the theoretical accu-
racy we are working with.

It is actually more plausible that the subleading correction follow a nor-
mal perturbative decay, i.e. they become smaller as the order increases due
to the presence of higher and higher powers of αs.

Therefore our rule of thumb when applying our approximation is to sim-
ply include the corrections for the next perturbative order, so given a cross
section that is known up to NkLO we will only consider the approximation
for the Nk+1LO cross section, defined by the matching process described
above.

4.2.2 Refined soft approximation

We wish to review the choice of the logarithmic function L. In the first ap-
proximation we proposed Eq.(4.2.3), which we will call soft1, we opted for
the most natural choice L = ln(1−x). We would like to investigate whether
there is some other function that reproduces the same threshold behavior,
contains more information about the fixed order cross section and can be
expected to appear at all orders as the generator of the threshold logarithms.

We already discussed in Section 3.4 how the threshold logarithms in the
NLO p⊥-distribution always appear in the form:

L2 ≡ ln
Q2

max

−(t, u)
= ln

(
(1− x)

2

1 +
√
x

1− a
√
x

1− ax

)
+O(1− x) (4.2.8)

This is clearly a good candidate for the threshold function L; indeed it
is trivial to check that:

L2 = ln(1− x) +O(1− x) (4.2.9)

and there is a good kinematical argument to be made that it appears at all
orders in the perturbative cross section.

We therefore define another approximation, called refined soft approxi-
mation or briefly soft2 where the threshold function in Eq. (4.2.3) is taken
to be L2.

The difference between the two approximations is encoded in the refined
function:

r(x, ξ) ≡ 2

1 +
√
x

1− a
√
x

1− ax
(4.2.10)
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Figure 4.1: Contour plot of the refined function. The flatness around the
axes x = 1 can be used to estimate the effect of the refined approximation
versus the simpler one.

with threshold behavior:

r(x, ξ)
x→1−−−→ 1, ∀ξ (4.2.11)

The effect of choosing the refined approximation over the simpler one
can be gauged by looking at how flat the function r is around x = 1, and
how this flatness changes with ξ. Indeed this is a rough estimate of the
magnitude of the power suppressed terms (O(1 − x) corrections) that are
introduced by the new approximation. The contour plot for this function in
the range ξ ∈ (0, 5) is shown in Fig. 4.1.

We see that the refined function is relatively flat near the axes x = 1
even at low p⊥. It assumes values consistently different from 1 in the region
x ∼ 0, especially at low p⊥, but this corresponds to high order power sup-
pressed differences between the approximation.

For this reason we expect that the two approximation will not be sub-
stantially different in the medium N range, and will be almost identical in
the large N region.
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4.2.3 Kinematics for multiple gluon emissions

In this Section we analyze the kinematics of multiple gluon emission and
give some degree of justification for the choice fo threshold function in the
refined cross section Eq. (4.2.8). We will follow the kinematical analysis
presented in Ref. [11] for the production of a prompt-photon, albeit consid-
ering a finite mass of the target particle.

We will assume that the reader is familiar with the notation introduced
in Section 3.1 for the various kinematical quantities involved.

Analogously to the prompt-photon case, the threshold configurations for
the production of an Higgs boson with fixed transverse momentum p⊥ are
the ones where each emitted gluon is either soft or collinear to the Higgs
boson. Without loss of generality suppose that given l + 1 gluon emissions
the momenta ki = 1, ..., n are soft (with n < l + 1) while the other gluons
are collinear.

ki =0, 1 ≤ i ≤ n (4.2.12)

k′i ≡ kn+i ∥p, 1 ≤ i ≤ l + 1− n = m+ 1 (4.2.13)

where obviously the transverse components of the collinear momenta have
to sum up to the Higgs’ transverse momentum:

m+1∑
i=1

k′i,⊥ = p⊥ (4.2.14)

in order to ensure momentum conservation.

The phase space for such a process can be conveniently written as:

dφn+m+2(p1 + p2; p, k1, ..., kn, k
′
1, ..., k

′
m+1)

=

∫ s

0

dq2

2π
dφn+1(p1 + p2; q, k1, ..., kn)×

×
∫ q2

0

dk′2

2π
dφm+1(k

′, k′1, ..., k
′
m+1)dφ2(q; p, k

′) (4.2.15)

therefore decomposing it into a soft emission phase space dφn+1, a collinear
emission phase space dφm+1 and a two particle phase space φ2. A scheme
of this decomposition is shown in figure 4.2.

The integration boundaries for q and k′ needs to be refined further. It
is easy to see that, in order for the production of an Higgs boson with
transverse momentum p⊥ to take place, one needs:

xs < q2 < s (4.2.16)
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p1

p2

q k′

H

k1 · · · kn

k′1 · · · k′m

dφn+1 dφ2 dφm+1

Figure 4.2: Phase space decomposition for the emission of n soft gluons with
momenta k1, ..., kn and m collinear gluons with momenta k′1, ..., k

′
m.

because xs is the minimum possible center-of-mass energy square necessary
to produce the desired final state (i.e. an Higgs boson with the necessary
extra radiation).

In order to identify the integration boundaries for k′ we need to massage
the two body phase space dφ2:

dφ2(q; k
′, p) =

dd−1k′

(2π)d−12k′0

dd−1p

(2π)d−12EH
(2π)dδ(d)(q − k′ − p)

=
(2π)2−d

4

dd−1p

k′0EH
δ(q0 − k′0 − EH) (4.2.17)

where we exploited the Dirac delta to perform the dd−1k′ integration. With
the relations imposed by the “spacelike” delta we just used we can write the
remaining, “timelike” delta as:

δ(q0 − k′0 − EH) = δ(
√
q2 −

√
|−→p |2 + k′2 −

√
|−→p |2 +m2) (4.2.18)

where −→p is the spacelike d− 1-momentum of the Higgs boson. By imposing
that the argument of the Dirac delta be 0 and solving for |−→p | we obtain:

|−→p | = q

2

[√
(q2 − k′2 −m2)2 − 4k′2m2

q2

]
≡ P (4.2.19)

where we only retained the positive solution.

It is also obvious that:

P

p⊥
=

|−→p |
p⊥

≥ 1 (4.2.20)
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and the equality is satisfied when the rapidity of the Higgs boson vanishes.
Substituting Eq. (4.2.19) we obtain the inequality:

(2p⊥q)
2 ≤(q2 − k′2 −m2)2 − 4k′2m2

=k′4 − 2k′2(q2 +m2) + (q2 −m2)2 (4.2.21)

Solving for k′2 one finds the solutions:

k′2 ≤k2min ∪ k′2 ≥ k2max (4.2.22)

k2min,max =(q2 +m2)±
√

(q2 +m2)2 + 4p2⊥q
2 − (q2 −m2)2 (4.2.23)

The solutions k′2 ≥ k2max are not acceptable since k2max > q2, therefore
after a little algebra we find for the range of k′2:

0 ≤ k′2 ≤ q2 +m2 − 2qm⊥ (4.2.24)

Following the strategy adopted in the original paper[11] we define two
new adimensional variables u and v:

k′2 =v(q2 +m2 − 2qm⊥) (4.2.25)

q2 =xs+ u(s− xs) (4.2.26)

0 ≤u, v ≤ 1 (4.2.27)

In the threshold limit we can therefore write:

k′2 =vu(sx)
1− a

2
(1− x) +O(1− x)2 (4.2.28)

q2 =xs[1 + u(1− x)] +O(1− x)2 (4.2.29)

P =

√
xs

2

[
(1− a)2 +

1

2
u(1− x)

(
1− a2 − v(1− 3a)

)]
+O(1− x)2 (4.2.30)

where a = a(ξ) was defined in Eq. (3.1.13).

We have checked that these expressions reduce to the ones obtained in
Ref.[11] in the zero mass limit:

m→ 0 ⇒ a→ 0 (4.2.31)

It was argued in the original paper[11] that the relevant scales for thresh-
old resummation are:

k′2 ∝(sx)
1− a

2
(1− x) (4.2.32)

(s− q2)2

q2
∝sx(1− x)2 (4.2.33)
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Since the threshold logarithms will be logarithms of the ratio of two
relevant scales, we can expect that the scale:

Q2
max = s(1− x)

1− a

2
+O(1− x)2 (4.2.34)

will appear at every order in the threshold logarithms given the factor
(1− a)/2 contained in k′2.

Although this is not a complete proof for the exact form of the threshold
logarithms, still it provides a reasonable argument for the choice of the
refined logarithmic function L2 in Eq. (4.2.8).
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Chapter 5

Numerical results

In this Chapter we present some numerical results in order to verify the
goodness of our approximation and to investigate the kinematical ranges of
its applicability. All of the results shown refer to the production of a Higgs
boson via gluon fusion.

The results are computed at the partonic level and in Mellin space. Since
the hadronic cross section factorizes in the parton luminosity and the par-
tonic cross section in Mellin space, it is possible to draw conclusions directly
from the partonic cross sections, since the inclusion of the gluon PDFs only
consists in a regular multiplication1.

We will present all of our results as functions of N with p⊥ fixed for
three values of transverse momentum: p⊥ = 10GeV, 100GeV and 1000GeV.
Since we were solely concerned with the threshold resummation and did not
account for the large logarithms appearing at small p⊥ we expect that our
results will not be reliable at small p⊥.

Finally we will plot all of the cross sections in units of σ0, the LO inclusive
cross section. In other words, we will be plotting the ratios:

Ri =
1

σ0

dσi

dξ
(5.0.1)

where i is whatever label indicating a specific cross section.

5.1 Numerical comparison at NLO

In this section we compare our approximations with the NLO full cross sec-
tion and with the resummed cross section expanded at fixed order. The

1In direct space, instead, one needs to perform a convolution between the partonic
cross sections and the PDFs and deriving qualitative statements directly from the partonic
distribution in not straightforward.
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comparison is performed at the level of partonic cross sections and in N
space.

The resummed cross section expanded at fixed order is available in ana-
lytic form, Eq.(1.6.12); throughout this Section we will call this cross section
simply resummed cross section, the pedantic reader may mentally add ex-
panded at fixed order afterwards whenever this phrase is used.

On the other hand, our approximations are built in x space and then
transformed to N space via a numerical Mellin transform, since a complete
analytic Mellin transform is not available1. Finally, the full fixed order
cross section is numerically integrated in rapidity and then transformed to
N space, obviously with another numerical Mellin transform. We remind
the reader that we are only considering the singular part of the NLO cross
section, as defined in Eq.(3.2.6) following Glosser[4], and will continue to do
so in this section.

Furthermore, we will only consider the II , IV and V terms in the
NLO coefficient function Eq.(3.2.7) since all of the other terms are regular
in the threshold region and we have no hope to approximate their contri-
bution. This might be viewed as a trick to obtain a better match for our
approximation. Indeed it is quite the opposite: every mismatch found in the
plots shown can be directly pointed at as a failure of our approximation.

As already discussed in Section 4.1.3, we found a mismatch between the
threshold coefficients of the resummed theory and those derived directly
from the fixed order cross section. Since this Chapter is mainly focused
on showing the effectiveness of our approximation, we are going to plot
the resummed cross section expanded at fixed order as in Eq.(1.6.12) with
the c coefficients matching the ones found for the fixed order cross section
Eq.(4.1.23)-(4.1.25).

In Figure 5.1 the plots for the relevant cross section for fixed p⊥ = 10GeV
are shown.

As we expected, the two different approximations soft1 (orange) and
soft2 (brown) are barely distinguished in the range shown. They both give
a good approximation for the full cross section (light blue) for N > 8. What
is more important, they surely approximate the full cross section better then
the resummed result (light blue) does in the range N > 5.

1More precisely, the Mellin transform of the soft1 approximation can actually be
computed exactly, but the result contains an infinite sum. Therefore it is more convenient
to perform the Mellin transform numerically.
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Figure 5.1: Full cross section (blue), resummed cross section (light blue)
and our approximations: soft1 (orange) and soft2 (brown). All of the cross
sections are evaluated for fixed p⊥ = 10GeV in the range N ∈ (1, 20).

Another important remark about Fig. 5.1 is that the resummed cross
section does not converge to the full cross section nearly as fast as one would
expect, given that it should correctly reproduce the threshold behavior of
the full cross section.

This can be qualitatively addressed by the following argument: up to
O(1− x) terms the full cross section has a global factor:

1√
(1− x)(1− a2x)

(5.1.1)

which reproduces the LO threshold behavior. In the p⊥ → 0 limit we have:

a(ξ) → 1 ⇒ 1√
(1− x)(1− a2x)

→ 1

1− x
(5.1.2)

Therefore at p⊥ = 0 the logarithmic structure changes, in particular we
expect logarithms one order higher then the ones appearing in the finite p⊥
cross section. Our fixed order cross section does not contain all the contribu-
tions necessary to properly analyze the p⊥ = 0 case, but we expect that the
inclusion of all the virtual Feynman diagrams with trivial p⊥ distribution
will lead to the regularization:

1

1− x
+ virtual →

(
1

1− x

)
+

(5.1.3)

As is well known, this produces an extra power of threshold logarithms,
see for example Ref. [9]. Therefore at p⊥ = 0 the resummed cross section is
not expect to correctly reproduce the threshold behavior.
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Figure 5.2: Full cross section (blue), resummed cross section (light blue)
and our approximations: soft1 (orange) and soft2 (brown). All of the cross
sections are evaluated for fixed p⊥ = 100GeV in the range N ∈ (1, 20).

Since the transition between the two logarithm structures must occur
continuously, we expect to see the effects even at small but finite p⊥. This
can be thought of as the fact that for small p⊥ the factors φi in the expan-
sion of the Hypergeometric function Eq. (C.2.6) become large. In the Mellin
transform analysis used to link the threshold logarithms in x and N space
we have discarded those terms, Eq. (B.3.5), because they are power sup-
pressed. This is not a reliable approximation in the small p⊥ region since,
as we just shown, these subleading terms will grow end eventually give rise
to an higher order logarithmic structure.

On the other hand, our approximations are built in x space, and the
Mellin transform is performed numerically and therefore fully take into ac-
count the factor Eq. (5.1.1).

Then again, large logarithms of the form ln(Q2/p⊥) are known to appear
in the fixed order cross section and since we have not properly resummed
those, we do not trust our results in the small p⊥ region, not even the full
fixed order cross section.

In Figure 5.2 the corresponding results for p⊥ = 100GeV are shown.
Once again the two approximations soft1 (orange) and soft2 (brown) are
almost indistinguishable. They give a good approximation to the fixed or-
der cross section (blue) for N > 5 and an acceptable one even in the region
N > 3.

On the other hand, the resummed cross section (light blue) can be con-
sidered a good approximation only for N > 15 and for N < 8 is completely
unreliable. This reflects the fact that, as we have already discussed heavily,
the resummed cross section has a wildly different low N behavior then the
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Figure 5.3: Full cross section (blue), resummed cross section (light blue)
and our approximations: soft1 (orange) and soft2 (brown). All of the cross
sections are evaluated for fixed p⊥ = 1000GeV in the range N ∈ (1, 20).

fixed order one, exhibiting a different singularity structure (cuts instead of
poles) in the unphysical (N < 0) region.

Finally Figure 5.3 contains the corresponding plot for fixed p⊥ = 1000GeV.
The color correspondence for the various cross section is analogous to the
ones adopted in the previous plots.

Once again the two approximations soft1 and soft2 are essentially indis-
tinguishable. The matching of the approximations to the fixed order cross
section is much worse than the one we found for p⊥ = 100GeV, still they
provide an acceptable approximation. Is should also be noted that the cross
section as a whole is much smaller then the one evaluated at p⊥ = 100GeV,
peaking at 0.002 times σ0.

Our approximations can be considered acceptable for N > 3 while once
again the resummed cross section is only reliable in the N > 10 region. This
can be explained with the same reasoning already used in the previous case
p⊥ = 100GeV.

Generally speaking we can assert that our procedure provided us with a
reliable approximation for the NLO fixed order p⊥-distribution in the mid-
high N region, roughly speaking for N ∼ 5 onward, the precise interval
depending on the transverse momentum. This is a considerable improve-
ment with respect to the crude approximation derived from expanding at
fixed order the resummed cross section.

Furthermore, despite our effort to provide a more refined version of our
approximation via kinematical reasoning that has proven to improve the re-
liability in the case of inclusive cross section, the two approximations soft1
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and soft2 do not appear to differ in a significant way and are at best dis-
tinguishable from each other. Since the difference between the fixed order
cross section and both of our approximation is substantially greater then the
difference between the approximations themselves in virtually all configura-
tions, it does not seem useful to adopt the more complicated yet theoretically
more promising refined approximation soft2. Adding subleading terms for
the sake of adding subleading terms is never a good guide to useful results,
therefore we will abandon the refined approximation from now on and only
consider the soft1 approximation, and we suggest future researchers to do
the same.

Given the considerations just outlined we are confident in stating that:
“the soft approximation, built according to the procedure outlined in Chapter
4, is a reliable one in the medium and high N region and once matched to the
known fixed order and (full) resummed cross section is expected to improve
the overall theoretical accuracy of the p⊥ distribution”.
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Conclusion

In this thesis we have considered the p⊥ distribution for the production of
a colorless massive particle in hadron collisions. In particular we have an-
alyzed the production of an Higgs boson in proton-proton collisions, which
is one of the most relevant phenomena to be studied at hadronic colliders
such as LHC.

We have analyzed the fixed order cross section in the threshold limit, i.e.
when the center-of-mass energy of the incoming particles is just enough to
produce an Higgs boson with a given transverse momentum, and the radia-
tion necessary to recoil against it.

As is well known, the fixed order cross sections exhibits large logarithms
of the form lnk(1−x) where x is a threshold scaling variable, which become
large in the threshold limit. These logarithms are usually resummed to all
orders following resummation theory, which takes place in N space (Mellin
space).

Since these logarithmic terms, once transformed to Mellin space, exhibit
a pole singularity structure while the “resummed” logarithms lnN have a
branch cut, the resummed cross section (and therefore its fixed order expan-
sion) is not reliable in the small N region, which is far from threshold.

By constructing the explicit relations between direct space and Mellin
space logarithms we were able to develop an approximation for the fixed
order p⊥ distribution, which reproduces the known threshold behavior com-
putable from resummation theory while preserving the correct singularity
structure (i.e. poles instead of branch cuts).

We outlined the procedure needed to build this approximation at all
orders in perturbation theory and gave a justification for its reliability at
higher orders, where the exact form of the large logarithms is not known.

We explicitly computed the approximation for the NLO p⊥ distribution
and compared it to the corresponding full fixed order cross section. The
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comparison showed that our approximation is reliable in the mid to high
N region, for a wide range of transverse momenta. More importantly, our
approximation is reliable in a range that is significantly larger with respect
to the resummed cross section expanded at fixed order. This suggests that
our approximation makes better use of the threshold information contained
in the resummed result by simply matching the known singularity structure
of the fixed order cross section.

Our approximation proved to be reliable roughly for N ≳ 5, with the
exact interval depending on the transverse momentum. By contrast the re-
summed cross section expanded to fixed order was shown to be a reliable
approximation only for N ≳ 10. The numerical results were presented and
further commented in Chapter 5.

Furthermore, we built a refined version of our approximation by exploit-
ing even more the kinematical structure of the multiple emission phase space.
This enabled us to further specify the form of the threshold logarithms that
are expected to appear at all orders in the perturbative expansion. Although
theoretically more precise, at NLO this approximation did not exhibit a sig-
nificantly different behavior with respect to the simpler one, to the point
that it is impossible to identify which of the two approximations better
matches the full fixed order cross section. We therefore concluded that the
refinement did not bring any actual benefit and we limited ourselves to the
simpler (and more easily justified) approximation.
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Appendix A

Plus Distributions

In this Appendix we review the basic notion of plus distribution and fix the
notation used throughout this thesis. We also perform explicitly a change
of variables for some particular distributions relevant to the computations
performed in Chapter 3.

A.1 Definition and properties

We define two kinds of plus distributions which we will distinguish by using
either round or square brackets. These are defined by their action on a
generic Schwarz function1:

∫ 1

0
(f(z))+g(z) ≡

∫ 1

0
f(z)[g(z)− g(1)] (A.1.1)∫ 1

0
[ζ(q)]+ξ(q) ≡

∫ 1

0
ζ(q)[ξ(q)− ξ(0)] (A.1.2)

These usually arise in QFT perturbative computation when there is a
cancellation of divergences between real emission and virtual Feynman dia-
grams. Indeed the “round” plus distribution regularizes any function f that
is divergent as z → 1 at most as:

f(z) ∼ (1− z)−α, α < 2 (A.1.3)

because the integral (A.1.1) is finite. Similarly the “square” plus distribution
regularizes any function ζ that is divergent as q → 0 at most as:

ζ(q) ∼ q−α, α < 2 (A.1.4)

This means that in order to distinguish which of the two definitions is
being used it is usually enough to check whether the function f (or ζ) is

1A Schwarz function is a smooth function that decays sufficiently rapidly at infinity.
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divergent as z → 1 (or q → 0), then it will be the “round” plus distribution
(or the “square” plus distribution). In addition, throughout this thesis the
“round” distributions will always depend on some variable named z or x
while the “square” distributions will depend on q.

We wont review any other basic properties of plus distributions, the inter-
ested reader may find more informations in Ref.[9], Apeendix B for example.

A.2 Change of variable in plus distributions

In this section we explicitly compute the change of variables performed in
Section 3.3.4; in doing so we will adopt some techniques found in Ref.[10].
Consider the distribution related to the function:

q−1+ε (A.2.1)

We wish to write a Taylor expansion in ε for this distribution near ε = 0
for ε > 0. We can write the action of this distribution on a generic function
ξ(q) as:∫ 1

0
q−1+εξ(q)dq =

∫ 1

0
q−1+ε[ξ(q)− ξ(0)]dq + ξ(0)

∫ 1

0
q−1+εdq

=

∫ 1

0
q−1+ε[ξ(q)− ξ(0)]dq +

ξ(0)

ε
(A.2.2)

The we expand the q−1+ε in the last line in powers of ε up to O(ε), which
is enough for the results needed in our computation.

q−1+ε =
1

q
eε ln q =

1

q
+ ε

ln q

q
+O(ε2) (A.2.3)

Therefore we obtain:∫ 1

0
q−1+εξ(q)dq =

∫ 1

0

1

q
[ξ(q)− ξ(0)]dq + ε

∫ 1

0

ln q

q
[ξ(q)− ξ(0)]dq

+
ξ(0)

ε
+O(ε2)

=

∫ 1

0

([
1

q

]
+

+ ε

[
ln(q)

q

]
+

+
δ(q)

ε

)
ξ(q) +O(ε2) (A.2.4)

where we have used the definition of the “square” plus distribution Eq.(A.1.2).
Abstracting from the integral we obtain the following relation between tem-
pered distributions:

q−1+ε =
δ(q)

ε
+

[
1

q

]
+

+

[
ln(q)

q

]
+

+O(ε2) (A.2.5)
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We have now related two plus distributions in the variable q to the func-
tion q−1+ε. Since this is an ordinary function there is no subtlety involved in
changing its variable. In particular we are interested in the change obtained
from inverting Eqs.(3.2.10), (3.3.12):

q =
−t
Q2

max

1− zt
zt

(A.2.6)

and analogously for u. We obtain:

q−1+ε =

(
−t

Q2
maxzt

)−1+ε

(1− zt)
−1+ε (A.2.7)

We can expand (1−zt)−1+ε as a power series in a similar way to what we
did with q−1+ε, essentially writing it in terms of “round” plus distributions.
The full computation can be found in Ref.[10] or can be considered as a
simple exercise; the final result enables us to write:

q−1+ε =

(
−t

Q2
maxzt

)−1+ε [δ(1− zt)

ε
+

(
1

1− zt

)
+

+ ε

(
ln(1− zt)

1− zt

)
+

+O(ε2)

]
(A.2.8)

The two Taylor expansions Eqs.(A.2.5), (A.2.8) must obviously be equal,
in particular every coefficient in the ε expansion must coincide. From com-
paring the ε−1 coefficients we immediately obtain:

δ(q) =
Q2

max

−t
δ(1− zt) (A.2.9)

which could have been derived via standard computations, exploiting the
properties of the Dirac delta under a change of variable. Substituting
Eq.(A.2.9) into Eq.(A.2.8) and expanding the factor (−t/Q2

maxzt)
−1+ε up

to O(ε) we get:

q−1+ε =
δ(q)

ε
+ δ(q) ln

−t
Q2

max

+
Q2

maxzt
−t

(
1

1− zt

)
+

+ε

{
δ(q)

2
ln2

−t
Q2

max

+
Q2

maxzt
−t

[
ln

−t
Q2

maxzt

(
1

1− zt

)
+

+

(
ln(1− zt)

1− zt

)
+

]}
+O(ε2)

(A.2.10)

Now we can compare the two power expansions of q−1+ε order by order.
This comparison up to O(ε) enables us to write the two plus distributions
we are interested in, Eqs.(3.3.16), in terms of “square” plus distributions
depending on q. We obtain:
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zt
−t

(
1

1− zt

)
+

=
1

Q2
max

{[
1

q

]
+

+ δ(q) ln
Q2

max

−t

}
(A.2.11)

zt
−t

(
ln(1− zt)

1− zt

)
+

=
1

Q2
max

{[ ln(q)
q

]
+

+ ln
Q2

maxzt
−t

[
1

q

]
+

+
δ(q)

2
ln2

Q2
max

−t

} (A.2.12)

Generally speaking this procedure could be extended to any plus distri-
bution of the form: (

lnk(1− z)

1− z

)
(A.2.13)

simply by expanding the function q−1+ε up to O(εk).

A.3 q integration of logarithmic plus distributions

In this section we will tackle the fundamental q integrals needed to obtain
the NLO fixed order p⊥ distribution from the double differential one. These
are integrals of the form: ∫ 1

0

[
1

q

]
+

1√
(1− q)

dq (A.3.1)

∫ 1

0

[
ln(q)

q

]
+

1√
(1− q)

dq (A.3.2)

although the procedure used in their computation can be straightforwardly
extended to any integral of the form:∫ 1

0

[
lnk q

q

]
+

1√
(1− q)

dq (A.3.3)

Define the generating integral (for ε > 0):

Iε =

∫ 1

0

1

q−1+ε

[
1√

(1− q)
− 1

]

=β

(
ε,

1

2

)
− 1

ε

=
Γ
(
1
2

)
Γ (ε)

Γ
(
1
2 + ε

) − 1

ε
(A.3.4)
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where β is Euler’s beta function. From the generating integral we can extract
the integrals we are interested in by differentiating with respect to ε:∫ 1

0

[
lnk(q)

q

]
+

1√
(1− q)

dq =
dkIε
dεk

⏐⏐⏐⏐
ε=0

(A.3.5)

In order to compute the integrals (A.3.1)-(A.3.2) we will only need to
compute Iε up to O(ε) as a partial Taylor expansion near ε = 0. Using the
Taylor expansions of the beta function Eq.(C.1.7):

Iε = ψ0(1)− ψ0

(
1

2

)
+ ε
[1
2
ψ2
0

(
1

2

)
+

1

2

(
ψ1(1) + ψ2

0(1)
)

− 1

2
ψ1

(
1

2

)
− ψ0(1)ψ0

(
1

2

)]
+O(ε2) (A.3.6)

= Θ1 + εΘ2 +O(ε2) (A.3.7)

Where we have defined for notational convenience:

Θ1 =ψ0(1)− ψ0

(
1

2

)
(A.3.8)

Θ2 =
1

2
ψ2
0

(
1

2

)
+

1

2

(
ψ1(1) + ψ2

0(1)
)
− 1

2
ψ1

(
1

2

)
− ψ0(1)ψ0

(
1

2

)
(A.3.9)

Then the integrals (A.3.1)-(A.3.2) are:∫ 1

0

[
1

q

]
+

1√
(1− q)

dq = Θ1 (A.3.10)∫ 1

0

[
ln(q)

q

]
+

1√
(1− q)

dq = Θ2 (A.3.11)
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Appendix B

Mellin Transform

In this Appendix we review the Mellin transform, showing some basic facts
and computing the transform of some some functions of interest in the con-
text of p⊥ distributions.

B.1 Definition and properties

The Mellin transform of a function f(x) defined on the interval 0 < x < 1
is defined as:

f̃(N) = M [f(x)] (N) =

∫ 1

0
xN−1f(x)dx (B.1.1)

As is customary, we will immediately drop the tilde on top of the trans-
formed function and distinguish the function f(x) from its Mellin transform
simply through their arguments. It can be shown that if the Mellin trans-
form of a function exists, then it is analytic for Re(N) > k for some real
number k depending on f(x).

For the Mellin transform of a physical quantity, for example a cross sec-
tion, the region Re(N) > k where the integral Eq.(B.1.1) is actually defined
is usually called the physical region.

It is customary to exploit the analyticity of f(N) in the half plane
Re(N) > k to analytically continue it to the whole complex plane, with
the exception of eventual singularities.

The inverse Mellin transform can be computed as:

f(x) =
1

2πi

∫ c−i∞

c+i∞
x−Nf(N)dN (B.1.2)
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Where c is some real constant greater then k, thus rendering the contour
of the integral in Eq.(B.1.2) a straight line parallel to the imaginary axes
which lies to the right of the rightmost singularity of f(N). The integration
contour can actually be deformed at will as long as it does not cross any
singularity.

Consider now the multiplicative convolution ⊗ as defined in:

(f ⊗ g)(x) ≡
∫ 1

x

dy

y
f(y)g

(
x

y

)
(B.1.3)

=

∫ 1

0
dy

∫ 1

0
dzf(y)g(z)δ(x− yz) (B.1.4)

As can be easily check from the second equality Eq.(B.1.4), the multi-
plicative convolution factorizes upon Mellin transformation:

M [f ⊗ g] (N) = M [f ] (N) · M [g] (N) (B.1.5)

A final general property which can be checked directly from the definition
of the Mellin transform is:

M [xf(x)] (N) = M [f(x)] (N + 1) (B.1.6)

thus multiplying f(x) by any polynomial of x will amount to a series of
terms which are obtained simply by translating f(N) by integers.

B.2 Mellin transform of plus distribution and asymp-
totic behavior

Although we are not interested in taking the Mellin transform of plus dis-
tributions, as this operation is never required throughout the computations
performed in this thesis, it is still useful to be able to tackle these transfor-
mations since they frequently appear in the computation of cross section,
for example in the computation of the inclusive cross section in Mellin space.

From the definition of the plus distribution Eq.(A.1.1) we can write:

M [(f)+(x)] (N) =

∫ 1

0
f(x)

[
xN−1 − 1

]
(B.2.1)

The Mellin transform of a plus distribution has a qualitatively different
behavior in the |N | → ∞ limit. Indeed from the first Riemann-Lebesgue
lemma it can be proven that for a regular function h(x) (h ∈ L1([0, 1])):

lim
N→∞

M [h(x)] (N) = 0 (B.2.2)
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The same limit for the Mellin transform of a plus distribution is quite
different. Indeed it can be proven that1:

|M [(f)+(N)]| N→∞−−−−→
⏐⏐⏐⏐∫ 1

0
dzf(z)

⏐⏐⏐⏐ (B.2.3)

Then, depending on how the function f behaves in the x ∼ 1 region we
may have different results for the large N limit. Suppose that f diverges as
(1− x)−α, we have:

α < 1 → lim
N→∞

M [(f)+] (N) =

⏐⏐⏐⏐∫ 1

0
dzf(z)

⏐⏐⏐⏐ ∈ R+ (B.2.4)

1 ≤ α < 2 → lim
N→∞

M [(f)+] (N) = ∞ (B.2.5)

α ≥ 2 → Plus distribution not well defined (B.2.6)

Let us make a couple of relevant examples. The fixed order inclusive
cross section for Higgs production contains plus distributions of the form2:(

lnk(1− x)

1− x

)
(B.2.7)

These clearly fall into the second category just described, being that
they diverge as (1 − x)−1 as x → 1. Therefore their Mellin transform will
be divergent in the N → ∞ limit, indeed it can be seen that they diverge
logarithmically.

Instead, the fixed order p⊥ distribution diverges as:

lnk(1− x)√
1− x

(B.2.8)

Since we have not included all of the virtual diagrams we don’t see any
plus distribution arising, but a full fixed order computation will contain the
corresponding plus distributions:(

lnk(1− x)√
1− x

)
+

(B.2.9)

as can be seen for example in the full LO p⊥ distribution derived in Ref.
[8], Equation (1.3.30). These fall into the first category (since here α = 1/2)
and their Mellin transform will be finite in the N → ∞ limit.

1See for example Ref. [9], Appendix B.
2See for example Eq. (3.3.11).
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B.3 Mellin transform of the p⊥-spectrum thresh-
old logarithms

In this section we compute the Mellin transform of the logarithmic terms
appearing in the threshold region in the NLO p⊥ distribution Eq.(3.5.12).

We are interested in the following integrals:

Da
k(N) ≡

∫ 1

0

xN√
(1− x)(1− ax)

lnk(1− x)dx (B.3.1)

for k = 0, 1, 2. These can be evaluated from the generating integral:

Da
η(N) ≡

∫ 1

0

xN√
(1− x)(1− ax)

(1− x)ηdx (B.3.2)

by differentiating with respect to η:

Da
k(N) =

dkDa
η(N)

dηk

⏐⏐⏐⏐⏐
η=0

(B.3.3)

The generating interal Da
η(N) is easily evaluated as a special case of the

Euler representation of the Hypergeometric Function 2F 1, Eq.(C.2.4).

Da
η(N) =

Γ (N) Γ
(
η + 1

2

)
Γ
(
N + η + 1

2

) 2F 1

(
1

2
, N ;N + η +

1

2
; a2
)

=Da
0(N)

Γ
(
1
2 + η

)
Γ
(
1
2

) Γ
(
N + 1

2

)
Γ
(
N + 1

2 + η
) 2F 1

(
1
2 , N ;N + η + 1

2 ; a
2
)

2F 1

(
1
2 , N ;N + 1

2 ; a
2
)
(B.3.4)

where we have factorized out Da
0(N) = Da

η(N)|η=0.

In order to obtain the explicit formula for Da
k(N) (for k = 0, 1, 2) it

is sufficient to evaluate (B.3.4) as a series expansion in η up to O(η2). In
order to do this, we can exploit the power expansion for the ratios of Gamma
functions Eq.(C.1.6) (and the corresponding power expansion for its inverse)
and that of the ratio of Hypergemotric functions, in particular the fact that:

2F 1

(
1
2 , N ;N + η + 1

2 ; a
2
)

2F 1

(
1
2 , N ;N + 1

2 ; a
2
) = 1 +O

(
1

N

)
(B.3.5)

With a little algebra we obtain:

Da
η(N)

Da
0(N)

= 1
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+ η

[
ψ0

(
1

2

)
− ψ0

(
N +

1

2

)]
+
η2

2

[
ψ2
0

(
1

2

)
+ ψ2

0

(
N +

1

2

)
+ ψ1

(
1

2

)
− ψ1

(
N +

1

2

)
−2ψ0

(
1

2

)
ψ0

(
N +

1

2

)]
+O(η3) +O

(
1

N

)
(B.3.6)

In the large N limit we can also exploit the asymptotic behaviour of the
Poligamma functions, namely ψ0(N) ∼ ln(N) and ψ1 ∼ 1/N :

Da
η(N)

Da
0(N)

= 1 + η

[
ψ0

(
1

2

)
− ln(N)

]
+
η2

2

[
ψ2
0

(
1

2

)
+ ln2(N) + ψ1

(
1

2

)
− 2ψ0

(
1

2

)
ln(N)

]
+O(η3) +O

(
1

N

) (B.3.7)

Now computing the specific integralsDa
k(N) is just a matter of extracting

the coefficients of this expansion, factoring out the 1/k!. Our expansion up
to O(η2) enables us to compute these integrals up to k = 2, but it is easy
to see how this procedure can be straightforwardly extended to any k. We
obtain:

Da
0(N) =

Γ (N) Γ
(
η + 1

2

)
Γ
(
N + η + 1

2

) 2F 1

(
1

2
, N ;N +

1

2
; a2
)

(B.3.8)

Da
1(N) = Da

0(N)

[
ψ0

(
1

2

)
− ln(N) +O

(
1

N

)]
(B.3.9)

Da
2(N) = Da

0(N)

[
ψ2
0

(
1

2

)
+ ln2(N) + ψ1

(
1

2

)
− 2ψ0

(
1

2

)
ln(N) +O

(
1

N

)]
(B.3.10)
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Appendix C

Special Functions

In this Appendix we review some special functions arising during the calcu-
lations performed in this thesis.

C.1 Euler Gamma and Poligamma functions

The Euler Gamma function can be defined in the complex plane as:

Γ(z) =

∫ ∞

0
dte−ttz−1, Re(z) > 0 (C.1.1)

Integrating by parts it can be shown that the Gamma function satisfies
the fundamental property:

Γ(z + 1) = zΓ(z) (C.1.2)

therefore essentially being a natural extension of the factorial in the complex
plane, in particular:

Γ(n+ 1) = n!, n ∈ N (C.1.3)

Equation (C.1.2) can be used to analytically extend the domain of the
Gamma function to the whole complex plane, with the exception of a series
of single poles located at the non positive integer numbers. Around any point
ζ which is not a pole the Gamma function satisfies the Taylor expansion:

Γ(ζ + ε) = Γ(ζ)

[
1 + εψo(ζ) +

ε2

2

(
ψ1(ζ) + ψ2

0(ζ)
)
+O(ε3)

]
(C.1.4)

where ψi are the Poligamma functions defined in Eq.(C.1.8).

By setting ζ = 1 in Eq.(C.1.4) and exploiting the fundamental property
of the Gamma function we can derive the Laurent expansion around z = 0:

Γ(ε) =
Γ(1 + ε)

ε
=

1

ε
+ ψ0(1) +

ε

2

(
ψ1(1) + ψ2

0(1)
)
+O(ε2) (C.1.5)
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Another useful power expansion we are going to use is:

Γ(ζ)

Γ(ζ + ε)
= 1− εψ0(ζ) +

ε2

2

(
ψ2
0(ζ)− ψ1(ζ)

)
+O(ε2) (C.1.6)

Finally we can derive an useful expansion of the Euler Beta function,
which is used in Appendix A for the computation of a generating integral.

β

(
ε,

1

2

)
=
Γ
(
1
2

)
Γ (ε)

Γ
(
1
2 + ε

)
=
1

ε
+ ψ0(1)− ψ0

(
1

2

)
+ ε
[1
2
ψ2
0

(
1

2

)
+

1

2

(
ψ1(1) + ψ2

0(1)
)

− 1

2
ψ1

(
1

2

)
− ψ0(1)ψ0

(
1

2

)]
+O(ε2) (C.1.7)

The Poligamma functions are defined as logarithmic derivatives of the
Gamma function:

ψk(z) =
dk+1

dzk+1
ln Γ(z) (C.1.8)

The Poligamma function with k = 0 is usually called Digamma function
and denoted as ψ, without any subscript. For large |z| and with arg z < π
the Poligamma functions behave as:

ψ0(z) ≃ ln z +O
(
1

z

)
(C.1.9)

ψi(z) =O
(

1

zi

)
, i > 0 (C.1.10)

C.2 Hypergeometric Function

The (p, q) Hypergeometric function is defined as:

pF q(a1, ..., ap; b1, ..., bq; z) ≡
∞∑
k=0

(a1)k...(ap)k
(b1)k...(bq)k

zk

k!
(C.2.1)

where (a)k is the Pochhammer symbol defined as:

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1) (C.2.2)
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These are a class of very general functions which contains many other
special (and ordinary) functions as special cases. We will be interested in
the (2, 1) Hypergeometric Function:

2F 1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
(C.2.3)

because it appears in the evaluation of the Euler-Type integral:∫ 1

0
xb(1− x)c(1− zx)−adx = β(b+ 1, c+ 1) 2F 1 (a, b; c; z) (C.2.4)

which is well defined if z is not a real number greater or equal to 1, which
will always be the case in our computation. Equation (C.2.4) can be proven
by expanding (1− zx)−a and then performing the integration term by term
thanks to the ordinary Euler Beta function integral.

In particular, in the computation of the Mellin transform of the fixed
order cross section we will encounter the function:

2F 1

(
1

2
, N ;N + η +

1

2
; a2
)

(C.2.5)

which we would like to expand in powers of η. The expansion up to O(η2)
can be written as:

2F 1

(
1
2 , N ;N + η + 1

2 ; a
2
)

2F 1

(
1
2 , N ;N + 1

2 ; a
2
) =1 + ηφ0(N, a

2)

+
η2

2

(
φ1(N, a

2) + φ2
0(N, a

2)
)
+O(η3) (C.2.6)

where φi are the logarithmic derivatives of the Hypergeometric function
Eq.(C.2.5) with respect to η:

φk(N, a
2) ≡ d(k+1)

dη(k+1)
ln

(
2F 1

(
1

2
, N ;N + η +

1

2
; a2
))

η=0

(C.2.7)

In can be shown that each of these logarithmic derivative vanish at least
as 1/N in the N → ∞ limit. This is because the derivative of a Pochhammer
symbol (a)k with respect to its argument is a polynomial of degree k − 1,
which is one degree less then the symbol itself[19]. Without focusing too
much on the precise asymptotics of these functions we limit ourselves to a
weaker statement, which is enough for our purposes nevertheless:

φk(N, a
2)

N→∞−−−−→ 0 (C.2.8)
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