
dipartimento di fisica

corso di laurea triennale in fisica

A deep learning approach to event
generator tuning

Candidato:
Marco Lazzarin
Matricola 887355

Relatore:
Dott. Stefano Carrazza

Correlatori:
Prof. Simone Alioli
Prof. Stefano Forte

Anno accademico 2018/2019

Abstract

Monte Carlo event generators are tools that simulate the collision of particles at
high energies. They introduce many parameters, mainly due to the usage of phe-
nomenological models like the hadronization model or the underlying event model.
These parameters are difficult to obtain on a theoretical basis, so they must be
carefully tuned in order to make the generators reproduce the experimental mea-
surements. The procedure of estimating the best value for each parameter is called
event generator tuning. This tuning procedure is made more difficult by the
high computational cost of running a generator, so it requires methods to study the
dependence between a generator output and its parameters. The current state-of-
the-art tuning procedure is based on a polynomial parametrisation of the generator
response to parameter variations, followed by a numerical fit of the parametrised
behaviour to experimental data. This procedure is implemented in the Professor

tool. This thesis investigates new tuning procedures based on deep learning algo-
rithms. In brief, deep learning algorithms employ parametric models called artificial
neural networks to solve machine learning and artificial intelligence problems. Two
different tuning procedures are presented, called Per Bin and Inverse from now on.
The former follows the same approach of Professor, but with a different parametri-
sation model made of fully-connected neural networks and a different minimization
algorithm, which is an evolutionary algorithm called Covariance Matrix Adaptation
- Evolution Strategy. The latter takes a completely different approach: by using a
fully-connected neural network, it learns to predict directly the parameters that the
generator needs to output a given result. These two procedures were implemented
in a Python package, called MCNNTUNES from now on, and then tested with the event
generator PYTHIA8. Two different datasets of Monte Carlo runs were generated, with
three and four tunable parameters respectively. The procedures were tested with
pseudo-data (i.e. other Monte Carlo runs) and with real experimental data taken
from the ATLAS experiment. The tests with pseudo-data (called closure tests from
now on) consist on replacing the experimental data with other Monte Carlo runs,
and comparing the obtained tunes with the actual parameters used to generate those
runs. These are useful to verify if the models are really able to learn the generator
behaviour. The tests with real experimental measurements, instead, are useful to
see if the tuning procedures are practical and behave reasonably in an actual tuning
context. The Per Bin model closure tests were very limited, due to computational
time constraints, but showed solid results. The test with experimental data showed
a behaviour similar to the one of Professor. On the other hand, the Inverse model
closure tests presented on average slightly better performances than the ones of Pro-
fessor, while the test with real experimental data showed some differences from the
other procedures, and raised some practical problems that may be investigated in
the future.

1

Contents

1 Machine learning introduction 4
1.1 Main classification . 4
1.2 Supervised learning . 5

1.2.1 Tasks . 5
1.2.2 Models . 5
1.2.3 Training . 9
1.2.4 Regularization . 11
1.2.5 Hyperparameter tuning . 14

2 Tuning event generators 15
2.1 Event generators . 15

2.1.1 Analysis of events . 18
2.2 Overview of the tuning problem . 18

2.2.1 Tuning methods . 20
2.3 Professor . 20

2.3.1 Sampling the parameter space 21
2.3.2 Parametrisation . 21
2.3.3 Tuning . 22

3 MCNNTUNES procedure 24
3.1 Per Bin Model . 24

3.1.1 Parametrisation . 24
3.1.2 Tuning . 25

3.2 Inverse Model . 25
3.2.1 Data augmentation . 26

3.3 Performance assessment . 26
3.4 Implementation . 27

3.4.1 Hyperparameter tuning . 27
3.4.2 Dependencies . 30

4 Testing MCNNTUNES 31
4.1 Datasets . 31
4.2 AZ-like tune of PYTHIA8 . 32

4.2.1 Unrestricted tunes . 36
4.3 Performance measurements . 37

4.3.1 Closure tests with Professor 37
4.3.2 Level-zero closure tests . 37
4.3.3 Fine tuning . 40
4.3.4 Test errors . 45

2

CONTENTS

4.4 Some final tunes . 46

5 Conclusion 51

A Training of neural networks 52
A.1 Backpropagation algorithm . 52
A.2 Optimization algorithms . 53

B Sequential Model-Based Global Optimization 55
B.1 Tree-structured Parzen Estimator . 56

C Covariance Matrix Adaptation - Evolution Strategy 57

3

Chapter 1

Machine learning introduction

Machine learning is a field of computer science which deals with the design of
algorithms that are able to accomplish a task without being explicitly programmed;
they extract the information about the task from some sort of experience. The
main references for this chapter are [1] and [2].

1.1 Main classification

Machine learning problems can be classified in three main classes, according to the
type of experience they exploit:

• Supervised learning: in supervised learning the experience is a dataset of
examples. Each example is made of some features, i.e. some properties, and a
label. The goal is to learn a function that labels new examples. In most cases,
the examples are vectors x ∈ Rn and the labels are vectors y ∈ Rm. Then,
the aim is to map a previously unobserved input x to an output y = f(x),
without explicitly defining f(·).

• Unsupervised learning: in contrast with supervised learning, in unsuper-
vised learning the examples have no labels, just features. So, the dataset in
most cases is just a set of observations xi, and the goal is to extract useful
information from it. For example, the task may be the subdivision of the
examples into clusters (clustering); another one may be to learn the proba-
bility distribution of the examples, and then using it to generate new examples
(generative models).

• Reinforcement learning: in reinforcement learning an AI agent interacts
with an environment, generating experience at run-time. This environment
should give a feedback to the AI agent with a reward-penalty system. The
goal is to make the agent learn by trial and error how to maximize the
rewards and minimize the penalties. An example of reinforcement learning
task may be the development of an AI agent that learns how to play a video
game. In fact, many video games are environments with a straightforward
built-in reward-penalty system. As an example, in [3] a reinforcement learning
algorithm was designed to play seven Atari 2600 games.

This thesis focuses on supervised learning, which is presented in section 1.2.

4

1.2. SUPERVISED LEARNING

1.2 Supervised learning

In supervised learning, a dataset with labelled examples is given, and the aim is to
build a model that labels new examples. Usually, the examples are vectors in Rn,
where each component is one of their features, and the labels are also vectors in Rm,
but sometimes the structure of the data is more complicated. The word supervised
reminds of a teacher that labels each example for his students, so that they learn
how to label new ones.
In order to solve a supervised learning problem, one should recognize the type of
task required (see section 1.2.1) and choose a model which is able to solve such task
(see section 1.2.2). If the model is parametric, its parameters need to be estimated
using the labelled examples (see section 1.2.3). The parameters estimation must
be done with care, because the algorithm should behave well on new unlabelled
examples, not on the labelled ones; it should generalize to new examples. This
topic is debated in section 1.2.4. At the end of this chapter, a procedure for the
selection of different models, or fine tuning of the model architecture is presented
(see section 1.2.5).

1.2.1 Tasks

There are three main types of supervised learning tasks:

• Regression: in regression labels are numerical real valued quantities, or real-
valued vectors.

• Classification: in classification the labels are categories, and the algorithm
must classify the examples within these categories. An example of a classifi-
cation task is object recognition, in which the examples are images and the
categories are object identifiers. Usually, the categories are codified so that
the labels are numerical quantities.

• Structured output problems: structured output problems involve labels
with a complicated data structure, usually with many components, which are
not categories nor numerical values. An example is image captioning, in
which the examples are images and the labels are descriptions of the images
in natural language.

There is not a rigid classification of supervised learning tasks, just like there is not a
clear-cut subdivision between supervised, unsupervised and reinforcement learning.
The tuning procedures presented in section 2.3 and in chapter 3, however, involve
only regression tasks, so this thesis will focus on them.

1.2.2 Models

The prediction is accomplished by using a model that can adapt to the examples
in the dataset. Usually, a model is a parametric function f(x;θ) whose parameters
are chosen to make the model perform well, and the estimation of these parameters
is done by processing the dataset (see section 1.2.3). In this subsection two differ-
ent types of models are presented: linear models, employed in section 2.3, and
feedforward neural networks, employed in chapter 3.

5

1.2. SUPERVISED LEARNING

Linear models

Linear models are simple but powerful tools that can be applied easily to regression
tasks (linear regression). A linear model maps input vectors x ∈ Rn to output
vectors y ∈ Rm through an affine transformation

y = K · x+ b (1.1)

where K is a m×n matrix and b ∈ Rm. It is convenient to add a unit feature to each
of the examples in order to remove the bias b without loss of generality. Equation
1.1 represents a polynomial of order one, but linear regression could be used to
model non-linear dependencies because it is possible to add more features to the
input vectors by using combinations of features. For example, if x = (1, x1, x2), a
quadratic function can be implemented by replacing x with a feature vector x =
(1, x1, x2, x1x2, x

2
1, x

2
2). Polynomials of arbitrary order are implemented in a similar

way, at the cost of increasing the number of parameters: if the original features are
k, a generic polynomial of order n has

N (k)
n = 1 +

n∑
i=1

1

i!

i−1∏
j=0

(k + j) (1.2)

parameters [4]. Transformations of output vectors are also useful: for example,
replacing y with y = lny (computed element-wise) introduces an exponential de-
pendence between inputs and outputs. In order to use the linear regression methods
described in subsection 1.2.3, the model should be linear in the parameters, not
in the original features.

Feedforward neural networks

Feedforward neural networks are the simplest type of artificial neural networks.
As the name suggests, they propagate the information within the network in just
one direction, from the input to the output. This section presents the simplest
ones, called multilayer perceptrons (MLPs) or fully-connected neural networks.
They are parametric models made of a composition of many affine maps alternated
with non-parametric non-linear functions called activation functions. Let x ∈ Rn

be the input vector; a generic affine map f(x) : Rn → Rm consists on a matrix
multiplication followed by a translation:

f(x) = K · x+ b (1.3)

where b ∈ Rm is called bias, and K is a m × n matrix called kernel. A neural
network is a composition of many such affine transformations interleaved with some
non-parametric non-linear activation functions a(·). Some examples of activation
functions are

Tanh :
exi − e−xi

exi + e−xi

Sigmoid :
1

1 + e−xi

ReLU :
|xi|+ xi

2

Softmax :
exi∑
j e

xj

(1.4)

6

1.2. SUPERVISED LEARNING

Figure 1.1: Some activation functions.

Figure 1.2: A graph of a neural network with input dimension 3, output dimension
1, and hidden layer architecture [5, 5, 5, 3]. The edge from the i-th node of layer m
to the j-th one of layer m+ 1 represents the value at column i and at row j of the
kernel matrix of layer m+ 1.

and are plotted, whether possible, in figure 1.1. The combination of an affine trans-
formation with an activation function is called layer:

h = a(K · x+ b) (1.5)

Each layer is stacked upon the previous one in such a way that dimensions match:
the activations of each layer should be in the domain of the affine map of the next
layer. The first layer is applied to the input x (input layer), the last one represents
the output layer and should have an activation function compatible with the task
(usually linear for a regression task, softmax for a classification task). Layers that
are not input nor output layers are called hidden layers; a neural network with N
hidden layers is defined recursively by

hi+1 = ai+1(Ki+1 · hi + bi+1) i = 0, ..., N (1.6)

where h0 = x and hN+1 = y. Neural networks are usually represented with a graph
(see figure 1.2), where layers are vertical sequences of nodes. Each node is a com-
ponent of that layer, and each edge is a component of the kernel matrices. Usually,
bias vectors are not drawn.

Multilayer perceptrons are universal approximators [5]. In fact, consider a neu-
ral network with a single hidden layer of size j, with input dimension n and output
dimension 1:

y =

j∑
i=1

λiai(K · x+ b) (1.7)

7

1.2. SUPERVISED LEARNING

Let denote with Υj the set of all neural networks like 1.7, for all K ∈ Rn×j and
b,λ ∈ Rj. Let Υ =

⋃
j∈N Υj. Let µ be an arbitrary finite measure on Rk, and

define Lp
µ(Rk) the space of function defined on Rk such that

∥f∥p,µ,Rk =

(∫
Rk

|f(x)|pdµ(x)
) 1

p

<∞ (1.8)

A subset S ⊂ Lp
µ(Rk) is dense in Lp

µ(Rk) if, for an arbitrary f ∈ Lp
µ(Rk) and ϵ > 0

there is a function g ∈ S such that ∥f − g∥p,µ,Rk < ϵ. Then, the following theorem
holds:

Theorem 1.2.1 (Universal Approximation [5]) If a(·) is bounded and noncon-
stant, then Υ is dense in Lp

µ(Rk) for all finite measure µ on Rk.

This theorem is useful in a context where the input is assumed to be a random
variable, so the quality of the approximation can be averaged over the input space,
weighted by the input finite measure µ. If instead, the approximation should be
simultaneously good on all inputs x, stronger hypotheses are required. Let C(X) be
the space of continuous functions defined on X ⊂ Rk. Then, the following theorem
holds:

Theorem 1.2.2 (Universal Approximation [5]) If a(·) is continuous, bounded
and nonconstant, then for each compact subset X ⊂ Rk, given any function f ∈
C(X) and ϵ > 0, there exists a neural network F ∈ Υ such that |f(x)− F (x)| < ϵ,
for all x ∈ X.

These theorems involve shallow networks, where the expressive power grows with
the width; a similar result holds also for width-bounded deep neural networks with
ReLU activation functions (which are unbounded, and so excluded from the previous
theorems1):

Theorem 1.2.3 (Universal Approximation [7]) For any Lebesgue-integrable
function f : Rn → R and any ϵ > 0, there exists a fully connected ReLU network
with width lower or equal than n + 4 for each hidden layer, such that the function
F : Rn → R represented by this network satisfies∫

Rn

|f(x)− F (x)|dx < ϵ (1.9)

i.e. the set of all fully connected ReLU networks with width lower or equal than n+4
for each hidden layer is dense in L1(Rn) with standard Lebesgue measure.

In practice, one cannot use a neural network with infinite parameters, but these
theorems give a theoretical foundation that, at least in principle, neural networks
can learn highly non-linear functions. The hierarchical structure of a neural network,
based on a composition of many simple functions, enables it to learn by extracting
multiple hierarchical-structured features from the data: the higher-level features
are transformations of the lower ones. This type of feature learning is called deep
learning. Multilayer perceptrons are the simplest type of neural networks, but
more sophisticated variations have been designed in order to exploit different data
structures (e.g. convolutional neural networks for translational invariant data or
recurrent neural networks for temporal sequences).

1However, the universal approximation property was proved also for a wider class of activation
functions, which includes the ReLU [6].

8

1.2. SUPERVISED LEARNING

1.2.3 Training

The parameters of parametric models such as neural networks need to be estimated
from the dataset. This process is called training. The standard procedure consists
in defining a measurement of the performance of the model (with the “lower is
better” format), called loss or cost function, and minimizing it.

Loss function

There are many choices for the loss function, and choosing the best one is problem-
dependent. Let xi, i = 1, ..., N be the dataset examples, and yi the corresponding
labels. In a regression problem, a standard choice could be the mean squared error,
or the mean absolute error:

Mean squared error :
1

N

N∑
i=1

∥yi − f(xi)∥22

Mean absolute error :
1

N

N∑
i=1

∥yi − f(xi)∥1

(1.10)

where ∥·∥1 and ∥·∥2 are the L1 and L2 norm, respectively. While the idea of min-
imizing these losses is intuitively, some theoretical insights are interesting. Let x0

be a generic example. If the prediction ŷ = f(x0) of the model is considered as a
conditional probability distribution P (y|x;θ), then a maximum likelihood estimator
could be used to estimate the parameters:

θ⋆ = argmaxθP (Y|X;θ) (1.11)

where X and Y are the whole dataset of examples. If the examples are indepen-
dent and identically distributed, then the probability factorizes over each example.
Taking the logarithm transforms products into sums:

θ⋆ = argmaxθ ln

(
N∏
i=1

P (yi|xi;θ)

)
= argmaxθ

N∑
i=1

lnP (yi|xi;θ) (1.12)

If P (y|x;θ) is chosen to be a multivariate Gaussian distribution, then the maxi-
mum likelihood estimator for the model parameters turns out to be the minimum
of the mean squared error, while if is considered as a Laplace distribution, it turns
out to be the minimum of the mean absolute error. Another interesting insight [2] is
that the best prediction ŷ = f(x0) is the conditional mean E(y|x = x0) when using
the mean squared error, while it is the conditional median when using the mean
absolute error.

Minimization

The minimization step consists in minimizing the loss function calculated on the
examples in the dataset. The minimization strategies differ from model to model:
sometimes a closed-form solution to jump to the global minimum is available, but
in general iterative algorithms are required.

9

1.2. SUPERVISED LEARNING

Linear regression In linear regression minimizing the mean squared error brings
to a closed-form solution. Consider a linear regression with a one-dimensional out-
put, let X be a matrix where each row is an example from the dataset and let y be
the corresponding labels. If the intercept is incorporated in the parameter vector θ,
the mean squared error is proportional to

L = (y −X · θ)T (y −X · θ) (1.13)

which is a quadratic function of the parameters. Differentiating with respect to θ
and setting the first derivative to zero leads to a closed-form solution called least
squares :

θ = (XTX)−1XTy (1.14)

at least if XTX is invertible. For a multi-output regression, a similar result holds:

K = (XTX)−1XTY (1.15)

whereK is the matrix of parameters andY a matrix where each row is the label of an
example from the dataset. IfXTX is singular, theMoore-Penrose pseudoinverse
X+ can still solve the problem. The Moore-Penrose pseudoinverse of a matrix A is
defined as

A+ = lim
α→0+

(ATA+ αI)−1AT (1.16)

Usually, practical implementations do not use its definition, but exploit the singular
value decomposition of A. The Moore-Penrose pseudoinverse is useful for solving
linear equations. In a single-output linear regression, the predictions of all examples
of a dataset X can be written as

y = X · θ (1.17)

which is a system of linear equations. Depending on the particular problem, there
could be many solutions, a unique solution, or none. The pseudoinverse will always
propose a solution:

θ = X+y (1.18)

If many solutions exist, the pseudoinverse will return the one with minimum Eu-
clidean norm ∥θ∥22; if a unique solution exists, the pseudoinverse X+ is equal to the
inverse X−1 and will return the exact solution. If no solution exists, the pseudoin-
verse will return the solution that minimizes the mean squared error ∥y −X · θ∥22,
and the minimization problem is solved. By the way, if there is at least one solution,
this means that a function that maps perfectly each input example to its label is
found. This corresponds to a mean squared error of zero, which is of course a global
minimum. So, the pseudoinverse will always return a minimum of the loss function.
This solution translates easily to the multi-output regression:

K = X+Y (1.19)

Of course, if (XTX)−1 exists, then X+ = (XTX)−1XT .
If another loss function is used, other methods are required. In particular, calculating
the gradient of the loss function with respect to the parameters is straightforward,
so the minimization can be performed by using the same methods of feedforward
neural networks, which are described in the next paragraph.

10

1.2. SUPERVISED LEARNING

Neural networks A closed-form solution for the training of neural networks does
not exist. However, neural networks offer the possibility to calculate the gradient
of the loss function with respect to each of the model parameters, by using an effi-
cient algorithm called back-propagation. So, many algorithms for training neural
networks are gradient-based, and are more sophisticated versions of the stochastic
gradient descent algorithm. These algorithms require some settings like the num-
ber of iterations over the whole dataset (epochs), the number of samples processed
at each parameters update (batch size), or the size of each parameters update
(learning rate). These settings can influence the performance of the model, and so
must be tuned with care. An in-depth description of these algorithms is presented
in appendix A, while a procedure for tuning these parameters is presented in sub-
section 1.2.5.

Not all models require a training procedure: for example the k-nearest neigh-
bours algorithm simply learns by heart the dataset. Let x be a new example, and
suppose a distance function is defined on the space of all examples. Then, the k-
nearest neighbours searches for the k examples in the dataset which are nearest x,
and labels x with the average of their labels. Of course k is still a parameter that
can affect the performance of the model, but it does not fit into a training procedure.
In fact, the value of k that minimizes the loss will always be 1, which is not the
best one, at least in general. The determination of parameters like k is debated in
subsection 1.2.5.

1.2.4 Regularization

The main point in machine learning is not to learn the training set by heart (this is
achieved successfully by a 1-nearest neighbours algorithm) but to generalize well on
previously unobserved examples. This means that evaluating the performance of a
model on the training set is useful only in the training phase, but not for the quality
estimation of the model. The standard procedure in machine learning consists in
dividing the dataset in a training set and in a validation set: the training set
is used for the optimization of the model parameters, the validation set is used to
evaluate the performance of the model. The validation loss can be analysed with the
bias-variance decomposition. Consider a regression task in which the examples are
generated from an underlying function plus an additive Gaussian noise y = f(x)+ϵ.
Let f̂(x) be a model trained for this task, and use the mean squared error as loss
function. Then, the expected prediction error for a new example x can be written
as:

E

[(
Y − f̂(x)

)2
|x = x0

]
= E

[(
f(x) + ϵ− f̂(x)

)2
|x = xo

]
= E

[
f(x)2 + ϵ2 + f̂(x)2 + 2ϵf(x)− 2f(x)f̂(x)− 2ϵf̂(x)|x = xo

]
= f(x)2 + σ2

ϵ + E[f̂(x)2]− 2f(x)E[f̂(x)]

= σ2
ϵ + f(x)2 + E[f̂(x)]2 − 2f(x)E[f̂(x)] + E[f̂(x)2]− E[f̂(x)]2

= σ2
ϵ +

(
f(x)− E[f̂(x)]

)2
+ E[f̂(x)2]− E[f̂(x)]2

= Noise + (Bias)2 +Variance

(1.20)

11

1.2. SUPERVISED LEARNING

Figure 1.3: Qualitative dependence of the validation loss on capacity.

The first term is the noise originated from the data-generating process, the second
is the bias of the prediction and the last one is its variance. The first one is not
removable if the new example is independent from the dataset, while the other two
depend on the model. In particular, they are influenced by the capacity of the
model, which is a central concept in machine learning. Informally, the capacity of
a model is a measurement of the ability to represent many different functions, i.e.
the expressive power of a model. For example, the capacity of a polynomial is an
increasing function of its order. If the capacity of a model is changed, training error
and validation error respond differently. Usually, the training error is a decreasing
function of the model capacity, because the model can represent more functions.
The validation error behaves differently:

• If the model capacity is too low, it cannot represent well the underlying data-
generating function (high bias). This leads to high training error and high
validation error. This situation is called underfitting.

• If the model capacity is too high, it can represent well the underlying data-
generating function, but it can also represent the statistical noise in the train-
ing set, or it can make a nearly perfect interpolation through the training set
examples but behaves bad between them (high variance). This situation is
called overfitting, and leads to low training error and high validation error.

• If the model capacity is comparable to the underlying data-generating process,
the model can represent well the training set without overfitting, and the
validation error is minimized.

The qualitative dependence of the validation loss on capacity is plotted in figure 1.3,
while some examples of underfitting, overfitting and optimal capacity are illustrated
in figure 1.4. Low capacity models usually have low variance but high bias, and
viceversa. The best model is then obtained with a trade-off between bias and vari-
ance. [1] defines regularization as “any modification made to a learning algorithm
that is intended to reduce its generalization error but not its training error”, where
the generalization error is the prediction error on new examples.

12

1.2. SUPERVISED LEARNING

Figure 1.4: In this figure the points are generated from a quadratic function with
some Gaussian noise. A linear function (sx) has lower capacity than required, so it
underfits. A high-order polynomial (dx) has too much capacity and overfits badly. In
the central plot there is a second-order polynomial, which has the optimal capacity
by construction. Fits have been performed with the SciPy [8] package.

Regularizers

Equation 1.20 shows that an unbiased model is not necessarily the best model.
Consider a linear regression task where the underlying data-generating function is
linear. The least squares model is then unbiased, but the contribution of variance
to the prediction error is still present. By reducing the capacity of the model, a
bias-variance trade-off mechanism could eventually decrease the variance more
then the corresponding increase in bias, leading to a better performing model. The
capacity of a model can be limited by adding a parameter norm penalty to the loss
function, for example a L2 norm penalty:

L(θ) = L(θ) + λ ∥θ∥22 (1.21)

This method is called weight decay, ridge regression or Tikhonov regulariza-
tion. The weight decay can be applied to both linear models and neural networks.
In linear models, there still exists a closed-form solution similar to least squares:

θ = (XTX+ λI)−1XTy (1.22)

Notice that in the limit λ → 0 the pseudoinverse method is recovered. Another
example of parameter norm penalty is the L1 norm:

L(θ) = L(θ) + λ ∥θ∥1 (1.23)

also known as Lasso (Least Absolute Shrinkage and Selection Operator) when ap-
plied to linear models with mean squared error loss. In this case, a closed-form
solution does not exist anymore. Usually the intercept (or the biases for a neural
network) is excluded from the norm penalty. In subsection 1.2.3 it was shown that
minimizing the mean squared error or the mean absolute error could be interpreted
as maximizing the conditional log-likelihood assuming the prediction was centered
on a Gaussian or a Laplace distribution, respectively. Introducing a norm penalty,
instead, is equivalent to impose a prior distribution on the weights and, using the

13

1.2. SUPERVISED LEARNING

same likelihood as before, estimate the parameters with a Maximum a Posteri-
ori Bayesian inference. The prior is a Gaussian for the L2 norm, and a Laplace
distribution for the L1 norm.

Other methods

Other regularization methods exist in addition to parameter norm penalties, i.e.
noise injection, model averaging, dropout [9], adversarial training [10, 11], etc. If
iterative gradient-based training algorithms are used, another simple regularization
technique to prevent overfitting is early stopping: during each iteration over the
whole dataset, the algorithm evaluates the validation loss, and stops when the val-
idation loss stops decreasing. When using early stopping, the model generalization
error should be evaluated on an independent test set, because the validation set is
used by the training algorithm, and so the validation loss could underestimate the
true generalization error.

1.2.5 Hyperparameter tuning

The architecture of a machine learning model, the choice of the model itself and
the details of the training procedure (e.g. optimization algorithms, loss functions,
regularizers, epochs or batch sizes) can be seen as parameters as well as the biases
and the kernels of the network layers, but they do not fit into the training pro-
cedure. They are called hyperparameters. Hyperparameter tuning consists in
finding the hyperparameter configuration that minimizes the validation error. As
noted in [12], hyperparameter tuning is a big concern in machine learning research,
a “direct impediment to scientific progress”. That is because it can influence heavily
the performance of an algorithm so, when testing different strategies, it is difficult
to understand if a new algorithm performs better than the previous one because it
is intrinsically better or because a lucky hyperparameter configuration is used. Vice
versa, if a new algorithm performs badly, it is hard to find out if it is because the
new ideas are not good or because the hyperparameters were tuned badly.

The main problem with hyperparameter tuning is the high computational cost of
evaluating the validation error of a single point in the hyperparameter space, which
consists in training a new machine learning model. Moreover, the configuration
space often is tree-structured, in the sense that some variables are defined only if
some other variables take on a particular value (for example, the dimension of the
third layer of a neural network is defined only if the number of layers is ≥ 3). Some
common strategies are manual tuning, grid search over the configuration space, ran-
dom search or more sophisticated algorithms like Sequential Model-Based Global
Optimization algorithms (see appendix B for details and section 3.4.1 for a practical
implementation).

After hyperparameter tuning, the performance of the best configuration should be
evaluated on an independent dataset, called test set, because the tuning procedure
may overlearn the validation set.

14

Chapter 2

Tuning event generators

Event generators are programs that simulate the collision of particles at high ener-
gies. They are made of different components, from theoretical predictions (e.g. cross
sections of hard processes etc.) to phenomenological models (e.g. underlying event
model, hadronization model). Event generators, especially their phenomenological
components, introduce some parameters that are difficult to obtain on a theoretical
basis, so they must be estimated by comparison with the experimental data. This
procedure is called tuning. This chapter contains a brief introduction to event
generators1, an overview of the tuning problem and some simple methods to solve
it, and finally a presentation of the current state-of-the-art tuning procedure, called
Professor [4].

2.1 Event generators

Event generators are tools for the simulation of collisions of particles at high en-
ergies, which give a detailed description of the final state, in contrast with QCD
computations of inclusive quantities (e.g. results summed over all final states). In
a generator, the collision steps are simulated as follows:

1. The user defines the particle type of the incoming beams and the collision
center of mass energy.

2. One parton for each beam is selected as the initiator of the initial state
shower: it begins a series of splittings (e.g. g → qq) until the shower algorithm
reaches a region where it is not applicable anymore and needs to be stopped.
More details about showers will be presented in the next paragraph.

3. One parton for each initial state shower participates at the hard process,
which is the core of the collision; a certain number of particles are produced.

4. Each of these particles starts a final state shower, i.e. it starts a series of
splittings until the shower stops.

5. Secondary interactions between the partons not involved in the hard process
may occur.

1The main references for that section are [13] and [14]

15

2.1. EVENT GENERATORS

6. Quarks and gluons fragment to hadrons, to ensure confinement of coloured
particles.

7. Some hadrons generated by the hadronization step may be unstable, so their
decay must be taken into account.

More precisely, the program execution does not follow this “chronological” order:
for example, it starts from the hard process, so the initial state shower is generated
backwards. Ignoring these details, from the list above it is apparent that the main
components of an event generator are

• A library of parton distribution functions and processes with their cross sec-
tions, computed at fixed order. Processes can be activated or deactivated by
the user, depending on the analysis he wants to perform.

• A shower algorithm: it adds the contribution of soft and collinear QCD emis-
sions of coloured particles, which can be sizable. In QCD calculations of
inclusive quantities, the effects of soft and collinear singularities from real and
virtual emissions cancel out; however, event generators aim at describing also
more exclusive final states. Two different showers are implemented: one for
initial state radiation and one for final state radiation.

• A hadronization model that transforms quarks and gluons in hadrons, in order
to ensure confinement of coloured particles.

• An underlying event model for the treatment of the hadron remnants that
were not involved in the hard process, including the possibility of secondary
interactions.

• A library for the decay of unstable particles.

This brief presentation is focused on QCD aspects, but QED and EW interactions
may also be included in the simulation framework. Event generators rely on parame-
ters that must be carefully tuned in order to give realistic results. These parameters
are mostly introduced by phenomenological models e.g. the hadronization and the
underlying event model. In the remaining of this section, some examples of tunable
parameters are given. Some of them will be tuned in chapter 4 with the generator
PYTHIA8 [15].

Parton shower The shower algorithm adds a number of quark or gluon emissions
associated to the soft and collinear singularities to the hard process computed at
fixed order. The inclusion of these emissions can give rise to contributions of order
O(1) to the kinematical distributions. This shower algorithm is implemented as a
sequence of partonic branchings, where each branching is a decay of a parton (q →
qg, g → gg or g → qq). For final-state emissions, starting from the partons outgoing
from the hard process, the parton shower is then a tree-structured probabilistic
model where each edge is a parton and each vertex is the decay of a parton. Each
splitting is characterized by an ordering variable t which is maximum for the parton
that initiates the shower, is zero in the collinear limit, and is strictly decreasing
along the tree. The shower algorithm is sketched in this way, at least for final state
showers:

16

2.1. EVENT GENERATORS

1. After the hard process, set the ordering variable t of the initiator parton to
the typical scale of the process.

2. Sample the variable 0 < t′ < t according to a theoretically based probability
distribution. If t < t0, stop the shower.

3. Split the parton into two other partons with ordering variable t′, each with
a portion of the momentum, and reconstruct their directions. The type of
decay and the momentum subdivison are sampled from theoretically based
probability distributions.

4. Restart the shower for each of the two new partons, with t = t′.

An illustration of the development of a final state shower is presented in figure 2.1.
At some point during the development of the shower, the algorithm reaches a re-

Figure 2.1: A qualitative illustration of a final state parton shower. Made with [16].

gion where it is not applicable anymore and needs to be stopped. So, a cut-off
parameter t0 is introduced in step 2 as a break condition. PYTHIA8 implements the
shower with pT as ordering variable, and the lower cut-off parameter is labelled2

TimeShower:pTmin. Moreover, it regularizes the pT → 0 emission divergence with a
damping factor p2T/(p

2
T0+p2T) and the use of an αS(p

2
T0+p2T), where pT0 at the refer-

ence center-of-mass energy is fixed by the tunable parameter TimeShower:pT0Ref.
Another parameter of the shower is the αS value, whose value at scale M2

Z is tunable
with the parameter TimeShower:alphaSvalue. Analogously, the same parameters
are present in the SpaceShower: the TimeShower takes care of the final state radi-
ation, while the SpaceShower takes care of the initial state radiation.

2This label and the following ones are used to set the value of the corresponding parameters,
and are usually written in a configuration file that the generator reads at run-time. For an example
of configuration file for PYTHIA8, see subsection 2.3.1

17

2.2. OVERVIEW OF THE TUNING PROBLEM

Underlying event model The beam remnants are what remains of the two
colliding particles after the shower initiators are taken out of them. The correct
treatment of the beam remnants requires taking into account multiparticle inter-
actions, i.e. the possibility that particles left out from the main process enter
a relatively-hard process. As previously said, this is implemented through phe-
nomenological models with introduction of parameters: for example, it is assumed
that the partons within the hadrons present an intrinsic transverse momentum,
sampled from a given probability distribution. Then, the secondary interaction is
implemented with a cut-off in the transverse momentum, because the parton cross
section diverges for pT → 0. The parameters of the intrinsic pT probability distri-
bution and the pT cut-off for secondary interactions are tunable parameters.

In PYTHIA8 the intrinsic kT is sampled from a Gaussian distribution in px and py,
with a σ value that depends on many parameters. At the hard-interaction limit, it
is determined by the BeamRemnants:primordialKThard parameter. The multipar-
ton interaction divergence at pT → 0 is managed similarly to the showers, with a
sharp cut-off MultipartonInteraction:pTmin and with a smooth damping factor,
related to the parameter MultipartonInteraction:pT0Ref. This last parameter,
however, is related to many other choices, so it has not an independent meaning.

2.1.1 Analysis of events

Running a generator produces an event record, which contains the full history of all
events of the simulation. These event records are huge files with highly redundant
information, and they must be analysed in order to obtain some theoretical predic-
tions about some observables. The Rivet [17] toolkit is both an analysis system for
Monte Carlo events and a library of built-in analyses, with the actual experimental
measurements conveniently attached. It is generator-independent: all event records
in the event record format HepMC [18] can be analysed.

2.2 Overview of the tuning problem

At first, a set of experimental measurements is selected. In practice, these measure-
ments are a set of histograms. The generator is configured with the same config-
uration of the experiment (center-of-mass energy, incoming beams, etc.), and with
the corresponding processes activated. Then, the generator is configured with a set
p of parameters. Running the generator produces an event record, which will be
analysed by an analysis system. An analysis that corresponds to the experimental
measurements must be used. The analysis system will conveniently use the same
bins of the experimental measurements, so the histograms are directly comparable.
In the end, a set of bins h(p) directly comparable with the experimental values hexp

is obtained. The goal is to find the set of parameters ptune that makes the generator
reproduce the experimental data. An example with two Monte Carlo runs is pre-
sented in figure 2.2. This problem can be classified as an optimization problem:
after the definition of a goodness of fit function with the “lower is better” format (a
loss function L(p)), the tuning problem is reduced to a minimization problem

ptune = argminpL(p) (2.1)

18

2.2. OVERVIEW OF THE TUNING PROBLEM

b b
b
b
b
b

b

b

b

b

b

b

b

b

b

b Data
MC run 0 4P
MC run 1 4P

10−3

10−2

10−1

1

10 1

φ∗
η spectrum, Z→ ee (dressed)

1
σ

fid
.

d
σ

fid
.

d
φ
∗ η

b b

10−3 10−2 10−1 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

φ∗
η

M
C

/D
at

a

b b
b
b
b
b

b

b

b

b

b

b

b

b

b

b Data
MC run 0 4P
MC run 1 4P

10−3

10−2

10−1

1

10 1

φ∗
η spectrum, Z→ µµ (dressed)

1
σ

fid
.

d
σ

fid
.

d
φ
∗ η

b b

10−3 10−2 10−1 1
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

φ∗
η

M
C

/D
at

a

Figure 2.2: Examples of two Monte Carlo runs with different parameters against
the experimental data, for two different histograms. The goal is to adjust the pa-
rameters in order to make the theoretical prediction overlap the experimental data.
A description of these measurements is given in subsection 4.2.

19

2.3. PROFESSOR

though a hard one, due to the high computational cost of each evaluation.

2.2.1 Tuning methods

This minimization problem has many issues:

• Each evaluation has a high computational cost.

• The theoretical predictions are uncertain, and reducing the uncertainty re-
quires more computational resources. So, a compromise between the number
of evaluations and the signal-to-noise ratio of the results must be found.

• There is no access to information about derivatives, so gradient-based algo-
rithms are not applicable.

• Some components of the generator are phenomenological models which are not
theoretically exact, so a perfect tune for all processes and observables may not
exist.

Some straightforward tuning methods [4] are manual tuning and brute-force
tuning, but these methods have many drawbacks. Manual tuning requires an op-
erator with a deep understanding of the generator details, and it does not scale well
with the number of parameters. On the other hand, brute-force scansion of the
parameter space, for example with a grid search or a random search, is also prob-
lematic with a high number of parameters, because the computational cost goes up
exponentially. At present, the best methods are parametrisation-based. They
consists in parametrising the generator behaviour with a parametric model, in order
to replace the real loss function L(p) with a surrogate loss function L(p) which is
calculated with the model, not with the actual generator. If the model is chosen
to be easy to minimize, but also capable of representing the generator behaviour at
least approximately, then the final tune could be approximated by

ptune ≈ ptune = argminpL(p) (2.2)

This can be seen as a supervised learning problem: the dataset is built by running the
generator many times with different parameters in some variation ranges; the model
is then trained on this dataset, and then it can be interfaced with an optimization
algorithm. This is the strategy adopted by Professor (see section 2.3), the current
state-of-the-art tuning procedure, and by one of the strategies presented in chapter
3. This supervised learning problem has an interesting property, which is the fact
that the examples can be generated at will by a computer, so the algorithm itself
could generate new examples with some parameters and see the response.

2.3 Professor

The current state-of-the-art tuning procedure is the one implemented in the Pro-

fessor [4] package, which is based on the ideas described in [19]. Professor

parametrises the generator response to parameter variations using polynomials, then
numerically optimizes a goodness of fit measurement between the parametrised be-
haviour of the generator and the experimental data. This section presents the basic
work cycle for tuning a generator with Professor, with reference version 2.2.2.

20

2.3. PROFESSOR

2.3.1 Sampling the parameter space

The first step is to evaluate the generator behaviour on many points in the param-
eter space, in order to build a dataset of Monte Carlo runs that will be used for the
polynomial interpolation. At first, a template of the configuration file for the gen-
erator must be prepared, with all settings but the steerable parameters fixed. The
steerable parameters must be set with the placeholder {parameter name}, while the
variation ranges of these parameters must be defined in a separate file. For example,
the template for PYTHIA8 could be something like this:

Main:numberOfEvents = 1000000

...

WeakSingleBoson:ffbar2gmZ = on

...

Tune:pp = 5

...

BeamRemnants:primordialKThard = {intrinsicKT}

SpaceShower:alphaSvalue = {asMZisr}

SpaceShower:pT0Ref = {pT0isr}

MultipartonInteractions:pT0Ref = {mpipt0}

while the parameter ranges file should be in this format:

#PARAMETER MIN MAX

intrinsicKT 1 2.5

asMZisr 0.12 0.14

pT0isr 0.5 2.5

mpipt0 1.9 2.2

Then, the script prof2-sample will read these files, sample N parameter configu-
rations in the parameter space and make N numbered directories. Each of these
directories will contain a file with some parameter values and a configuration file for
the generator with those parameter values. Then, the generator can be launched
in each of these folders, usually interfaced with an analysis system. After that, the
generator output will be available for all N parameter configurations. This is the
most computationally expensive step in the tuning work cycle.

The script prof2-envelopes can be used to plot the envelopes of the Monte Carlo
runs and compare them to the experimental data. If the sampled configurations are
not able to cover the experimental data, the tuning procedure must extrapolate the
behaviour outside the variation ranges of the parameters, and the final tune could
be unreliable.

2.3.2 Parametrisation

The parametrisation of the generator response is done independently for each
bin by means of a polynomial fit. A polynomial is linear in its coefficients, so the
parametrisation consists in a linear regression for each bin. In particular, Profes-
sor computes the least squares solution using the Moore-Penrose pseudoinverse (see
section 1.2.3). The pseudoinverse is implemented with a singular value decom-
position of the dataset matrix, implemented with the Eigen [20] library. This step

21

2.3. PROFESSOR

0.002

0.022

0.048

0.086

0.155

0.352

1.325

/ATLAS_2012_I1204784/d02-x01-y01

0.120

0.123

0.126

0.129

0.132

0.135

0.138

as
M

Zi
sr

111.4

0.0

111.4

Figure 2.3: Example of sensitivity analysis for the parameter αS(M
2
Z) of the initial

state shower (see chapter 4 for details about this analysis/observable). The x-
axis represents the bin center, the y-axis the parameter value and the color map
represents the derivative of the bin value with respect to the parameter. The other
parameters are evaluated at the center of the sampled parameter space.

is implemented in the prof2-ipol script.

There is a limit to the order of the polynomial: the number of coefficients (see
formula 1.2) must be less than the number of runs in the dataset. Apart from this
limit, the order of the polynomial must be chosen to prevent both underfitting and
overfitting. The validity of the polynomial interpolation can be checked with the
prof2-residuals script. Given an independent dataset of Monte Carlo runs (a val-
idation set), the script computes the relative deviations of the predicted bin values
from the corresponding actual values. This can be seen as a validation loss, and one
can choose the best order for the polynomial fit by minimizing it.

In order for the tune to be precise, it must be performed on observables that are
sensitive to those parameters. The script prof2-sens computes the derivative of
the bin values with respect to the parameters, in order to check whether a parameter
influences a specific bin or not. An example of sensitivity analysis is presented in
figure 2.3.

2.3.3 Tuning

The goodness of fit function (or loss function) used by Professor is a χ2 estimator.

Let h
(i)
(p) be the value of the i-th bin as predicted by the polynomial fit, and let

22

2.3. PROFESSOR

h
(i)
exp be the experimental value. Then

χ2(p) =
N∑
i=1

(
h
(i)
(p)− h

(i)
exp

)2
σ2
(i)

(2.3)

This loss function is convenient because it takes advantage of the bins uncertainty.
If the runs uncertainties have been interpolated, σ is the experimental uncertainty
added in quadrature to the interpolated uncertainty, otherwise it is just the experi-
mental uncertainty. Moreover, Professor implements the possibility to weight each
bin differently in the χ2 computation, in order to impose a preference on some bins,
or excluding some other bins. The uncertainty of each best parameter is computed
as the interval in which the χ2/Ndof increments by one.

This last step is implemented in the prof2-tune script, where the minimization
of the predicted χ2 is performed using the MINUIT algorithm [21] via the iminuit

[22] Python interface.

23

Chapter 3

MCNNTUNES procedure

The MCNNTUNES package implements two different strategies for generator tuning,
both based on feedforward neural networks. In this chapter these two strategies are
presented in detail, along with a description of the implementation details.

3.1 Per Bin Model

The first strategy is a parametrisation-based method similar to Professor [4]. In
fact, the work cycle is divided in the same three steps as in Professor:

1. At first, the dataset is generated by sampling parameter configurations from
the parameter space, and then running the generator with each configuration.

2. Then, the generator response is parametrised one bin at a time with the input
parameters, using the dataset.

3. Finally, a χ2 estimator calculated with the difference between the parametrised
generator response and the experimental data is minimized. The parameters
that minimize the χ2 are the tunes.

The differences between this procedure and Professor show up in the details of the
parametrisation and the minimization steps.

3.1.1 Parametrisation

The parametrisation of the generator response is modelled by feedforward neural
networks, which take the parameters as input and return the value of a single bin. An
independent neural network is used for each bin1 (see figure 3.1 for an illustration).
The models are trained with a gradient-based algorithm, as usual for feedforward
neural networks, with mean squared error as loss. The details of the architecture,
the choice of the optimization algorithm and its settings are all configurable by the
user.

1The hyperparameters are the same for each bin, only the parameters of the biases and the
kernels are different.

24

3.2. INVERSE MODEL

Figure 3.1: An illustration of the parametrisation of the generator response as im-
plemented in the Per Bin Model.

3.1.2 Tuning

As in Professor, the parametrisation of the generator response enables the pre-
diction of a Monte Carlo run result with every set of parameters for which the
parametrisation is approximately valid. So, the χ2 estimator calculated with the
differences between the experimental data and the Monte Carlo run result can be
approximately replaced by a surrogate one with the model instead of the Monte
Carlo generator. The possibility of weighting each bin differently in the χ2 is also
implemented. Then, the minimization of this χ2 is performed with the Covariance
Matrix Adaptation - Evolution Strategy algorithm, which is a stochastic op-
timization method for non-linear non-convex functions. An introduction to this
algorithm is presented in appendix C.

3.2 Inverse Model

Let h(p) be the function that represents the Monte Carlo event generator combined
with an analysis: given a set of parameters, it returns the histograms related to
some observables. The Inverse Model tries to learn the inverse of h(p), using a
feedforward neural network with the bin values as input layer and with the generator
parameters as output layer (see 3.2 for an illustration). In case of success, the model
is able to predict the parameters used for the generator given the generator results.
Then, tuning the generator consists in feeding the experimental data into the model
and inferring the parameters that the generator needs to reproduce them. The
uncertainties of the predictions are computed in three steps:

1. At first, the experimental data are resampled many times by using a multi-
variate Gaussian centered around the actual measurement, with a diagonal

25

3.3. PERFORMANCE ASSESSMENT

Figure 3.2: An illustration of the Inverse Model strategy

covariance matrix that includes the data uncertainties:

norm · exp
(
−1

2

Nbins∑
j=1

(
(xj − hj,exp)

2/σ2
j,exp

))

2. This set of histograms is fed into the neural network.

3. The output of the network is a distribution of predictions for each parameter
(an example is shown in figure 4.3), and the uncertainties are computed as the
standard deviations of these distributions.

3.2.1 Data augmentation

In this configuration the output variables (the parameters) are exact, but the input
variables (the histogram bins) have a known uncertainty. In order to exploit this
information, the training with jitter [23] method was implemented as an optional
feature: at each training epoch, the entire dataset is resampled following the data
uncertainty. More precisely, let X be the dataset matrix where each row is a Monte
Carlo run, and each column is the value of a bin, and let σij be the corresponding
error for each element Xij of X. Then, the training is done by replacing X with X
such that each element X ij is a random variable distributed according to a Gaussian
with mean Xij and variance σ2

ij. X is resampled at each epoch. This resembles a
Gaussian noise layer applied to the input layer, but here the σ of the Gaussian noise
is different for each node of the input layer, and for each element of the training set.
This method can be seen as a form of regularization, as proven in [23].

3.3 Performance assessment

The performance of the procedure could be measured by means of a closure test.
A closure test consists in using one Monte Carlo run as the experimental data, and
then performing the tune; in this way, the obtained tunes can be directly compared
with the real parameters used to generate that run. Notice that that run must be
excluded from the training set, otherwise the result does not measure the ability of
the procedure to generalize to new examples.

26

3.4. IMPLEMENTATION

The program implements a performance assessment procedure based on closure tests.
The user can provide two different datasets of Monte Carlo runs: a training set,
used to train the model, and a validation set, used to perform closure tests. Once
the model has been trained, a closure test is performed for each Monte Carlo run in
the validation set, and a loss function defined as

L =
∑
i

|ptruei − ppredi |
ptruei

(3.1)

is computed. The average of the losses of all closure tests is used as validation loss.
This loss could be interpreted as an estimator of the accuracy of the tuning proce-
dure, even though it is unsatisfactory: the experimental data and the Monte Carlo
runs are not identically distributed nor generated by the same data-generating un-
derlying process. In fact, the generator may be unable to represent the experimental
data at all. However, this loss could be used to tune the hyperparameters of the
model, or to compare different models.

3.4 Implementation

The procedures are implemented in the mcnntune script. The script accepts a con-
figuration runcard in YAML format, which contains all program settings. This is the
basic work cycle:

1. mcnntune preprocess loads the Monte Carlo runs and the experimental data,
transforms the training set so that each input or output has mean 0 and
variance 1, computes some useful statistics and saves all the data for future
use.

2. mcnntune model trains the model specified in the runcard, and saves it for
future use.

3. mcnntune tune performs the tune with the experimental data, and generates
a HTML report with some information about the whole tuning process.

Some additional features are useful for performance assessment and hyperparameter
tuning:

1. mcnntune benchmark performs the procedure presented in section 3.3 and
returns a validation loss.

2. mcnntune optimize performs a hyperparameter search to obtain the best hy-
perparameters, using the loss returned by the benchmark mode as validation
loss (see details in section 3.4.1).

3.4.1 Hyperparameter tuning

The hyperparameter search is implemented with the Hyperopt [24] package. Hy-

peropt is a Python library dedicated to the optimization of scalar-valued functions
whose arguments are defined over a search space with a potentially complicated
structure: some arguments could be real-valued, others could be discrete, and the

27

3.4. IMPLEMENTATION

search space could be tree-structured, i.e. some variables are defined only when
other parent variables take on a specific value. This is exactly the structure of the
hyperparameter space2: some parameters are real-valued (e.g. learning rates), some
are discrete (e.g. the choice of the optimization algorithm) and others are defined
only when one or more parent parameters take on a certain value (e.g. the number
of hidden layers and the number of units of each hidden layer). An illustration of
a hyperparameter search space is given in figure 3.3. The implementation of Hy-
peropt requires the definition of a search space and the definition of the function
to minimize. The search space must be defined by means of nested function ex-
pressions, that could be both deterministic or stochastic. Stochastic ones are the
hyperparameters that will be tuned. These expressions are given by the user in the
configuration runcard as strings in a YAML file. For example, the search space in
figure 3.3 could look like this:

architecture: "hp.choice(’layers’, [

[hp.quniform(f’size_{_}_2’,5,10,1) for _ in range(2)],

[hp.quniform(f’size_{_}_3’,5,10,1) for _ in range(3)],

[hp.quniform(f’size_{_}_4’,5,10,1) for _ in range(4)]])"

optimizer: "hp.choice(’optimizer’, [’sgd’,’rmsprop’,

’adagrad’,’adadelta’,’adam’,’adamax’,’nadam’])"

optimizer_lr: "hp.loguniform(’learning_rate’, -10, -1)"

The function to minimize in hyperparameter tuning must receive the sampled hy-
perparameters as input, create a model with these hyperparameters, train it, and
evaluate the validation loss of that model, or at least some sort of performance
measurement with the “lower is better” format. The mcnntune optimize script
computes the performance measurement presented in section 3.3 as validation loss,
provided that a valid validation set of Monte Carlo runs is available. Specifically, it
trains the model on the training set, then performs a closure test for every run in
the validation set, computes the loss 3.1 for each of them, and finally returns the
average of those losses as validation loss.
In addition, Hyperopt provides a Trials object that can store the details of each
evaluation of the search space. Eventually, the search can be executed in parallel:
the Trials object is replaced by a MongoTrials one, that interfaces with a Mon-

goDB database. Then, the main script will send the evaluations as work items to
the database. The script hyperopt-mongo-worker implements a worker that auto-
matically collects a work item from the database, evaluates it and sends the results
to the database. This makes Hyperopt a distributed asynchronous optimization
algorithm; moreover, the database is persistent, that is if the main script crashes,
it will recover the previous results.

Hyperopt implements two different algorithms: a random search, and a Sequen-
tial Model-Based Optimization algorithm called Tree-structured Parzen Estimator
(see appendix B). MCNNTUNES uses the latter.

2In fact, Hyperopt was designed specifically for hyperparameter optimization of machine learn-
ing algorithms.

28

3.4. IMPLEMENTATION

Optimizer

SGD

RMSprop

Adagrad

Adadelta

Adam

Adamax

Nadam

(a) The optimizer parameter is a discrete
variable.

Learning
rate

Min

Max

(b) The learning rate is a continuous
variable.

Number of
hidden
layers

2

Units layer
1/2

5

6

7

8
9 10

Units layer
2/2

5

6
7 8 9

10

3

Units layer
1/3

5 6
7

8

9

10

Units layer
2/3

5

6

7

8

9

10

Units layer
3/3 5

6

7
8

910

4

Units layer
1/4 5

6

7

8
910

Units layer
2/4

5
678

9

10

Units layer
3/4

56
7

8

9

10

Units layer
4/4

5

6

7

8

9
10

(c) The architecture hyperparameters are tree-structured: some hyperparameters are de-
fined only when their parent variables take on a particular value.

Figure 3.3: Example of a hyperparameter search space with a discrete variable
(3.3a), a continuous variable (3.3b) and a tree-structured set of variables (3.3c).

29

3.4. IMPLEMENTATION

3.4.2 Dependencies

The procedure is implemented in Python. The Monte Carlo runs (histograms) are
loaded with the YODA library, which is the default histogram format of Rivet [17].
The basic operations are implemented with NumPy [25], while the machine learning
aspects use a high-level neural networks API called Keras [26], with the TensorFlow
framework [27] as backend. It uses the pycma package [28] for the Covariance Ma-
trix Adaptation - Evolution Strategy algorithm. As stated in subsection 3.4.1, the
hyperparameter tuning is implemented using the Hyperopt [24] package. The plots
are made with Matplotlib [29] and Seaborn [30]. The results are written on HTML

pages build with the Jinja2 template engine. Moreover, some data management is
made with Pandas [31].

30

Chapter 4

Testing MCNNTUNES

This chapter presents the testing phase of the MCNNTUNES procedures. The choice
of the generator, the parameters with their variation ranges, the process and the
observables on which performing the tunes were chosen following the AZ tune [32]
as reference. The generation of some datasets of Monte Carlo runs is presented in
section 4.1; an AZ-like tune that tries to reproduce some results of [32] is presented
in section 4.2; a systematic hyperparameter search to obtain the best performing
models is presented in section 4.3; finally, the results of section 4.2 are revisited
using the best performing models found in section 4.3.

4.1 Datasets

The generation of the datasets followed the procedure presented in [32]. The Monte
Carlo runs were generated with PYTHIA version 8.240 [15], interfaced with the Rivet
[17] package, version 2.7.0. Two different analyses were performed: one involved
the measurement of the Z/γ∗ boson transverse momentum distribution1 pZT in pp
collisions at

√
s = 7 TeV (analysis ATLAS 2014 I1300647), the other involved the

measurement of angular correlation2 ϕ∗
η [34] (analysis ATLAS 2012 I1204784), which

probes the same physics of pZT but with higher experimental resolution. Thus, the
activated process was ff → Z/γ∗. The investigated parameters are the primordial
kT , the parton shower αS(m

2
Z) and the parton shower damping factor for the lower

pT cut-off (both for the initial state radiation, ISR from now on), and the damping
factor for the lower pT cut-off for the multiparton interaction (see section 2.1 for
details about these parameters). Two different datasets were generated: one, the
most similar to [32], fixes the multiparton interaction parameter, while the other does
not. The former will be the dataset 3P from now on, while the latter will be called

1Let the third axis be parallel to the incoming beam, and let pµ be the particle four-momentum.
Then

pT =

√
(p1)

2
+ (p2)

2

2Consider the decay channels Z → ee and Z → µµ, let ϕacop = π−∆ϕ, with ∆ϕ the azimuthal
angle between the outgoing leptons, and let θ∗η be the scattering angle of the leptons with respect
to the incoming proton beam, measured in the rest frame of the dilepton system, then

ϕ∗
η = tan (ϕacop/2) sin θ

∗
η

as proposed in [33].

31

4.2. AZ-LIKE TUNE OF PYTHIA8

4P. The variation range of each parameter and the setup of PYTHIA8 are presented
in table 4.1. Measurements of ϕ∗

η from two runs of the dataset 4P were presented

Parameter Dataset 3P Dataset 4P

Primordial kT [GeV] 1.0 - 2.5 1.0 - 2.5
ISR αS(m

2
Z) 0.120 - 0.140 0.120 - 0.140

ISR pT,0 Ref [GeV] 0.5 - 2.5 0.5 - 2.5
MPI pT,0 Ref [GeV] 2.18 (fixed) 1.9 - 2.2

PYTHIA8 base tune tune 4C [35] tune 4C [35]
Number of events 4 · 106 4 · 106
Number of runs 243 1024

Table 4.1: PYTHIA8 setup and variation ranges

in figure 2.2 as an example, while the analogous for pZT are presented in figure 4.1.
The number of events, fixed to 4 · 106, was chosen to obtain a statistical error which
is comparable to the experimental error. The analysis of the uncertainties of a run
picked from the 3P dataset is shown in figure 4.2.

4.2 AZ-like tune of PYTHIA8

In order to reproduce the results of [32], the tunes presented in this section involve
only the dataset 3P. Following [32], the tunes used the dressed-level measurements,
but only the ones inclusive in rapidity, and are performed only for pZT < 26 GeV
and ϕ⋆

η < 0.29. The final tune has been performed using only the muon channel pZT
measurement and the electron channel ϕ⋆

η measurement. So, three different set of
measurements are selected:

1. One with only pZT measurements (called pZT from now on), which corresponds to
the two histograms in figure 4.1, respectively with code ATLAS 2014 I1300647

d01-x01-y01 and ATLAS 2014 I1300647 d01-x01-y02.

2. Another one with only ϕ⋆
η measurements (called ϕ⋆

η from now on), which corre-
sponds to the two histograms in figure 2.2, respectively with code ATLAS 2012

I1204784 d02-x01-y01 and ATLAS 2012 I1204784 d02-x01-y02.

3. Finally, one with both observables (pZTϕ
∗
η from now on), but only the muon

channel for pZT (ATLAS 2014 I1300647 d01-x01-y02) and the electron chan-
nel for ϕ∗

η (ATLAS 2012 I1204784 d02-x01-y01).

Then, a tune was performed for each of these sets, using both Professor and MC-

NNTUNES (with both models). The results are presented in table 4.2, along with
the ones in [32]. The order of the polynomial was chosen following [32], while the
hyperparameter configurations of MCNNTUNES were set manually. In section 4.3 the
hyperparameters of both Professor and MCNNTUNES will be tuned, and in section
4.4 the tunes will be performed again with the tuned models. The results obtained
with Professor are compatible with the ones in [32]. The results with the Per Bin
model seem solid, but one parameter is predicted at the left bound of its variation

32

4.2. AZ-LIKE TUNE OF PYTHIA8

b

b b b b b b b b b
b b b b b b b b b

b
b

b

b

b

b

b

b Data
MC run 0 4P
MC run 1 4P

10−7

10−6

10−5

10−4

10−3

10−2

10−1
Z → ee ”dressed”, Inclusive

1
σ

fid
d

σ
fid

d
p T

[G
eV

−
1]

b b

1 10 1 10 2
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

Z pT [GeV]

M
C

/D
at

a

b
b b b b b b b b b b b b b b b b b b

b
b

b

b

b

b

b

b Data
MC run 0 4P
MC run 1 4P

10−7

10−6

10−5

10−4

10−3

10−2

10−1
Z → µµ ”dressed”, Inclusive

1
σ

fid
d

σ
fid

d
p T

[G
eV

−
1]

b b

1 10 1 10 2
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

Z pT [GeV]

M
C

/D
at

a

Figure 4.1: Measurements of the Z/γ∗ boson transverse momentum distribution in
pp collisions at

√
s = 7 TeV, for two runs picked from the dataset 4P.

33

4.2. AZ-LIKE TUNE OF PYTHIA8

Figure 4.2: A comparison of the relative uncertainties of a Monte Carlo run picked
from the dataset 3P. The comparison is less satisfactory for the ϕ∗

η measurements,
because the experimental uncertainties are lower.

34

4.2. AZ-LIKE TUNE OF PYTHIA8

RESULTS OF [32]
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.74 ± 0.03 1.73 ± 0.03 1.71 ± 0.03
ISR αS(m

2
Z) 0.1233 ± 0.0003 0.1238 ± 0.0002 0.1237 ± 0.0002

ISR pT,0 Ref [GeV] 0.66 ± 0.14 0.58 ± 0.07 0.59 ± 0.08

χ2
min/dof 1.26 1.33 1.42

Professor (fourth-order polynomial)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.77 ± 0.04 1.79 ± 0.04 1.75 ± 0.04
ISR αS(m

2
Z) 0.1233 ± 0.0003 0.1237 ± 0.0002 0.1237 ± 0.0003

ISR pT,0 Ref [GeV] 0.5 ± 0.2 0.59 ± 0.09 0.54 ± 0.10

χ2
min/dof 0.91 1.06 1.16

MCNNTUNES (Per Bin model, [3, 5], tanh, adam)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.75 1.79 1.76
ISR αS(m

2
Z) 0.1232 0.1235 0.1235

ISR pT,0 Ref [GeV] left bound left bound left bound

χ2
min/dof 0.85 0.89 1.05

MCNNTUNES (Inverse model, [30, 20, 10], tanh, adam)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.68 ± 0.09 1.98 ± 0.08 1.64 ± 0.12
ISR αS(m

2
Z) 0.1234 ± 0.0006 0.1214 ± 0.0007 0.1254 ± 0.0008

ISR pT,0 Ref [GeV] 0.7 ± 0.2 0.25 ± 0.08 0.9 ± 0.3

MCNNTUNES (Inverse model, [30, 20, 10], tanh, adam, DA)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.71 ± 0.05 1.80 ± 0.03 1.75 ± 0.05
ISR αS(m

2
Z) 0.1237 ± 0.0003 0.1234 ± 0.0002 0.1235 ± 0.0003

ISR pT,0 Ref [GeV] 0.61 ± 0.07 0.60 ± 0.05 0.58 ± 0.03

Table 4.2: AZ-like tunes obtained with Professor and MCNNTUNES, compared with
the ones obtained in [32]. DA is an abbreviation for data augmentation.

35

4.2. AZ-LIKE TUNE OF PYTHIA8

range, so the tunes may not be reliable. Finally, the results with the Inverse model
are very different whether data augmentation was used or not: in the former case
the results seem solid, in the latter the model seems unreliable, at least without
hyperparameter tuning.

4.2.1 Unrestricted tunes

Removing the restriction pZT < 26 GeV and ϕ⋆
η < 0.29 modifies the obtained best

parameters into the ones of table 4.3. The sets of measurements without restrictions
will be marked by “all bins” from now on. The results seem more chaotic than the

PROFESSOR (fourth-order polynomial, all bins)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.83 ± 0.05 1.80 ± 0.04 1.72 ± 0.04
ISR αS(m

2
Z) 0.1253 ± 0.0003 0.12377 ±

0.00019
0.1241 ± 0.0002

ISR pT,0 Ref [GeV] 1.32 ± 0.14 0.65 ± 0.10 0.55 ± 0.18

χ2
min/dof 2.62 1.31 2.08

MCNNTUNES (Per Bin model, [3, 5], tanh, adam, all bins)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.74 1.78 1.75
ISR αS(m

2
Z) 0.1246 0.1236 0.1243

ISR pT,0 Ref [GeV] 0.90 0.53 0.81

χ2
min/dof 2.6 1.2 1.9

MCNNTUNES (Inverse model, [30, 20, 10], tanh, adam, DA, all bins)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.88 ± 0.08 1.73 ± 0.02 1.67 ± 0.08
ISR αS(m

2
Z) 0.1258 ± 0.0005 0.12351 ±

0.00012
0.1237 ± 0.0003

ISR pT,0 Ref [GeV] 1.4 ± 0.3 0.57 ± 0.02 0.6 ± 0.2

Table 4.3: Tunes obtained with Professor, compared with the ones obtained with
MCNNTUNES, minimizing over all bins.

restricted ones. However, an interesting fact may be worth mentioning: the pT,0
value for the Inverse model with data augmentation relative to the pZT measurements
is way higher than the ones relative to the other two measurements (see last line of
table 4.3). This is very similar to what happens with Professor (see third line).
The same happens for the other two parameters, though less evident. A possible
explanation for the Inverse model may be found by analysing the distribution of
predictions within the experimental errors (see figure 4.3). The distributions seem
multimodal: the minor peaks are more similar to the tunes relative to the other two
measurements. This shows that the deep model of that tune is not robust against
noise.

36

4.3. PERFORMANCE MEASUREMENTS

Figure 4.3: The spread of predictions of the Inverse model with data augmentation,
for the pZT measurements. This distributions are the output of the second point of
the error estimation procedure described in section 3.2.

4.3 Performance measurements

This section presents some performance measurements on Professor and on the
two different models implemented in MCNNTUNES (see chapter 3 for details). The
performance measurement is the one presented in section 3.3, which consists on
dividing the dataset in training set and validation set, training the model on the
training set, performing many closure tests on the validation set, computing the loss
3.1 for each closure test, and taking the average of these losses. The uncertainty is
computed as the standard deviation of the mean. The losses are always expressed
as a percentage.

4.3.1 Closure tests with Professor

In order to compare, at least approximately, the performances of Professor and
MCNNTUNES, the performance measurement described above was executed on Profes-

sor3 for the combinations of measurements presented in section 4.2. Each dataset
was divided in a training set (90%) and in a validation set (10%). The training set
was used for the polynomial interpolation, and the validation set was used for the
closure tests. A grid search was used to tune the order of the polynomial, along
with some other options (iminuit strategy, scan for the best starting point, whether
to extrapolate outside the sampled hypercube in parameter space)4. Results are pre-
sented in table 4.4. The grid searches for the polynomial order are shown in figures
4.4 and 4.5.

4.3.2 Level-zero closure tests

Coming back to MCNNTUNES, the ability of neural network models to interpolate the
training data almost perfectly was checked by using validation sets that are subset
of the training set. On an outer loop, an hyperparameter scan (with the validation

3The default Professor procedure was used, changing only the polynomial order and adding,
whether specified, some options to prof2-tune.

4Respectively with options -s, --scan-n and -x.

37

4.3. PERFORMANCE MEASUREMENTS

Observables default -s 2 -scan-n=100 -s 2 --scan-n=100 -x

ϕ⋆
η, 3P 3.6± 0.6 (3) 3.6± 0.6 (3) 3.6± 0.6 (3)

pZT , 3P 2.3± 0.4 (3) 2.3± 0.4 (3) 2.4± 0.4 (3)
ϕ⋆
ηp

Z
T , 3P 3.0± 0.5 (4) 2.6± 0.4 (3) 2.6± 0.4 (3)

ϕ⋆
η, 3P, all bins 2.7± 0.4 (3) 2.7± 0.4 (3) 2.7± 0.4 (3)

pZT , 3P, all bins 2.0± 0.4 (3) 2.0± 0.4 (3) 2.0± 0.4 (3)
ϕ⋆
ηp

Z
T , 3P, all bins 1.8± 0.2 (3) 1.8± 0.2 (3) 1.8± 0.2 (3)

ϕ⋆
η, 4P 4.4± 0.3 (3) 4.0± 0.3 (3) 4.4± 0.3 (3)

pZT , 4P 3.1± 0.2 (4) 3.1± 0.2 (4) 3.3± 0.2 (5)
ϕ⋆
ηp

Z
T , 4P 3.7± 0.2 (4) 3.5± 0.2 (3) 3.9± 0.3 (4)

ϕ⋆
η, 4P, all bins 3.9± 0.3 (3) 3.9± 0.3 (3) 3.9± 0.3 (3)

pZT , 4P, all bins 3.0± 0.2 (4) 2.9± 0.2 (3) 3.1± 0.2 (3)
ϕ⋆
ηp

Z
T , 4P, all bins 3.3± 0.2 (4) 3.3± 0.3 (3) 3.4± 0.2 (3)

Table 4.4: Closure test results with Professor (order within parenthesis, prof2-
tune options in the column header). The results are expressed as a percentage.

Figure 4.4: Closure test results for dataset 3P, options -s 2 --scan-n=100

38

4.3. PERFORMANCE MEASUREMENTS

Figure 4.5: Closure test results for dataset 4P, options -s 2 --scan-n=100

loss presented at the beginning of section 4.3 as loss) searched for the best model.
The expectations are that the validation loss of the best models should be very low.
Of course these losses are not a good estimate of the performance of the model:
they are just useful to check if the models can express their full expressive power, or
to spot bugs in the code. Actually, during these tests one of the models performed
poorly, and the investigation of the results brought to a bug that remained hidden
from other tests.

Per Bin Model At first, a validation set with just one run copied from the
training set was used: using the ϕ⋆

η measurements, after 100 evaluations the best
configuration reached error 0.07% with the 3P dataset, and error 0.06% with the 4P
dataset. Then, a 10% of the training set was used for the validation: with the same
measurements, the best configuration reached error 0.2 % with the 3P dataset (99
evaluations), and error 0.7 % with the 4P dataset (58 evaluations). The Hyperopt

configuration is presented in table 4.5.

Inverse Model Analogously, with the single run validation set and with the ϕ⋆
η

measurements, after 100 evaluations the best configuration reached error 9 · 10−5 %
with the 3P dataset, and error 0.1% with the 4P dataset. With 10% of the training
set as validation, and the same measurements, after 100 evaluations the best con-
figuration reached error 7 · 10−4 % with the 3P dataset, and error 0.3% with the 4P
dataset. With the full training set as validation, and the same measurements, after
100 evaluations the best configuration reached error 10−4 % with the 3P dataset,
and error 0.18 % with the 4P dataset. The Hyperopt configuration is presented in
table 4.6.

39

4.3. PERFORMANCE MEASUREMENTS

Hyperparameter Variation Range

Architecture [8, 16, 16, 8]
Activation function relu

Optimizer rmsprop, adam, adadelta
Epochs 250 - 25000

Initializer glorot uniform, glorot normal
Batch size 10 - 500

Learning rate e−11.5 - 1 (log uniform)

Table 4.5: Hyperopt configuration for the level zero closure test - Per Bin model

Hyperparameter Variation Range

Architecture [60, 40, 20]
Activation function relu

Optimizer rmsprop, adam, adadelta
Epochs 250 - 25000

Initializer glorot uniform, glorot normal
Batch size 10 - 500

Learning rate e−11.5 - 1 (log uniform)

Table 4.6: Hyperopt configuration for the level zero closure test - Inverse model

4.3.3 Fine tuning

In this subsection a systematic hyperparameter search for the procedure fine tuning
is presented for many combination of observables. Each dataset was divided in a
training set (90%) and in a validation set (10%) (the same of subsection 4.3.1). The
training is performed on the training set, and the closure tests for the validation loss
on the validation set.

Per Bin Model The Hyperopt configuration is presented in table 4.7, while the
results are presented in table 4.8.

Inverse Model The Hyperopt configuration is presented in table 4.9, while the
results are presented in table 4.10. The configuration space was too broad for
an efficient search, so a second trial was performed, using fixed architecture and
activation function, and tuning the initializer, the optimizer and its learning rate.
The Hyperopt configuration is presented in table 4.11. Then, another search was
performed by fixing the parameters previously tuned, and tuning the architecture
only. The Hyperopt configuration is presented in table 4.12. Unfortunately, the
results (omitted here) were not better then the best model obtained in the first
trial, except in a few situations. However, the analysis of the distribution of losses
in the hyperparameter space may be useful. Considering all observables, Hyperopt
selected all optimizers and initializers, so it does not seem that choosing different
optimizers and initializers (within the hyperparameter space defined in table 4.11)
makes a difference. The dependence on the learning rate, instead, was quite the
same for all observables, and it is showed in figure 4.6 for a scansion in which the

40

4.3. PERFORMANCE MEASUREMENTS

Hyperparameter Variation Range

hidden layers 2-4
Units per layer 2-20

Activation function tanh, relu, sigmoid
Optimizer sgd, rmsprop, adagrad, adadelta, adam, adamax, nadam
Epochs 250, 500, 1000, 2500, 5000, 7500, 10000
Batch size 100, 200, 300, 400, 500

Number of trials 1000

Table 4.7: Hyperopt configuration for the Per Bin Model

Observables Direct (%) Professor (%)

ϕ⋆
η, 3P 3.1± 0.5 3.6± 0.6

ϕ⋆
η, 4P 4.0± 0.3 4.0± 0.3

Table 4.8: Hyperopt search results for the Per Bin Model

Hyperparameter Variation Range

hidden layers 2-5
Units per layer 2-20

Activation function tanh, relu, sigmoid
Optimizer sgd, rmsprop, adagrad, adadelta, adam, adamax, nadam
Epochs 250, 500, 1000, 2500, 5000, 7500, 10000
Batch size 100, 200, 300, 400, 500

Number of trials 1000

Table 4.9: Hyperopt configuration for the Inverse Model - first trial

Observables Inverse (%) Inverse with DA
(%)

Professor (%)

ϕ⋆
η, 3P 2.9± 0.4 3.0± 0.3 3.6± 0.6

pZT , 3P 1.62± 0.18 (x5) 1.6± 0.2 (x5) 2.3± 0.4
ϕ⋆
ηp

Z
T , 3P 2.0± 0.2 2.2± 0.3 2.6± 0.4

ϕ⋆
η, 3P, all bins 3.0± 0.4 2.6± 0.3 2.7± 0.4

pZT , 3P, all bins 1.59± 0.19 (x5) 1.5± 0.3 2.0± 0.4
ϕ⋆
ηp

Z
T , 3P, all bins 2.1± 0.3 (x5) 1.7± 0.2 (x5) 1.8± 0.2

ϕ⋆
η, 4P 3.5± 0.3 (x5) 3.7± 0.3 4.0± 0.3

pZT , 4P 2.57± 0.16 2.64± 0.17 3.1± 0.2
ϕ⋆
ηp

Z
T , 4P 3.0± 0.2 2.98± 0.18 3.5± 0.2

ϕ⋆
η, 4P, all bins 3.7± 0.3 (x5) 3.6± 0.3 3.9± 0.3

pZT , 4P, all bins 2.79± 0.19 2.69± 0.18 2.9± 0.2
ϕ⋆
ηp

Z
T , 4P, all bins 2.9± 0.2 3.0± 0.2 3.3± 0.2

Table 4.10: Hyperopt search results for the Inverse Model - first trial. Results
marked with x5 were obtained with 5000 trials instead of 1000.

41

4.3. PERFORMANCE MEASUREMENTS

Hyperparameter Variation Range

Number of hidden layers 3
Units per layer 25

Activation function sigmoid
Optimizer rmsprop, adadelta, adam

Optimizer learning rate e−11.5 - e−1.5 (log uniform)
Initializer Glorot uniform, glorot normal
Epochs 2500 - 25000 in steps of 500
Batch size 16

Number of trials 500 (3P) or 250 (4P)

Table 4.11: Hyperopt configuration for the Inverse Model - second trial

Hyperparameter Variation Range

Number of hidden layers 3
Units per layer 10 - 40 in step of 2

Activation function sigmoid
Optimizer previously tuned

Optimizer learning rate previously tuned
Initializer previously tuned
Epochs 2500 - 30000 in steps of 500
Batch size 16

Number of trials 500 (3P) or 250 (4P)

Table 4.12: Hyperopt configuration for the Inverse Model - third trial

42

4.3. PERFORMANCE MEASUREMENTS

Figure 4.6: The losses distribution over the learning rate, marginalized over the other
hyperparameters, for ϕ⋆

η with dataset 3P. RMSProp and Adam behave reasonably:
if the learning rate is too high, the algorithm may not converge, if it is too low, it
will perform good but the efficiency falls. AdaDelta behaves differently because the
default learning rate, which is the recommended value, is 1, at the right bound of
the search interval.

trends are evident for all optimizers. It seems that the default value for Adam and
RMSProp, which is 10−3, works fine. The same holds for AdaDelta5, which is 1.
Actually, Hyperopt selected lower learning rates: whether it is worth the higher
computational cost (in terms of epochs) is questionable. This may explain why
this two-step hyperparameter procedure does not improve the results. A focus on
the architecture only may be more beneficial. Finally, an analysis of the closure test
results of the best model for the ϕ⋆

η measurements, dataset 4P, third hyperparameter
search (with data augmentation) is presented in figure 4.7. It shows an interesting
fact: while the other parameters present no strong failure patterns, the multiparton
interaction pT,0 parameter does: the model predicts always a value biased toward
the center of the variation range. This happens often, even though sometimes is less
evident.

5Actually, in the original paper [36] AdaDelta is presented without a tunable learning rate, but
Keras implements it.

43

4.3. PERFORMANCE MEASUREMENTS

Figure 4.7: Analysis of closure test results of the best model for the ϕ⋆
η measurements,

dataset 4P, third hyperparameter search, with data augmentation. The parameter
value is on the x-axis, while the loss 3.1 is on the y-axis. While the other parameters
present no strong failure patterns, the multiparton interaction pT,0 parameter does:
the model predicts always a value biased toward the center of the variation range.

44

4.3. PERFORMANCE MEASUREMENTS

Hyperparameter Variation Range

Number of hidden layers 3-4
Units per layer 10 - 50 in step of 2

Activation function sigmoid
Optimizer adam

Optimizer learning rate default value
Initializer glorot uniform
Epochs 2500 - 15000 in steps of 500
Batch size 128

Number of trials 1000

Table 4.13: Hyperopt configuration for the Inverse Model - architecture only

4.3.4 Test errors

The hyperparameter scan could potentially introduce a bias in the estimation of
the performance of the model. This happens because the model with the best
configuration on the validation set could overfit the validation set. In order to
have an unbiased estimator, the final loss should be computed on an independent
additional dataset, called test set. Otherwise, comparisons with Professor would
be misleading. The results presented in this subsection follow this procedure, for
both MCNNTUNES and Professor:

1. Split the dataset into training set (80%), validation set (10%) and test
set (10%).

2. Tune the hyperparameters of the model by training each configuration on
the training set and selecting the configuration with the best loss computed
on the validation set (validation loss). For Professor, this was obtained by
performing a grid search for the polynomial order. The other options were
kept at their default values, except the options -s 2 --scan-n=100 for prof2-
tune. For MCNNTUNES, this was obtained by running Hyperopt, feeding it with
the validation loss. The Hyperopt configurations were the one in table 4.9
plus another one focused on the architecture only, presented in table 4.13.
Whether using data augmentation or not, instead, was chosen by performing
a grid search on top of the Hyperopt scansion.

3. Train the best model on the training and the validation set, and evaluate its
performance on the test set.

The two datasets presented in section 4.1 were too small for a validation-test split,
so they were extended to reach 512 runs for the 3P dataset (3PE from now on) and
1280 for the 4P (4PE from now on). The results are presented in table 4.14, for the
Inverse model only. The performance of MCNNTUNES turns out to be slightly better
than Professor, on average. Results are however limited to this particular bench-
mark, and may change with different random seeds, losses, datasets, parameters
and observables. Moreover, this benchmark uses Monte Carlo runs, and not exper-
imental data, so this performance measurement will not estimate the real tuning
precision with real experimental data, because experimental data and Monte Carlo
runs are not drawn from the same underlying data-generating distribution function.

45

4.4. SOME FINAL TUNES

Observables Inverse (%) Professor (-s 2 --scan-n=100) (%)

ϕ⋆
η, 3P 3.7 ± 0.5 4.8 ± 0.7 (3)

pZT , 3P 2.6 ± 0.3 3.1 ± 0.5 (3)
ϕ⋆
ηp

Z
T , 3P 3.2 ± 0.4 3.6 ± 0.5 (3)

ϕ⋆
η, 3P, all bins 4.4 ± 0.6 4.2 ± 0.7 (3)

pZT , 3P, all bins 2.5 ± 0.3 2.6 ± 0.4 (3)
ϕ⋆
ηp

Z
T , 3P, all bins 3.1 ± 0.4 3.1 ± 0.5 (3)

ϕ⋆
η, 4P 3.5 ± 0.2 4.6 ± 0.3 (5)

pZT , 4P 2.71 ± 0.16 3.28 ± 0.18 (5)
ϕ⋆
ηp

Z
T , 4P 3.2 ± 0.2 3.8 ± 0.3 (4)

ϕ⋆
η, 4P, all bins 3.7 ± 0.2 4.0 ± 0.3 (4)

pZT , 4P, all bins 2.89 ± 0.15 3.2 ± 0.2 (4)
ϕ⋆
ηp

Z
T , 4P, all bins 3.0 ± 0.2 3.4 ± 0.2 (4)

Table 4.14: Test errors - Inverse Model against Professor

4.4 Some final tunes

Finally, the datasets 3PE and 4PE were used to perform some final tunes. The
configurations used are the ones selected in the hyperparameter tuning step of sub-
section 4.3.4, except for the Per Bin model for which the hyperparameters were
chosen manually. The whole datasets were used for training. The results for the
3PE dataset are presented in table 4.15 and 4.16 for the restricted and unrestricted
tunes respectively. Analogously, the results for the 4PE dataset are presented in
table 4.17 and 4.18. A few comments on these tunes may be made:

• Professor and the Per Bin model give similar results, usually compatible with
each other.

• The Inverse model sometimes gives different results: the agreement with Pro-

fessor is usually good for the primordial kT parameter, with some exception.
The same happens for the parameter αISR

S (m2
Z). The results relative to the

remaining parameters are harder to analyse and will be discussed in the next
points.

• The estimation of the multiparton interaction parameter by the Inverse model
does not work, unfortunately: the model predicts always a parameter near
the midpoint of the variation range, as noted also during the fine tuning of
the model and showed in figure 4.7. This did not prevent the Inverse model
to perform better when the errors are averaged over all parameters, so the
possibilities are that the model compensates with a better estimation of the
other parameters, or that the estimation of Professor is worse than the one
of a model with a trivial behaviour. The latter seems the right one: a simple
numerical simulation shows that a model that predicts always the value 2.05
GeV for the parameter MPI pT,0 Ref would make an average relative error of
3.7%. Professor, in the test errors of section 4.3.4, makes an average relative
error of 4.8 % in the best case (considering the MPI pT,0 Ref only), which
means that looses against a trivial predictor. So, both algorithms fail, and the

46

4.4. SOME FINAL TUNES

fixed prediction is just the way the learning algorithm found to minimize the
training loss.

• Unfortunately, many results suggest that the best value for ISR pT,0 Ref is
somewhere outside the left bound of its variation range. This is easy to ob-
serve for two steps methods like Professor and the Per Bin model: they
model the generator behaviour in the parameter space, more precisely in the
hyperrectangle populated by the dataset, while the tunes are found by a min-
imization algorithm that explores this hyperrectangle. When the tunes seem
outside of the variation ranges the algorithm finds a minimum at the bound-
ary of the parameters hyperrectangle. The minimizers can extrapolate the
results outside of the variation ranges, but there the models may be unreli-
able. For the Inverse model it is more complicated, because the bounds are
not hard-coded into the model. Moreover, it is difficult to understand if the
experimental data are near some Monte Carlo runs, so that the prediction
is reliable: the envelopes are not useful because they show only whether the
experimental data are inside the bounding box of the Monte Carlo runs in
histograms space, but the runs do not populate this bounding box uniformly.
When Professor founds a value inside the variation range, the corresponding
value for the Inverse model is compatible with it. When Professor suggests
a value outside it, the behaviour of the Inverse model varies: sometimes it
directly predicts a value outside the variation range, sometimes a value near
the left bound, sometimes a value further away.

47

4.4. SOME FINAL TUNES

PROFESSOR

Parameter pZT ϕ⋆
η pZT ϕ⋆

η

Primordial kT [GeV] 1.77 ± 0.04 1.80 ± 0.04 1.77 ± 0.04
ISR αS(m

2
Z) 0.1232 ± 0.0002 0.1236 ± 0.0002 0.1236 ± 0.0002

ISR pT,0 Ref [GeV] left bound left bound left bound

χ2
min/dof 1.04 0.95 1.24

MCNNTUNES (Per Bin model, [20, 15, 10], tanh, adamax)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.75 1.76 1.74
ISR αS(m

2
Z) 0.1233 0.1236 0.1236

ISR pT,0 Ref [GeV] left bound left bound left bound

χ2
min/dof 0.82 0.90 1.08

MCNNTUNES (Inverse model, best hyperparameters)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.75 ± 0.05 1.81 ± 0.05 1.77 ± 0.04
ISR αS(m

2
Z) 0.1249 ± 0.0006 0.1233 ± 0.0004 0.1241 ± 0.0005

ISR pT,0 Ref [GeV] 0.9 ± 0.2 0.24 ± 0.18 0.8 ± 0.2

Table 4.15: Dataset 3PE.

PROFESSOR

Parameter pZT ϕ⋆
η pZT ϕ⋆

η

Primordial kT [GeV] 1.82 ± 0.05 1.79 ± 0.04 1.74 ± 0.04
ISR αS(m

2
Z) 0.1252 ± 0.0003 0.12370 ±

0.00017
0.1244 ± 0.0002

ISR pT,0 Ref [GeV] 1.27 ± 0.16 left bound 0.80 ± 0.14

χ2
min/dof 2.71 1.24 2.04

MCNNTUNES (Per Bin model, [20, 15, 10], tanh, adamax)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.79 1.75 1.75
ISR αS(m

2
Z) 0.1251 0.1238 0.1246

ISR pT,0 Ref [GeV] 1.18 0.54 0.89

χ2
min/dof 2.46 1.17 1.87

MCNNTUNES (Inverse model, best hyperparameters)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.87 ± 0.04 1.79 ± 0.03 1.75 ± 0.05
ISR αS(m

2
Z) 0.1256 ± 0.0003 0.12363 ±

0.00016
0.1244 ± 0.0003

ISR pT,0 Ref [GeV] 1.36 ± 0.14 0.61 ± 0.08 0.85 ± 0.14

Table 4.16: Dataset 3PE, all bins.

48

4.4. SOME FINAL TUNES

PROFESSOR

Parameter pZT ϕ⋆
η pZT ϕ⋆

η

Primordial kT [GeV] 1.76 ± 0.05 1.80 ± 0.05 1.79 ± 0.04
ISR αS(m

2
Z) 0.1233 ± 0.0003 0.1237 ± 0.0002 0.1236 ± 0.0002

ISR pT,0 Ref [GeV] left bound left bound 0.5 ± 1.9
MPI pT,0 Ref [GeV] 2.11 ± 0.06 2.13 ± 0.07 right bound

χ2
min/dof 0.98 0.93 0.97

MCNNTUNES (Per Bin model, [20, 15, 10], tanh, adamax)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.70 1.76 1.76
ISR αS(m

2
Z) 0.1233 0.1237 0.1236

ISR pT,0 Ref [GeV] left bound left bound left bound
MPI pT,0 Ref [GeV] 1.95 right bound right bound

χ2
min/dof 0.86 0.82 0.94

MCNNTUNES (Inverse model, best hyperparameters)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.69 ± 0.07 1.69 ± 0.04 1.60 ± 0.06
ISR αS(m

2
Z) 0.1246 ± 0.0007 0.12345 ±

0.00018
0.1238 ± 0.0007

ISR pT,0 Ref [GeV] 0.9 ± 0.2 0.29 ± 0.09 0.6 ± 0.2
MPI pT,0 Ref [GeV] 2.0468 ± 0.0011 2.0431 ± 0.0009 2.0450 ± 0.0009

Table 4.17: Dataset 4PE.

49

4.4. SOME FINAL TUNES

PROFESSOR

Parameter pZT ϕ⋆
η pZT ϕ⋆

η

Primordial kT [GeV] 1.80 ± 0.05 1.75 ± 0.04 1.69 ± 0.04
ISR αS(m

2
Z) 0.1253 ± 0.0003 0.12370 ±

0.00018
0.1241 ± 0.0003

ISR pT,0 Ref [GeV] 1.33 ± 0.14 left bound 0.5 ± 0.4
MPI pT,0 Ref [GeV] 2.00 ± 0.06 2.01 ± 0.04 2.05 ± 0.04

χ2
min/dof 2.65 1.11 2

MCNNTUNES (Per Bin model, [20, 15, 10], tanh, adamax)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.79 1.73 1.66
ISR αS(m

2
Z) 0.1252 0.1237 0.1241

ISR pT,0 Ref [GeV] 1.32 left bound left bound
MPI pT,0 Ref [GeV] 1.90 1.99 2.01

χ2
min/dof 2.39 1.07 1.82

MCNNTUNES (Inverse model, best hyperparameters)
Parameter pZT ϕ⋆

η pZT ϕ⋆
η

Primordial kT [GeV] 1.79 ± 0.05 1.90 ± 0.06 1.72 ± 0.04
ISR αS(m

2
Z) 0.1250 ± 0.0003 0.1231 ± 0.0002 0.1238 ± 0.0003

ISR pT,0 Ref [GeV] 1.12 ± 0.15 0.526 ± 0.016 0.83 ± 0.13
MPI pT,0 Ref [GeV] 2.0473 ± 0.0005 2.04411 ±

0.00016
2.0460 ± 0.0004

Table 4.18: Dataset 4PE, all bins.

50

Chapter 5

Conclusion

A deep learning approach to event generator tuning was presented by introducing
two different procedures, called Per Bin strategy and Inverse strategy respectively.
The former is a variation of the Professor tuning procedure, while the latter is a
completely different approach. The procedures were tested with pseudo-data (clo-
sure tests) and real experimental data, though in low dimensional parameter spaces.
The Per Bin model tests with pseudo-data were very limited, due to computational
time constraints, but showed solid results. The test with real experimental data
showed a behaviour similar to the one of Professor. The Inverse model tests with
pseudo-data presented performances slightly better than the ones of Professor,
while the test with real experimental data showed some differences from the other
procedures. The advantages of this deep learning approach may be listed as follows:

• The parametrisation is based on neural networks, which have the properties
guaranteed by the Universal Approximation Theorem (see subsection 1.2.2), so
the learned functions are not biased by any particular functional form. More-
over, the models can learn highly non-linear functions, at least in principles.

• In the case of the Inverse model, the two-step method of parametrisation-
minimization is replaced by a single-step one, which is conceptually simpler,
even though the function to learn is more complicated.

On the other hand, the disadvantages may be summed up as follows:

• The procedure brings all the difficulties that are typical of deep learning algo-
rithms: the complexity of the training step, the dependence of the performance
on the choice of the hyperparameters, the difficulty in the interpretation of the
behaviour of the trained model, the overfitting problem.

• The hyperparameter tuning is computationally expensive, especially for the
Per Bin model, and this prevents the models to reach their full potential.

• The Inverse strategy introduces some practical problems, e.g. the error estima-
tion and the reliability of the predictions when the experimental measurements
have no Monte Carlo runs near them.

The behaviour of the procedures with real experimental data is still unclear, and
requires more in-depth studies. In addition, whether the procedures scale well with
the number of parameters is still to be determined. Future investigations may involve
studying their performances in high dimensional parameter spaces. Finally, further
developments may solve the practical problems highlighted above.

51

Appendix A

Training of neural networks

Training a neural network with gradient-based optimization algorithms requires the
ability to compute the gradient of the loss function with respect to the parameters
of the network. Let f(x;θ) be a generic neural network, and let L(f(x;θ),y) be its
loss function computed on the training example (x,y). Then, the goal is to compute

∇θL(f(x;θ),y) (A.1)

in order to combine it with a gradient-based minimizer. This appendix presents
the back-propagation algorithm (section A.1), which is an efficient way to compute
such gradient, and some gradient-based optimizers used for neural networks training
(section A.2).

A.1 Backpropagation algorithm

The gradient ∇θL(f(x;θ),y) with a fully connected feedforward neural network is
conceptually simple to write down: in fact, a neural network is made of a compo-
sition of many simple functions, and so it is just an application of the chain rule
of calculus. In practice, the number of parameters could be huge, and a naive
implementation will eventually recompute the same quantities over and over, es-
pecially for deep networks. For example, computing the derivatives with respect
to the parameters of a certain hidden layer requires computing them with respect
to all successive layers. The back-propagation algorithm is designed to avoid these
useless computations. During the forward propagation, the activations of each layer
are computed and memorized, then the derivatives are computed backwards layer
by layer, starting from the output down to the input. Once computed, derivatives
are saved in memory so that they can be used when they appear in the chain rule
formula for the derivative of another parameter. The backpropagation algorithm for
a feedforward neural network is described in detail in algorithm 1. The feedforward
neural network case is very simple, but useful to understand the working princi-
ples of the algorithm. The actual implementations are more sophisticated: they are
designed to work with generic computational graphs with tensor-valued nodes, in
order to work with many different types of neural networks. Some machine learning
libraries (e.g. Theano [37] or TensorFlow [27]) compute the derivatives symboli-
cally, by building a computational graph of the derivatives from the graph of the
model. Then, the back-propagation algorithm could be applied recursively to obtain
derivatives of higher order, even though this may be computationally unfeasible.

52

A.2. OPTIMIZATION ALGORITHMS

Data: Training example (x,y), loss function L(·,y)
Result: Partial derivatives of the loss function with respect to the

parameters of the network: ∇bi
L,∇Ki

L ∀i ∈ {1, ..., N + 1}, where
N is the number of hidden layers.

Rename the input vector: h0 ← x;
for i← 1 to N + 1 do

Forward-propagate the input through the network ;
hi ← Ki · hi−1 + b;
ai ← fi(hi);

end
Rename the prediction: ŷ← aN+1;
Compute the gradient of the loss w.r.t the prediction: g← ∇ŷL(ŷ,y);
for i← N + 1 down to 1 do

Back-propagate the derivatives through the network ;

g←
(

∂fi
∂hi

)
· g;

∇bi
L← g;

∇Ki
L← g · hT

i−1;
g← KT

i · g;
end

Algorithm 1: Back-propagation algorithm for feedforward neural networks with
loss functions without a parameter norm penalty. The activation function of the
layer i is denoted by fi(·). If there is a penalty P (θ), the value ∇θP (θ) must be
added to the derivatives.

A.2 Optimization algorithms

The simplest gradient-based optimization algorithm is the gradient descent (GD),
or steepest descent. In practice, it is an iterative algorithm that, given a starting
value for the parameters, updates the parameters to move against the gradient. The
GD is described in detail in algorithm 2. The learning rate parameter calibrates

Data: Loss function L(f(x;θ),y), training set {(xi,yi)}i=1,...,N , initial
parameters θ0, number of iteration T , learning rate γ.

Result: Candidate for a local minimum θmin of L(f(x;θ),y).
Set initial parameters: θ ← θ0;
for i← 1 to T do

Estimate the gradient: g← 1
N

∑N
i=1∇θL(f(xi;θ),yi);

Update the parameters: θ ← θ − γg;

end
Algorithm 2: Gradient descent

the step size of each update. It is critical for the performance of the algorithm: if
it is too low, the algorithm may require too many iterations to converge; if it is too
high, it may escape from minimums and fail to converge. The gradient descent is
very simple, and works great for convex functions, but in general gets stuck easily
in local minimums. In practice, the gradient descent is replaced by the stochastic
gradient descent, in which the loss is computed only on a randomly picked batch

53

A.2. OPTIMIZATION ALGORITHMS

of training examples. This randomness can help to jump out of local minimums,
because the parameters follow a noisy estimation of the gradient, instead of the
gradient itself. Moreover, the computational cost of each update depends on the
batch size, not on the training set size, and this could be useful for very large
datasets. Other more elaborated variations of the stochastic gradient descent have
been designed: for example, one could add amomentum, i.e. replacing the gradient
with an exponential moving average of the gradients computed at all steps. The
term “momentum” is used because this variation has an interpretation in physics:
the algorithm consists on solving the Newton’s equation in the parameter space
for a particle with mass one and initial position given as input. There are two
forces: one proportional to the gradient of the loss function, and one proportional
to the velocity, i.e. a viscous drag. The equation is solved by means of the Euler
method, which is the simplest numerical method for solving ordinary differential
equations. The SGD with momentum is presented in algorithm 3. In addition to

Data: Loss function L(f(x;θ),y), training set {(xi,yi)}i=1,...,N , batch size m,
initial parameters θ0, number of iteration T , learning rate γ, decay
rate ρ.

Result: Candidate for a local minimum θmin of L(f(x;θ),y).
Set initial parameters: θ ← θ0;
Set initial velocity: v← 0;
for i← 1 to T do

Sample a random minibatch of m examples from the training set
{(xi,yi)}i=1,...,m;
Estimate the gradient: g← 1

m

∑m
i=1∇θL(f(xi;θ),yi);

Update the velocity: v← (1− ρ)v − γg;
Update the parameters: θ ← θ + v;

end
Algorithm 3: Stochastic Gradient Descent with momentum

momentum, many modern algorithms implement some routines for the adaptation
of the learning rate at each iteration. For example, in SGD the learning rate may
be a decreasing function of the iteration index. Other algorithms (e.g. AdaGrad
[38], RMSProp [39], Adam [40]) introduce more sophisticated methods: for example,
the AdaGrad algorithm at each iteration accumulates the squared values of the
gradient s ← s + g ⊙ g (⊙ is the element-wise multiplication) and then replaces
the learning rate γ with γ/(

√
s + δ), where the division and the square root are

computed element-wise, and δ is just a regularization term to prevent divergence.
Then, the algorithm will make larger steps for parameters whose derivative is often
small, and smaller steps for parameters with large derivatives. The full history of
the derivatives is used, and this could be a problem for non-convex losses where
complicated structures may arise. The RMSProp is a variation of the AdaGrad
where the damping factor s is not just the accumulation of the squared values of
the gradient, but an exponential moving average s ← (1 − ρ)s + ρg ⊙ g. Finally,
the Adam (“adaptive momentum”) algorithm is a combination of RMSProp and
momentum with some technical subtleties.

54

Appendix B

Sequential Model-Based Global
Optimization

Sequential Model-Based Global Optimization (SMBO, also known as Bayesian Op-
timization) algorithms are a class of algorithms for the minimization of functions
f : X → R where each evaluation is very expensive. They are iterative algorithms
based on replacing the loss function f by a surrogate function f : X → R which
is easier to manage: with this surrogate function f i the algorithm proposes a new
search point xi+1, f(xi+1) is computed, and then the surrogate function is updated
or recomputed to approximate better the true loss function. An example of Se-
quential Model-Based Global Optimization algorithm is presented in algorithm 4.
The criterion L(x, f) and the model for the surrogate function depend on the spe-

Data: loss function f , initial surrogate f 0, number of trials T
Result: Candidate xbest for the minimum of f
Set trials history H = ∅;
for i = 1 to T do

x⋆ ← argminxL(x, f i−1);
Compute f(x⋆);
H ← H ∪ {x⋆, f(x⋆)};
Model a new surrogate function fi using H;

end
Algorithm 4: A generic SMBO algorithm.

cific algorithm. An example of SMBO algorithm is the Tree-structured Parzen
Estimator, presented in section B.1. The surrogate function is updated at each
evaluation because the optimization cost is dominated by the evaluation of each
point, so it is critical to process all available information about the true loss func-
tion before investing resources into a new evaluation. However, the algorithm can
be parallelized: the efficiency will be lower, and the algorithm will be biased because
there will be more statistics near points that are faster to evaluate, but it may be
worth it due to the speed up factor.

55

B.1. TREE-STRUCTURED PARZEN ESTIMATOR

B.1 Tree-structured Parzen Estimator

The Tree-structured Parzen Estimator (TPE) algorithm [12] is a SMBO algorithm
designed for tree-structured search spaces, in particular hyperparameter spaces in
machine learning algorithms. It implements the surrogate model as a probabilistic
model p(y|x), then chooses the next trial point by optimizing the Expected Im-
provement criterion [41]. The Expected Improvement criterion EIy⋆(x) measures
how much the loss function is expected to be lower than a threshold value y⋆:

EIy⋆(x) =

∫ +∞

−∞
max (y⋆ − y, 0) p(y|x)dy (B.1)

The threshold value y⋆ is chosen so that p(y < y⋆) = γ, where γ is a parameter of
the algorithm. By the way, the TPE does not model p(y|x), but attempts to model
p(x|y) and then calculates p(y|x) via Bayes’ theorem. The distribution p(x|y) is
modelled using two different densities:

p(x|y) =
{
l(x) if y < y⋆

g(x) if y ≥ y⋆
(B.2)

where l(x) and g(x) are probability distributions estimated by using the trials xi such
that f(xi) is respectively lower and higher or equal than y⋆. It remains to define how
the algorithm estimates a probability distribution given some trials {x1, ...,xK}. The
components of the search space could be continuous or discrete: the user specifies
a prior over each component, e.g. uniform or log-uniform in a range for continuous
components, categorical for discrete components, etc. The algorithm estimates a
distribution function by replacing these priors with some adaptive densities. For
example, if the component is continuous with uniform prior in a finite range, the
algorithm replaces that prior with a truncated Gaussian Mixture Model where each
Gaussian is centered in one observation, and where the standard deviations are set
to the maximum distance from the nearest neighbours (the endpoints of the search
range are considered neighbours). If the component is categorical, the algorithm
will reweight each category depending on its frequency. The Expected Improvement
for the TPE admits a closed form solution:

EIy⋆(x) =

∫ +∞

−∞
max (y⋆ − y)

p(x|y)p(y)
p(x)

dy = ... ∝
(
γ +

g(x)

l(x)
(1− γ)

)−1

(B.3)

Thus, maximizing the Expected Improvement is equivalent to minimizing g(x)/l(x).
So, the algorithm proposes a new point by minimizing g(x)/l(x), evaluates that
point, recomputes the distributions l(x) and g(x), and so on.

This algorithm was designed for tuning the hyperparameters of a machine learn-
ing model. For a brief introduction to the hyperparameter tuning problem, see
subsection 3.1.2. For an implementation with the Hyperopt package, see subsection
3.4.1. This section presents the algorithm as described in [12], but some modifica-
tions are possible. For example, in [42] the parameter γ varies in time in order to fix
the ratio between the number of trials used to sample l(x) and g(x), respectively.
Moreover, they downweighted the trials as they progressively get old.

56

Appendix C

Covariance Matrix Adaptation -
Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy [43] is a stochastic algo-
rithm for the minimization of non-linear, non-convex functions defined on continuous
search spaces. It is an evolutionary algorithm, i.e. inspired by the principles of
biological evolution. It is an iterative algorithm: at each iteration (called genera-
tion) a set of points xi, i = 1, ..., N is sampled from a certain distribution: these
points are the individuals of the population of that generation. This distribution
is a multivariate Gaussian: at each generation, the parameters of this Gaussian are
updated, and the next generation is sampled with these new parameters. So, the
sampling step reads

x
(g+1)
i ∼ N

(
m(g), σ2

(g)C
(g)
)

(C.1)

Once defined the initial parameters m(0), σ(0) and C(0) = I, it remains to define the
update of the parameters at each generation. The goal is to adapt the parameters
so that the populations become better and better, where “better” means with lower
values of f .

1. The update of m is the easiest one: the individuals xi are sorted by fitness,
i.e. by increasing values of f(xi) (the notation for sorted individuals is xi:N).
A sort of natural selection is implemented by using only the first j < N
individuals of the population. Then, the update reads

m(g+1) = (1− lm)m
(g) + lm

j∑
i=1

wix
(g+1)
i:N (C.2)

where lm is the learning rate that controls the exponential decay of the
contribution of older generations (it is the inverse of the decay time), and
wi, i = 1, ..., j, are decreasing positive weights such that

∑j
i=1wi = 1. This

implements a sort of weighted recombination of the selected individuals.

2. The covariance matrix C update involves two different contributions, one of
rank j and one of rank one. The former is similar to the previous step, and
consists of estimating the covariance of the selected individuals via

j∑
i=1

wiy
(g+1)
i:N

(
y
(g+1)
i:N

)T
(C.3)

57

where y(g+1) = (x(g+1) −m(g))/σ(g) is the distance from the mean in step size
unit. Notice that the rank-j update involves only the current generation. In
contrast, the rank-one update involves all generations. Let define an evolution
path pc that cumulates the progression of the mean m of each generation in
step size unit:

p(g+1)
c = (1− lc)p

(g)
c +

1

norm.

j∑
i=1

wiy
(g+1)
i:N (C.4)

where lc is another learning rate, that makes the contribution of the previous
generations decay exponentially with a decay time of 1/lc. Then, the rank-one
update reads

p(g+1)
c

(
p(g+1)
c

)T
(C.5)

This contribution increases the probability to sample new individuals in the
direction of the evolution path. By combining these two contributions, the
update of the covariance matrix reads

C(g+1) = (1− l1− lj)C
(g)+ l1p

(g+1)
c

(
p(g+1)
c

)T
+ lj

j∑
i=1

wiy
(g+1)
i:N

(
y
(g+1)
i:N

)T
(C.6)

where l1, lj are the learning rate of the two updates.

3. The step size σ update involves the use of an evolutionary path pσ similar to
pc, but with the contribution of each generation multiplied by C− 1

2 :

p(g+1)
σ = (1− lσ)p

(g)
σ +

1

norm.
C

− 1
2

(g)

j∑
i=1

wiy
(g+1)
i (C.7)

where C− 1
2 is defined with the eigendecomposition1 of C. If yi ∼ N(0,C),

then C− 1
2yi ∼ N(0, I), so with this transformation E∥pσ∥ does not depend

on the direction of pσ anymore. Then, under random selection and with the
right normalization constant E∥p(g+1)

σ ∥ = E∥N(0, I)∥. If pσ is longer than
expected, the steps have similar directions, and the step size should increase
because many steps can be replaced by a single longer step. Instead, if it
is shorter than expected, the steps tend to have opposite directions, so their
effects cancel out, and the step size should decrease because the search requires
more resolution. Finally, the step size update reads

σ(g+1) = σ(g) · exp
(
const ·

(
∥p(g+1)

σ ∥
E∥N(0, I)∥ − 1

))
(C.8)

This method is known as cumulative step-size adaptation (CSA).

This is a simplified version of the algorithm: in the actual implementations there
are some additional terms, and some steps are more elaborated. For a detailed
description of the algorithm with an actual implementation, see [43]. An example
of application of the CMA-ES is the minimization step of the MCNNTUNES procedure
(see subsection 3.1.2). Another interesting application could be found in [44].

1If C = BD2BT , where B is orthogonal and D is diagonal (with the square roots of the

eigenvalues of C as elements), then C− 1
2 = BD−1BT .

58

Bibliography

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[2] Trevor Hastie et al. “The elements of statistical learning: data mining, infer-
ence and prediction”. In: The Mathematical Intelligencer 27.2 (2005), pp. 83–
85.

[3] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”.
In: arXiv e-prints (Dec. 2013). arXiv: 1312.5602 [cs.LG].

[4] Andy Buckley et al. “Systematic event generator tuning for the LHC”. In:
European Physical Journal C 65.1-2 (Jan. 2010), pp. 331–357. doi: 10.1140/
epjc/s10052-009-1196-7. arXiv: 0907.2973 [hep-ph].

[5] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”.
In: Neural Networks 4.2 (1991), pp. 251–257. issn: 0893-6080. doi: 10.1016/
0893-6080(91)90009-T.

[6] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function”. In: Neural Networks 6.6
(1993), pp. 861–867. issn: 0893-6080. doi: 10.1016/S0893-6080(05)80131-
5.

[7] Zhou Lu et al. “The Expressive Power of Neural Networks: A View from the
Width”. In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon et al. Curran Associates, Inc., 2017, pp. 6231–6239. url: http:
//papers.nips.cc/paper/7203- the- expressive- power- of- neural-

networks-a-view-from-the-width.pdf.

[8] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scien-
tific tools for Python. 2001–. url: http://www.scipy.org/.

[9] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[10] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv
e-prints (Dec. 2013). arXiv: 1312.6199 [cs.CV].

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
Harnessing Adversarial Examples”. In: arXiv e-prints (Dec. 2014). arXiv:
1412.6572 [stat.ML].

59

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1312.5602
https://doi.org/10.1140/epjc/s10052-009-1196-7
https://doi.org/10.1140/epjc/s10052-009-1196-7
http://arxiv.org/abs/0907.2973
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/S0893-6080(05)80131-5
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://www.scipy.org/
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572

BIBLIOGRAPHY

[12] James S. Bergstra et al. “Algorithms for Hyper-Parameter Optimization”.
In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-
Taylor et al. Curran Associates, Inc., 2011, pp. 2546–2554. url: http://
papers . nips . cc / paper / 4443 - algorithms - for - hyper - parameter -

optimization.pdf.

[13] P. Nason, ed. Frascati Physics Series - Proceedings of the Workshop on Monte
Carlo’s, Physics and Simulations at the LHC - Volume XLIX. Istituto Nazionale
di Fisica Nucleare - Laboratori Nazionali di Frascati, 2006. isbn: 978-88-86409-
58-2. url: http://www.lnf.infn.it/sis/frascatiseries/Volume49/
volume49.pdf.

[14] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “PYTHIA 6.4 physics
and manual”. In: Journal of High Energy Physics 2006.05 (May 2006), pp. 026–
026. doi: 10.1088/1126-6708/2006/05/026.

[15] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer
Physics Communications 191 (2015), pp. 159–177. issn: 0010-4655. doi: 10.
1016/j.cpc.2015.01.024.

[16] Alec Aivazis. https://github.com/AlecAivazis/feynman.

[17] Andy Buckley et al. “Rivet user manual”. In: Comput. Phys. Commun. 184
(2013), pp. 2803–2819. doi: 10.1016/j.cpc.2013.05.021. arXiv: 1003.0694
[hep-ph].

[18] Matt Dobbs and Jørgen Beck Hansen. “The HepMC C++ Monte Carlo event
record for High Energy Physics”. In: Computer Physics Communications 134.1
(2001), pp. 41–46. issn: 0010-4655. doi: 10.1016/S0010-4655(00)00189-2.

[19] DELPHI Collaboration. “Tuning and test of fragmentation models based on
identified particles and precision event shape data”. In: Zeitschrift für Physik
C Particles and Fields 73.1 (Mar. 1997), pp. 11–59. issn: 1431-5858. doi:
10.1007/s002880050295.

[20] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.
org.

[21] F. James and M. Roos. “Minuit – a system for function minimization and anal-
ysis of the parameter errors and correlations”. In: Computer Physics Commu-
nications 10 (Dec. 1975), pp. 343–367. doi: 10.1016/0010-4655(75)90039-9.

[22] iminuit team. iminuit – A Python interface to Minuit. https://github.com/
scikit-hep/iminuit.

[23] Wojciech M. Czarnecki and Igor T. Podolak. “Machine Learning with Known
Input Data Uncertainty Measure”. In: Computer Information Systems and In-
dustrial Management. Ed. by Khalid Saeed et al. Berlin, Heidelberg: Springer,
2013, pp. 379–388. isbn: 978-3-642-40925-7. doi: 10 . 1007 / 978 - 3 - 642 -
40925-7_35.

[24] James Bergstra et al. “Hyperopt: a Python library for model selection and
hyperparameter optimization”. In: Computational Science & Discovery 8.1
(July 2015), p. 014008. doi: 10.1088/1749-4699/8/1/014008.

[25] S. van der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: Computing in Science
Engineering 13.2 (Mar. 2011), pp. 22–30. doi: 10.1109/MCSE.2011.37.

60

http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://www.lnf.infn.it/sis/frascatiseries/Volume49/volume49.pdf
http://www.lnf.infn.it/sis/frascatiseries/Volume49/volume49.pdf
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://github.com/AlecAivazis/feynman
https://doi.org/10.1016/j.cpc.2013.05.021
http://arxiv.org/abs/1003.0694
http://arxiv.org/abs/1003.0694
https://doi.org/10.1016/S0010-4655(00)00189-2
https://doi.org/10.1007/s002880050295
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1016/0010-4655(75)90039-9
https://github.com/scikit-hep/iminuit
https://github.com/scikit-hep/iminuit
https://doi.org/10.1007/978-3-642-40925-7_35
https://doi.org/10.1007/978-3-642-40925-7_35
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1109/MCSE.2011.37

BIBLIOGRAPHY

[26] François Chollet et al. Keras. https://keras.io. 2015.

[27] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: http:
//tensorflow.org/.

[28] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github.
Feb. 2019. doi: 10.5281/zenodo.2559634.

[29] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[30] Michael Waskom et al. mwaskom/seaborn: v0.9.0 (July 2018). July 2018. doi:
10.5281/zenodo.1313201.

[31] Wes McKinney. “Data Structures for Statistical Computing in Python”. In:
Proceedings of the 9th Python in Science Conference. Ed. by Stéfan van der
Walt and Jarrod Millman. 2010, pp. 51–56.

[32] ATLAS collaboration. “Measurement of the Z/γ* boson transverse momentum
distribution in pp collisions at

√
s = 7 TeV with the ATLAS detector”. In:

Journal of High Energy Physics 2014.9 (Sept. 2014), p. 145. issn: 1029-8479.
doi: 10.1007/JHEP09(2014)145.

[33] A. Banfi et al. “Optimisation of variables for studying dilepton transverse mo-
mentum distributions at hadron colliders”. In: The European Physical Journal
C 71.3 (Mar. 2011), p. 1600. issn: 1434-6052. doi: 10.1140/epjc/s10052-
011-1600-y.

[34] ATLAS collaboration. “Measurement of angular correlations in Drell-Yan lep-
ton pairs to probe Z/γ∗ boson transverse momentum at

√
s = 7 TeV with the

ATLAS detector”. In: Physics Letters B 720.1-3 (Mar. 2013), pp. 32–51. doi:
10.1016/j.physletb.2013.01.054. arXiv: 1211.6899 [hep-ex].

[35] Richard Corke and Torbjörn Sjöstrand. “Interleaved parton showers and tun-
ing prospects”. In: Journal of High Energy Physics 2011.3 (Mar. 2011), p. 32.
issn: 1029-8479. doi: 10.1007/JHEP03(2011)032.

[36] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In:
arXiv e-prints (Dec. 2012). arXiv: 1212.5701 [cs.LG].

[37] Rami Al-Rfou et al. “Theano: A Python framework for fast computation of
mathematical expressions”. In: arXiv e-prints (May 2016). arXiv: 1605.02688
[cs.SC].

[38] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient meth-
ods for online learning and stochastic optimization”. In: Journal of Machine
Learning Research 12.Jul (2011), pp. 2121–2159.

[39] Geoffrey Hinton. Neural networks for machine learning. Coursera, video lec-
tures. 2012.

[40] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: arXiv e-prints (Dec. 2014). arXiv: 1412.6980 [cs.LG].

[41] Donald R. Jones. “A Taxonomy of Global Optimization Methods Based on Re-
sponse Surfaces”. In: Journal of Global Optimization 21.4 (Dec. 2001), pp. 345–
383. issn: 1573-2916. doi: 10.1023/A:1012771025575.

61

https://keras.io
http://tensorflow.org/
http://tensorflow.org/
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.1007/JHEP09(2014)145
https://doi.org/10.1140/epjc/s10052-011-1600-y
https://doi.org/10.1140/epjc/s10052-011-1600-y
https://doi.org/10.1016/j.physletb.2013.01.054
http://arxiv.org/abs/1211.6899
https://doi.org/10.1007/JHEP03(2011)032
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1412.6980
https://doi.org/10.1023/A:1012771025575

BIBLIOGRAPHY

[42] James Bergstra, Daniel Yamins, and David Cox. “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures”. In: Proceedings of the 30th International Conference on Ma-
chine Learning. Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. 1.
PMLR, 2013, pp. 115–123. url: http://proceedings.mlr.press/v28/
bergstra13.html.

[43] Nikolaus Hansen. “The CMA Evolution Strategy: A Tutorial”. In: arXiv e-
prints (Apr. 2016). arXiv: 1604.00772 [cs.LG].

[44] Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stap-
pen. “Flexible Muscle-based Locomotion for Bipedal Creatures”. In: ACM
Trans. Graph. 32.6 (Nov. 2013), 206:1–206:11. issn: 0730-0301. doi: 10.1145/
2508363.2508399.

62

http://proceedings.mlr.press/v28/bergstra13.html
http://proceedings.mlr.press/v28/bergstra13.html
http://arxiv.org/abs/1604.00772
https://doi.org/10.1145/2508363.2508399
https://doi.org/10.1145/2508363.2508399

	Machine learning introduction
	Main classification
	Supervised learning
	Tasks
	Models
	Training
	Regularization
	Hyperparameter tuning

	Tuning event generators
	Event generators
	Analysis of events

	Overview of the tuning problem
	Tuning methods

	Professor
	Sampling the parameter space
	Parametrisation
	Tuning

	MCNNTUNES procedure
	Per Bin Model
	Parametrisation
	Tuning

	Inverse Model
	Data augmentation

	Performance assessment
	Implementation
	Hyperparameter tuning
	Dependencies

	Testing MCNNTUNES
	Datasets
	AZ-like tune of PYTHIA8
	Unrestricted tunes

	Performance measurements
	Closure tests with Professor
	Level-zero closure tests
	Fine tuning
	Test errors

	Some final tunes

	Conclusion
	Training of neural networks
	Backpropagation algorithm
	Optimization algorithms

	Sequential Model-Based Global Optimization
	Tree-structured Parzen Estimator

	Covariance Matrix Adaptation - Evolution Strategy

