
Università degli Studi di Milano

FACOLTÀ DI SCIENZE E TECNOLOGIE

Corso di Laurea Magistrale in Fisica

Master’s Thesis

Investigating Anomaly Effects in High Energy Physics with
Generative Models

Candidate:

Marco Rossi
Matricola 897863

Thesis Advisor:

S. Carrazza

Research Supervisors:

M. Pierini
A. Wulzer

Anno Accademico 2018-2019

Contents

1 Introduction 3
1.1 Anomalies in High Energy Physics . 3

1.1.1 Classification Algorithms in HEP . 4
1.2 Machine Learning . 8

1.2.1 Learning Algorithms . 9
1.2.2 Neural Networks . 13
1.2.3 Classification Models . 19
1.2.4 Generative Models - GANs . 22

2 Applications 26
2.1 Dataset . 26
2.2 GAN training . 29
2.3 Data Augmentation . 34
2.4 Anomaly Detection . 40

3 Conclusions 50

A Optimization Algorithms 52
A.1 RMSProp . 52
A.2 Adam . 53

B Statistical hypothesis testing 55

Bibliography 57

1

Abstract

The thesis arises in the context of high energy physics (HEP), we aim to introduce tools based
on machine learning techniques in order to address problems that are bothering the scientific
community: in first place no anomalous signal of beyond standard model physics has been
observed since Higgs boson’s discovery in 2012, this led to the birth of new ideas regarding
searching for new physics, however none of them has unfortunately scored a goal yet; second, the
refining of experimental measures and theoretical computations requires a higher and higher need
of large dataset from Monte-Carlo (MC) generators, that are incredibly time and computational
resource consuming.

We address this issues with the help of a particular class of machine learning generative
models, called generative adversarial networks (GANs). The two entities in adversarial training,
namely the discriminator D and the generator G, are respectively employed as tools for new
physics model independent search and MC-like events’ generator. The model independency
allow us to look for signals in real-data experiments with no prior bias on the nature of new
physics responsible for the discrepancies from the Standard Model. This can be achieved at
the price of a little performances’ loss compared to traditional model dependent classifiers. The
GAN generator instead shortcuts the entire MC procedure in order to save memory storage and
time in complicated simulations. We perform an assessment of G working out a feasibility study
concerning the classification of anomalous signals within our toy dataset. We test the possibility
to use the generative model to increase the classification rate.

2

Chapter 1

Introduction

Machine Learning (ML) had a great success in recent years in tackling a wide spectrum of
problems. In fact, ML is specifically designed in such general terms, that in principle there are
no limits to its employements. Besides this special flexibility, it had promising test performances,
very often exceeding existing classical methods and workflows with little effort. This ideas
strongly support the development of the present thesis work.

In particular, two issues in High Energy Physics (HEP) are suited to be addressed with a
branch of ML algorithms called generative models. After the Higgs’ discovery at LHC in 2012,
the pattern of Standard Model’s (SM) particles has been completed. Physicists know that SM has
several structural problems and are tirelessly looking for beyond Standard Model (BSM) physics.
Standard techniques in BSM research are founded on a statistical test approach, which needs
the statement of a specifical alternative BSM hypothesis to be compared with the null SM one.
Statistical tests are, by definition, model dependent new phyiscs searching instruments. The first
goal of the present work concerns implementation of a model independent new physics tool. The
idea is to train a neural net capable of signal data discrepancies from SM predictions, regardless
of any particular BSM alternative scenario. We train a neural net according to the framework of
a particular class of generative ML algorithms, called generative adversarial networks (GANs).

The particular design of the used ML architecture allow us to attack, at the same time,
another severe problem that affects the HEP community, that is the continous and increasingly
compelling need of computational resources, due to MC simulations. Improvements in theoretical
and experimental physics require more and more precise simulations in order to predict the
outcome of an experiment. We aim to prove the consistency of GANs as supports for MC
algorithms. This new tools, then, can limit costs in terms of time, computational power and
memory storage. In this sense, we assess improvements in orders of magnitude, providing a great
aid to face in future years the impending big data problem of HEP research centres.

In the following section we discuss more in detail the physical issues that motivated the
present work. In particular in 1.1 we describe the traditional framework of model dependent
new physics search, that physicists usually employ. Appendix B reviews the terminology of
statistical hypothesis testing. In section 1.2, instead, we present a complete description of the
ML algorithms employed throughout the thesis.

1.1 Anomalies in High Energy Physics
Model dependent new physics search is the common approach in HEP. A statistical test often
is performed in order to accept or reject a null hypothesis (SM) in favour of an alternative one

3

(BSM). An experiment-tailored test statistics can be employed to extract from data a p-value,
a quantity that represents the probability, under the null hypothesis, to observe measurements
more in tension with the SM, than the actual data. If the p-value is less than a pre-determined
number called significance α, usually fixed at 5% or 1%, the statistical test tells to reject the
null hypothesis. Assuming that one is testing the right alternative model, this approach is very
effective in discovering signals. On the other hand, since the test is completely focusing on
that particular alternative scenario, it would neglect the crowd of other possibilities missing the
eventual anomaly present in the measurements.

So far at LHC, and any other experiments, none of this method’s applications have worked.
It is possible that a future BSM model is not among those usually tested. The problem could
be also analyzed from the point of view of the big-data problem in HEP. As stated in [2],
at LHC, for example, 40 million proton-beam collisions are produced every second, but only
1000 collision events/sec can be stored by the ATLAS and CMS experiments, due to limited
bandwidth, processing and storage resources. It is possible to imagine BSM scenarios that would
escape detection, simply because the corresponding new phyiscs events would be rejected by a
typical set of online selection algorithms.

We employ generative models to work out a model independent new physics search. The
ultimate goal is to deploy a tool that instantly processes a specific dataset and tell if it contains
or not significant departures from SM predictions. GANs architectures are comprised of two
neural networks that act as a generator and a discriminator. The trained generator is a source
of new artificial data resembling the training ones, while the discriminator outputs a probability
that answers the question: "is the input data real or artificial?". This discriminator’s ability can
be exploited to perform the mentioned anomaly detection task in a model independent way.

In the following section we give an insight of event classification algorithms in high energy
particle physics. The topic is presented listing the various methods that are usually employed
to discover anomalous signals from measurements. Their final aim is to define a critical region
boundary in order to correctly label points in data space with some probability to be anomalous
(BSM), or following the null reference model (SM).

1.1.1 Classification Algorithms in HEP
We present now methods for events classification that are part of a topic in statistical data
analysis called multivariate analysis. We consider events that can be either signal (BSM) or
background (SM). Usually they come from measurements in detectors’ accelerators, represented
by a d dimensional vector x of features. In order to classify an event, a mapping from feature space
to a one dimensional variable y(x) is defined. Then, we refer to imposing the inequality y > c,
with c ∈ R, as cutting data space. Indeed, what we are doing here is selecting an hyper-surface
in feature space and defining a critical region of anomalous points as the set {x : y(x) > c}.
The hyper-surface is an hyper-plane in case of linear cuts, but in literature other variants exist,
as depicted in fig. 1.1. Once the critical region is determined, classifier’s performances can be
assessed with methods explained in section 1.2.3.

Traditional methods of events classification are founded on the likelihood ratio test statistics.
The importance of this particular test statistics is remarked by the Neynman-Pearson (NP)
lemma:

Let H0 : θ = θ0 and H1 : θ = θ1 be two hypotheses of a test with test statistics given
by the following quantity, called likelihood ratio:

Λ(x) =
L(x|θ0)

L(x|θ1)

4

(a) Rectangular cuts (b) Nonlinear cuts (c) Linear cuts

Figure 1.1: Different kind of cuts in feature space. Panels show a two dimensional problem in order to
help visualization of cuts (red lines).

where L(θ|x) is the likelihood function, and x is a one dimensional, for simplicity,
experimental outcome. The NP lemma states that Λ(x) is the most powerful test at
a significance level α.

This statement implies the way of finding the best threshold η to define the optimal critical
region in data space. Where η is a number that satisfies: α = P(Λ(x) > η|H0). Power in a
statistical tests implies that the test is easily able to tell apart the two hypotheses’ distribution
functions. Therefore, more power, as this expression suggests, is linked to a more effective test.

The problem with this test statistics is of course that we do not usually know the exact
conditional pdfs of data under a particular hypothesis. In special cases, theory might provide an
approximate analytical form for pdfs, but in general the true underlying generating function is not
known and its estimate must be provided to work out the test. Standard techniques to face this
problem lead to a so called likelihood classifier. Examples of such algorithms are histograms,
K-nearest neighbour (K-NN) or Kernel Density Estimation methods. This approach can be
circumvented by other classification models, which determine decision boundaries directly from
their output; neural networks (NN), rectangular cut optimization, linear discriminant analysis
(Fisher and H-matrix discriminants), decision trees and support vector machines (SVM) are
examples that take advantage of this alternative approach. In the following paraghraphs we
introduce a brief description of some of these algorithms, regarding either pdf estimators and
alternative classifier models.

Pdf’s estimators for likelihood classifiers

Histograms method This is a naive option to solve the task of pdf’s estimation. It
requires simply to compute the histogram of the measurements. Data space is then divided in
M d−dimensional cubic cells. The fraction of events that fall within each bin yields a direct
estimate of the density at the value of the feature vector x. The estimate, however, is binning
dipendent, since small binning width can wash out all the signal, while large cell’s volume leads
to a too spiky density function. The deepest problem with this method is the so called "curse
of dimensionality", that refers to the fact that the number of points required to work out this
method increases exponentially with the dimensionality of feature space. This because also the
number of cells to be filled with points grows as ∼Md.

5

K-NN method This method allow to approximate the pdf at a point x in data space. It
consists in placing an hyper-cube of side h centered in x and counts the number of points that
lie inside that portion of space. After finding k points divided in background kb and signal ks,
the probability estimate is then given by:

p̂(x) =
ks(x)

ks(x) + kb(x)

K-NN method can be improved properly changing the small volume shape: a sphere with radius
R, accounting for the correlation between features, may be a better choice than a simple hyper-
cube. Therefore we introduce the Mahalanobis distance:

R =
((
x(i) − x(j)

)ᵀ
V−1

(
x(i) − x(j)

))1/2

where V is the covariance matrix a x(i) is a vector of the i−th feature of all data. The K-NN
classifier has best performance when the boundary that separates signal and background events
has irregular features that can not be easily approximated by parametric learning methods. See
fig. 1.2a.

Kernel Density Estimation method This algorithm outputs an estimate of the pdf of
a sample (x1, . . . ,xn), based on the following equation:

p̂(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
where h is a smoothing parameter called bandwidth and K is the kernel, a positive function that
is usually taken to be as a multivariate gaussian:

K(x) =
1

(2π)
d/2

exp
(
− |x|

2

2

)
The kernel K apply a smearing function over data and every contribution from the sample set
is summed to give the estimate. Bandwidth controls the overlapping of kernels in data space:
in the gaussian kernel example greater values of h implies more spreaded function added to the
final sum, instead when h goes to zero then each function approximate a delta function peaked
on the corresponent measure xi. See fig. 1.2b.

Alternative classifiers

Linear discriminant analysis Fisher’s linear discriminant is a simple algorithm, never-
theless it can still be optimal if the amount of training data n is limited. It consists in making
an ansatz for the test statistics:

y(x) =

n∑
i=1

wixi

where {wi} is a set of weights. This parameters are chosen in order to maximize signal and
background separation given, in Fisher’s method, by:

J(w) =
(τs − τb)2

Σ2
s + Σ2

b

6

(a) K-NN method, a hyper-sphere of radius R in-
cludes a fraction of measurements.

(b) K-DE method, a smearing function is computed at each
point.

Figure 1.2: Visual examples of some pdf’s estimation algorithms.

where τ and Σ are respectively mean and covariance matrix of y(x) for signal or background
distributions. In formulas 1

τs,b =

∫
y(x) p(x|H1,0) dx ≡ wᵀ µs,b

Σs,b =

∫
(y(x)− τs,b)2 p(x|H1,0) dx ≡ wᵀ Vs,bw

Then the numerator and denominator of J(w) become:

(τs − τb)2 =

n∑
i,j=1

wiwj(µ
s
i − µbi)(µsj − µbj)

Σ2
s + Σ2

b =

n∑
i,j=1

wiwj(V
s + Vb)ij

Intuitively, this algorithm tells the model to maximes the ratio of the separation between classes
(means) and the separation within classes (covariances).

Decision Trees This model is a directed graph. It develops from a starting node called
root node through the branches of the tree (hidden nodes) to final leaves nodes. At every node,
the algorithm implements a cut in feature space. Compositions of cuts allow the classification of
data, which is made at the level of a leaf node. During training the tree keeps growing until all
the nodes are pure, which means that the quantity called purity p reaches either the maximum
or the minimum for every node. In this algorithm, a weight wi is assigned to each sample in the
training data. Purity is defined as:

p =

∑
s wi∑

s wi +
∑
b wi

1µs,bi =
∫
xi p(x|H1,0) dx is a vector of means and Vs,b

ij =
∫
(xi − µs,bi)(xj − µs,bj) p(x|H1,0) dx is a covariance

matrix on data.

7

And the improvements in signal backgroud separation after splitting a set A into two subsets B
and C are measured with the quantity:

∆ = WAGA −WBGB −WCGC

where G is Gini index G = p(1 − p) and WX =
∑
X wi. The situation in which leaf nodes are

all pure must be avoided, since the model is clearly overfitting data. Then a pruning operation
is carried out removing some internal nodes, according to the fact that a simpler model is less
prone to overfitting than a more complex one.

Since decision trees are really sensitive to statistical fluctuations in training sample, a boosted
version of the algorithm exists. Boosting consists is a general methods consisting in combining
together different classifiers. In the case of decision trees, we switch from a single tree graph to a
multitude of trees forming a forest (random forest algorithm). Trees are derived from the same
training set, re-weighting events. Individual trees are then combined with a weighted average of
individual models to form a powerful classifiers with smaller error.

Support Vector Machines (SVM) This algorithm constructs an hyper-plane decision
boundary in feature space in order to maximize the distance between points from different classes
in a binary problem. A set of measurements has to be classified according to their label, which
can be either 1 or −1. The training set is a collection of n couples {(xi, yi) : i ∈ [1, n]}, where
xi is a vector of features and yi is a label. The problem can be stated initially for linearly
separable datasets, where exists a set of hyperplanes described by the equation w · x − b = 0
and parametrized by a normal vector w and an offset parameter b, these hyper-surfaces split
data space into two regions, each containing points just from a particular class. Fig. 1.3a reflects
this situation, where the red line represents the decision hyper-plane. The coloured stripe is
called margin and geometrical considerations imply that it has width 2

‖w‖ . Then, maximizing
the margin is equivalent of minimizing the norm of the vector w orthogonal to the hyperplane.
After minimization, a couple (w, b) defines a classifier that implements the mapping from data
space to label space: x 7−→ sgn(w · x− b).

In a non-separable problem instead, the function to be minimized has to be defined more
carefully. It can be proven that the inequality 1− yi(w · xi − b) ≤ 0 for all possibile values of i
is satisfied only if the correspondent point lies in the correct side of data space with respect to
the boundary line. Then the so called hinge function max(0, 1− yi(w · xi − b)) takes 0 values, if
the related point is correctly classified, it takes a value proportional to the distance between the
point and the hyperplane otherwise. Finally, the function to be minimized has two terms:

1

n

n∑
i=1

max(0, 1− yi(w · xi − b)) + λ‖w‖2

where λ is a parameter that determines the trade-off between reducing the sums of distances
between mis-classified points from the decision hyper-plane and the reciprocal of the width of the
margin. This equation can be generalized to include non-linear decision boundaries, replacing the
dot product w ·xi with a kernel function k(xi, xj). This kernel trick can be viewed as a mapping
Φ from feature space, in which the kernel boundary has a non-linear shape, to a transformed
space in which the boundary is in fact linear. This behaviour is depicted in fig. 1.3b.

1.2 Machine Learning
In this section we present the basics principles of machine learning (ML). We firstly define what a
learning algorithm is and which kind of tasks ML tries to solve, following the exhaustive exposure

8

(a) SVM feature space (b) SVM with kernel trick

Figure 1.3: SVM

of reference [3, ch. 5]. Then we introduce the fundamental building blocks of neural networks,
namely artificial neurons, and how they are organized in feed-forward (FF) layers to form a first
simple example of neural network (NN). We also review a particular variant of FF layers, widely
employed throughout this work: the convolutional layer. In the remaining part of this section
we focus on how these layers can be stacked to shape models that can be trained to perform
desired tasks. We discuss two kinds of models: networks performing classification tasks, also
called classifiers, with the theoretical formalism behind them and a particular class of generative
models called generative adversarial networks (GANs), with a review of their architectures and
charateristics.

1.2.1 Learning Algorithms
A ML algorithm is a model that is able to learn from data. In 1997 Mitchell, in [12, p. 2],
provided a definition of what such a learning algorithm is.

Definition. A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

In the following subsections we briefly give intuitive descriptions and examples of the three
quite abstract entities T, P and E.

The Task, T

In the definition given above, the task is the goal of the process of learning, so learning itself
is not the task, it is the way of achieving the ability to do the task. Tasks in ML are usually
described in terms of the way the model is able to process examples. An example is a collection
of n quantitative features, measured from some object, that we want the model to inspect. This
way we can represent an example as a vector x ∈ Rn. For instance we treat a squared balck and
white image as a vector in Rn×n, where each component takes an integer value in the interval
[0, 255], representing the corresponding pixel’s brightness.

9

In the following, we report a summary of the most common machine learning tasks.

• Classification: in this type of task, the program is asked to specify which of k categories
some input belongs to. Hence, the model will attempt to learn a function f : Rn −→
{1 . . . k}, which maps an example x to its category y = f(x). We will deeply employ
classification networks in section 2.

• Regression: in this type of task, the model is asked to predict a numerical value given
some input, i.e. to learn a function f : Rn −→ R as in classification, with the only exception
of a continous codomain. A classical example of a regression task is to predict the amount
of money an insured person will be expected to claim.

• Machine Translation: in this type of task, the network takes as input a sequence of
symbols in some language and aims to convert them from that native language to another.
ML algorithms are employed also in natural languages translations, like English-Italian
translation.

• Density estimation: in this type of estimation problem, the model is trained to output
a function pmodel : Rn −→ R, where pmodel(x) can be interpreted as a probability density
function, on the space where the examples were drawn from.

The Performance, P

In order to assess the algorithm’s ability to accomplish tasks, we have to define a measure that
quantifies its performances. P has to be designed specifically for each task we would like the
model to be good at. For classification and transcription we can keep track of the accuracy (acc.),
namely the ratio between the number of examples where the model makes a correct prediction
over the total. Alternatively we can measure the error rate (called also 0-1 loss), which is equal
to 1−acc.. Of course, it does not make sense to compute these metrics when solving other kinds
of tasks, like density estimation. In these cases we have to build a task-specific loss function
that reflects the features we would like the model to learn and of course also penalizes system’s
undesired behaviours.

A central concept in ML is generalization: we do not want the algorithm to fit the distribution
of the input data, instead we would like it to learn features underlying data, in order to have
good predictions on examples it has never seen before. Therefore is common use to have two
distinct collections of examples (datasets): the training set and the test set. The former is used
to train the model, while the latter is employed to assess its performances.

The Experience, E

ML algorithms, depending on what kind of experience they are allowed to have during the
learning process, can be separated in two big categories: supervised and unsupervised.

• Unsupervised learning algorithms experience a dataset containing many features. It is
model’s duty to capture these features, learning the true probability distribution function
p(x) underlying the examples.

• Supervised learning algorithms also experience a dataset with several features, but each
example now comes with a target or label. For instance the MNIST database is a collection
of 60, 000 black and white 28 × 28 pixelled images of handwritten digits, plus a vector of
lables that identifies each image’s correct category. In this training mode a model tries to
predict the correct label y from an example x, or, in other words, it tries to reproduce the
conditional probability density function p(y|x).

10

The term supervised arise from the fact that the model is teached by the labels what to do,
while in unsupervised learning the database completely lacks this information. It is worth noting
that this two categories are not formally defined and always well separated as there are models
that can be used to accomplish both tasks. We also would like to mention that other variants of
the learning paradigm exist, such as semi-supervised learning, reinforcement learning or multi-
instance learning.

Generalization

As we stated above, the central challenge in ML is to build models which perform well on
new unseen data. This idea tells us the difference between an optimization problem and a ML
algorithm: the former is a process in which we seek the model’s best configuration in a parameter
space in order to reduce the training error, while in the latter we want the generalization error
(also called test error) to be small. The generalization error is the espected value of the error on
a new unseen input. We evaluate it over the collection of examples called test set as stated in
the section regarding the performance P.

In the most general situation, a priori, we can say nothing on the test error, knowing just the
training error, since train and test sets are two well separated collections. In order to be able to
affect the generalization error with training, we make two claims on how the datasets are collected:
first, all the examples in the datasets are indipendent from each other (indipendence) and second,
they are drawn from the same probability distribution pdata, called data generating distribution
(identically distributed samples). These two hypotheses ensure that the training error will set
an upper limit for the generalization error. We can now influence the final perfomance of a ML
algorithm, monitoring and reducing two fundamental quantities: the training error itself and its
gap from the test error.

When we do not manage to make small one of these quantities, we face two classical undesired
behaviours of an algorithm, called respectively underfitting and overfitting. Underfitting means
that we did not optimized enough the model’s parameters, so we must run further training steps
in order to lower the fundamental quantities. Overfitting means that the algorithm is not actually
learning the true data generating distribution, but it does no more than fit the training samples
points with a complicated function. Borderline cases are displayed in Fig. 1.4.

To better explain the concept, we can intuitively think about a student. Of course underfitting
corresponds to the situation in which the student learnt the topic just superficially. The student,
when is able to generalize, has mastered the subject and can ingeniously apply what he has
learnt, is the best; whereas when he just parrot back the lesson, he is simply overfitting the issue.

Within the ML field, we protect ourselves from these two bad behaviours, by stopping the
optimization algorithm at the right time. The question is of course, when the right time is. We
address this problem with a technique called early stopping. It requires a method which assesses
the relationship between training error and generalization error. The method we employed in
this work is cross validation: from the training set we hold a 15% of examples that will not be
employed to train the model. This samples are used during training to have an online insight of
the generalization error over the test set. We call this collection of retained data validation set. In
Fig. 1.5 we show the typical trend of error functions during training: according to early stopping,
we should stop the optimization algorithm when the gap between training and validation error
starts increasing in order to trade off between underfitting and overfitting regimes.

In the present section we have described what a ML algorithm is, following Mitchell’s defi-
nition. We have called it interchangeably with the term ML model, to stress that it can learn
from experience by processing vectorial examples. Learning consists, indeed, in modelling the

11

Figure 1.4: Three limit cases. Left panel : the model has a linear output, it has not captured the curvature
present in the data; training errors are high: underfitting. Central panel : the model fits well all the
data, with a little training error at each point: good generalization. Right panel : the model overfits the
samples with a complicated function; training errors go to zero: overfitting.

Figure 1.5: Typical qualitative trends of training and generalization (over the validation set) errors
during training. The red line signals the best moment to stop the optimization algorithm, namely, as
soon as the generalization gap starts increasing.

Table 1.1: Summary of the activation functions.

Name Equation Range

Linear ϕ(x) = x (−∞,∞)
ReLU,

Rectified Linear Unit ϕ(x) = max(0;x) [0,∞)

LeakyReLU (α > 0) ϕ(x) =

{
αx is x < 0

x if x > 0,
(−∞,∞)

ELU (α > 0),
Exponential Linear Unit ϕ(x) =

{
α(ex − 1) is x 6 0

x if x > 0,
(−α,∞)

Logistic
(a.k.a. sigmoid) ϕ(x) = σ(x) =

1

1 + e−x
(0, 1)

Tanh ϕ(x) = tanh(x) (−1, 1)

Softmax† ϕk(xk) =
exk∑m−1
k=0 exk

(0; 1)

† The softmax activation gives a different output for each neuron in a layer, it is used
in multiclass classification to give results normalized across the whole layer, when
classes are exhaustive and mutually exclusive.

algorithm’s output on a distribution function underlying data, called data generating distribu-
tion, that in principle can implicitly capture samples’ intrinsic high level features. Since the
distribution pdata may be quite complicated, we have to be sure that our model will be capable
of correctly reproduce it. This motivations, supported by the universal approximation theorem,
as explained in [7], lead us to introduce neural networks (NN) as function approximants that can
definitely achieve the aims of a ML algorithm.

1.2.2 Neural Networks
In this section we explain what a NN is: starting from basics we introduce artificial neurons,
called this way because their behaviour recall that of a biological neuron. Neurons can then be
arranged together to form layers, which are the building blocks of networks, that can accomplish
an incredible variety of tasks if properly designed and tuned. We overview the different types of
layers which are employed in this thesis’ work and explain how is it possible to fix a very large
number of parameters in order to allow the process of learning. With this in mind we hint at
the main ideas behind the most common optimization and hyperparameter search algorithms.

Neurons and Layers

An artificial neuron is defined as a function fw,b : Rn −→ R that maps a collection of m input
signals x = {x0, . . . , xm−1} to an output:

y = fw,b(x) = ϕw,b(wjxj + b) (1.3)

where w is a vector of m weights and b is a real coefficient called bias; in general we refer to these
quantities as model’s parameters θ. It is interesting the role of the so called activation function
ϕ, because it introduces the opportunity to have non-linearities in an otherwise affine function.
Tab. 1.1 lists common activations used in ML models.

13

We can group a set of n neurons together to form a dense layer. Hence, the vector of wj
weights and the bias b become a n×m matrix wkj and an n-dimensional vector bk respectively.
The layer has now n outputs:

yk = fk(x) = ϕ(wkjxj + bk) (1.4)

where we employed Einstein’s convention of implicitly summing over repeated indices. Fig 1.6
displays pictorially the k-th neuron inside a layer.

Figure 1.6: Artificial neuron

We now look to a different class of layers: convolu-
tional layers. We employ convolutional layers to process
examples that have a grid-like shape. In fact, these lay-
ers are just a slight modification of the dense type: the
difference lies in the fact that they employ convolution
in place of matrix multiplication between inputs and
weights.

Convolutional Layers

Convolution is a mathematical operation on two func-
tions of a real valued argument.

Definition. Let f, g : R −→ R be two real
valued functions. Their convolution is the
function (f ∗ g) : R −→ R, defined by the

mapping: t 7−→
∫ +∞
−∞ f(τ)g(t− τ)dτ .

In general, we can look at convolution, as an operator that applies a filtering function g, called
kernel in ML applications, on an input function f : the output is sometimes named feature map.
Furthermore, if g is also a probability distribution function (pdf), the output f ∗ g is an average
of f , weighted with the pdf g.

In order to apply convolution within a ML framework, we introduce a discretized form of this
operation: real functions’ arguments become integer indeces. Convolutional layers are usually
employed, with great success, to process images, which can be seen as a grid of pixels, as in
fig. 1.7a, and described with rank 3 tensors: the first two indeces of the tensors tell the row and
the column in the grid, while the third one is for pixel’s channels, that mixes together primary
colours. One-channeled images are black and white, otherwise descriptions with three or four
channels are suited for coloured ones.

The convolutional kernelK contains all the architecture’s information and it is represented by
a tensor with the following indeces’ structure: its first two labels refer to the size of the filtering
window (row and columns), the third one runs from 1 to the number of channels in the input
image cin, while the last correspondes to the number of channels in the output image cout. Thus
we can visualize K, as a set of cout three dimensional tensors with the same volume: tensors’
width and height correspond to the number of rows nr and columns nc of the filtering windows,
that are stacked one on top of the other along the third dimension, which has size cin.

Convolution is then the operation in which we apply these multidimensional filters to different
subsets, with shape equal to the filtering window, of consecutive pixels in the input image.
Mathematically we write:

Oi,j,k =

nr−1∑
l=0

nc−1∑
m=0

cin∑
n=1

[Ii×r+l,j×s+m,nKl,m,n,k] (1.5)

14

(a) Image as grid (b) Convolution

Figure 1.7: Convolution

where we introduced the possibility to have strides r and s. Fig. 1.7b visually shows the convo-
lution operation with single-channeled input, kernel and outputs.

The stride parameters tell the model not to inspect each consecutive subset of pixels: the
convolution in this case skips respectively r and s image’s cells in each direction before taking
again the convolution operation. The stride option affects the information overlap between near
pixels in the output image: having minimum strides, equal to one in each direction, ensures that
the maximum amount of information is retained within the output image. Nonetheless, it is
obviously computationally expensive and sometimes, in fact, does not improve performances of
the model. Therefore a specific choice of these parameters must be selected accordingly to the
current dataset.

Looking at equation 1.5, it is clear that there is an issue when the kernel deals with image’s
cells next to the boundaries: there, the sum’s indeces would go out of range for the input image.
One way out consists in carrying on the convolution operation, only until K lies entirely inside
the image. This option is called "valid" convolution by ML libraries. Of course the output
image will be shrinked in comparison to the input one. The opposite behaviour is the "same"
convolution, in which the layer implicitly zero-pads the image to have input and output images
of the same shape. The "same" option has the drawback that pixels near the borders of the
input image influece a smaller amount of cells in the output, than the ones in the middle. This
observation motivates the introduction of a third possibility, called "full", in which each pixel in
the input image is allowed to be inspected by the kernel for the same number of times. In this
situation, the problem is reversed, since the output pixels at the edges are influenced by a smaller
number of input cells, than the ones in the middle. Optimality for a model in zero-padding, of
course, is not an absolute fact, but strongly depends on the current dataset: it lies, in general,
somewhere between the "valid" and the "same" convolution.

There are three key ideas behind the introduction of convolutional layers in neural networks:
sparse interactions, parameter sharing and equivariant representations. In the following we give
a brief introduction to these concepts, in order to motivate the intense usage of convolutional
layers througout the present work.

Fig 1.6 shows the connection of a neuron in a dense layer to the input; in particular, we
highlight that each neuron inside a layer is linked with each component of the input vector.
Because of this aspect, dense layers are also called fully connected layers. This way, the number
of weights used by a single layer equals the product of incoming input vector’s components, times

15

Figure 1.8: Sparse interactions vs full connectivity. Top: convolutional layer with kernel size equal
to three, stride one and same padding. Grey shaded circles highlight which output’s components are
directly influenced by the central input’s component: only next to units are affected. Bottom: fully
connected layer. Each neuron in the output is linked to every neuron in the input. Even with this simple
model we have a large number of edges in the graph.

the outcoming vector’s ones plus one. It is clear from these considerations, that if samples in
the dataset are images containing a lot of pixels (sometimes in the orders of thousands or even
millions), it will be very computationally expensive to store the whole amount of weights and
also to work out the matrix multiplication defining the dense layer operation.

The introduction of convolutional layers allow us to have a smaller number of weights, de-
pending only on the size of the kernel K, which has often a far smaller size than the input image.
We refer to this property of a convolutional layer saying that it presents sparse interactions or
sparse connectivity. Moreover, in image analysis we are often interested in looking for patterns
arising within a small portion of the image: with fully connected layers, pixels at one end of the
image are linked also with cells from the opposite end by weights that could simply be unneces-
sary. Sparse connectivity is, then, the natural way to address these issues. Fig. 1.8 graphically
reviews the ideas behind sparse interactions.

We previously mentioned that storing the enormous number of weights of dense layers may
become expensive in terms of memory usage. Then, convolutional layers provide a simple answer
to this problem, called parameter sharing. When we train a fully connected layer, the model
has to learn the correct weight for each link in the graph. In convolutional layers, instead, the
model has to learn a small set of kernel weights and then re-apply them (this consists in sharing
parameters) to inspect each portion of the image, resulting in a dramatic reduction of the total
amount of memory needed to store the model.

Due to this form of parameter sharing, the model inherits the well-desired property called
equivariance to translations. In particular, we say that a function f is equivariant to a function
g if f(g(x)) = g(f(x)). In the present case, convolution is equivariant to translations means that
the application order of the two processes on the input image does not matter: if we slightly
move the input image and then compute the convolution, the result will be the same as if we
made the convolution and then shifted the output. We can also say that a convolutional layer
looks for certain features in the input, no matter where they are: for example, if we applied
convolution to an image of a cross section of any physical process, looking for spikes in the plot,
the output map would find those features no matter where they are shifted from a certain point,
or even no matter how many they are.

Convolutional layers represent very useful and efficient tools to analize images, but they

16

usually come with another operation that modifies further their output’s values. This operation
is called pooling. Different types of pooling layers exist, but they all exploit the same idea:
they replace the value of each output’s unit of a convolutional layer by a statistical metric that
summarizes the nearby outputs. Of course, different metrics are possible: the most used are
max pooling, average pooling, weighted average pooling and L2 norm pooling. Pooling is useful
because it makes the output invariant under small translations of the input. Indeed, if we apply
max pooling over a small area, results would be the same if we shifted by a small amount the
input image before, because the maximum would be obtained inside the same small area.

Optimization

In the previous sections we discussed dense and convolutional layers, which are the building
blocks of the neural networks employed in the present thesis’ work. We can build a feed forward
neural network (FFNN) by stacking different layers. The simplest model is made of three such
units: the first one is the input layer; the one in the middle is called hidden, because we do
not usually look at its outputs, as we are concerned the most by the outputs of the final layer,
which is consistently called output layer. This kind of network is named feed forward because
information flows straightforwardly from the input to the output: there are no loops in the net.
If we included the possibility to have feedback connections, in which the output of a layer can
be fed back into itself, we would have built another kind of network: a recurrent neural network
(RNN).

In FFNN, we can arbitrarily increase the size (or width) of the hidden layer, considering more
neurons, as well as the network’s depth, adding more hidden layers. With these operations we
influence the number of parameters θ in the model and its complexity. A NN can be viewed as
a family of functions {f(x)}θ as θ varies in a very high-dimensional parameter space. Theoreti-
cally, as stated by the universal approximation theorem, a NN can approximate any continuous
function on a compact subset of Rn with a particular choice of θ. Flexibility, then, makes NNs
fundamental tools in ML algorithms, where we try to guess the data generating distribution.
The challenge consists, of course, in finding the best point in parameter space with an efficient
training algorithm. This step is called optimization.

In this section we explain the main ideas behind optimization algorithms found in ML liter-
ature: we take a look at gradient descent, while we address in the appendix A the more refined
RMSProp and the adaptive moment estimation algorithm (Adam). We recall from a previous
section, 1.2.1, that model’s improvements in training are assessed by computing the value of a
performance function, often called cost or loss function L, associated to the model. This state-
ment let us recast the learning problem in an optimization fashion: we would like to find the
point in the multi-dimensional parameter space that corresponds to the minumum of the cost
function.

For FFNNs, the optimization is accomplished in different steps:

1. feed the model with a batch of examples from the dataset and obtain the correspondent
outputs (feed-forwarding);

2. from the outputs employ an automatic differentiation algorithm, always implemented by
ML libraries, to find the gradient of the loss function w.r.t. the model’s parameters, or
related quantities (backpropagation step);

3. update the weights accordingly to a particular updating rule (depending on the optimiza-
tion algorithm chosen).

17

Figure 1.9: Different learning rate behaviours: one dimensional problem with quadratic loss function.
This example is meaningful since every function can be approximated by a quadratic polynomial if we
sit sufficiently close to a minimum.

We say that we conclude an epoch of training when all the training-set data have been processed
by this algorithm. The whole training consists in iterating again and again this procedure for
a fixed number of epochs until the cost function is appropriately minimized. We refer to this
procedure as descending the gradient.

We note that the first step can be achieved in different ways: the naive approach is to compute
the loss function processing together all the examples in the dataset and then computing the
gradient with backpropagation. This way we update the parameters’ values just once per epoch:
the gradient, then, will contain the maximum amount of information. However this can lead to
a dramatic slowdown of learning, especially when we deal with large datasets. In order to make
the training faster, we can have an insight of the gradient evaluating it over just a small subset
of samples, called mini-batch, and then updating the weights. Now we can update parameters
multiple times in the same epoch.

Mini-batches’ size must be chosen carefully in order to contain the sufficient amount of infor-
mation in the gradients. The limit case is called online learning, in which mini-batches’ size is
equal to one. Although we can make a lot of updates in a single epoch with this trick, the algo-
rithm will probably be unstable because a single example may not be statistically significant and
consecutive gradients are likely to cancel each other, rather then lead us down the hill towards
the global minimum of the cost function. Furthermore, we have to separate all the dataset in
mini-batches and be sure the model will experience all the information in the dataset, in order
to finish one epoch. Because of the randomness with which we select all the dataset’s partitions,
this algorithm is called stocastic gradient descent (SGD).

Steps 2 and 3 of the algorithm are guided by the definition of the gradient of a function itself:
in particular, the gradient of the cost function w.r.t. the parameters of the NN is, by definition,
a vector, that at each point of the parameter space, has the direction of the greatest increase of
the cost function. Therefore, in principle, at each step of our optimization algorithm, we could
follow the opposite direction of the gradient, updating the parameters proportionally to it to find
the best configuration. The update rule for this algorithm is simply:

θ ←− θ − η∇θL (1.6)

Where η is called learning rate and it is probably the most important non-trainable parameter
of a neural network.

The learning rate controls the process of descending the gradient and must be fine tuned for
every architecture we build and every dataset we have to inspect. Two undesired behaviours
can arise when learning rate is not properly set. Fig. 1.9 shows what happens, in a simple one-

18

dimensional case with a quadratic loss function, if we try to optimize a model with a learning rate
which is too large: we can not reach the minimum because the parameters receive big increments
and the particle jumps from one side to the other of the well and definitely escapes from it,
causing the training to diverge. The figure displays that even a too small learning parameter
is not appropriate, because the training will be too slow to reach the minimum in a reasonable
number of iterations. These effects are incredibly enhanced when we deal with the optimization
of a non-convex multi-dimensional loss function, causing training failure. Other issues, like
instability of the optimization or vanishing gradients on a plateau, motivate the research of more
effective algorithms.

There are parameters related to a network, such as the learning rate, that are not trained
by the process of optimization. We call them hyper-parameters. Examples include the model
architecture itself (type, depth and width of the hidden layers), parameters that control the
behaviour of particular layers, such as coefficients in activation functions (e.g. α coefficient in
leakyReLU, tab. 1.1), mini-batches’ size, number of epochs to train the model. The choice of
hyper-parameters is strictly bound to the dataset we have to deal with. The ultimate goal will
be to find the configuration which perfoms better on the validation set: test set is used to assess
performances of the final model and must not be used, in principle, to take any decision regarding
either trainable or non-trainable parameters. There are several types of hyper-parameter search
that we can employ, among them we find: manual search, grid search, random search and bayesian
search.

In manual search, as suggested by its name, we have to tune manually the model’s hyper-
parameters. This task requires a lot of experience in model designing and could be particulary
difficult to work out. In grid search, instead, we write a table of hyper-parameters and their
correspondent possible values, then we train each configuration and select the best performing
architecture. This method is more rigorous than random search because we plan in advance the
possible configurations to be tried, but it takes a lot of time when the number of hyperparameters
increase. The random search consists in drawing random values uniformly from pre-fixed ranges
in order to set hyper-parameters; then for each configuration we train the correspondent model
and record the best performing one.

The bayesian search is based on Mockus’ paper in early 70’s, [13]: his strategy treats the
objective function to be minimzed (loss or accuracy depending on the case) as a random function
and places a prior over it. The prior captures beliefs about the behaviour of the function before
its evaluations. After initializing a particular configuration of the model and collecting the
objective functions after training, the prior is updated to form the posterior distribution over
objective function. The posterior distribution, in turn, is used to build an aquisition function
from which the next hyper-parameter configuration is drawn. This ideas are implemented by
different algorithms. We used throughout the present work the hyperopt library, that employs
the Tree Parzen Estimator (TPE) algorithm to make the decision on the next hyper-parameter
configuration.

In the present section we gave an insight of the algorithms that constitutes the core concepts of
training a model in ML. With gradient descent and hyper-parameter search we built a framework
where a neural network can be shaped to reproduce the desired data generating distribution.
These steps are the most important and delicate in the process of learning.

1.2.3 Classification Models
In this subsection we describe tools to assess the results of a classification task: in particular we
introduce the confusion matrix formalism and the ROC curve analysis. These tools are firstly
described for binary classifications, but where it is possible we show also the generalization to

19

multiclass tasks. Throughout the discussion it can be useful to have in mind terminology and
formalism of statistical hypothesis testing, reviewed in appendix B.1, since we will employ the
same symbols used there to highlights the common points of the two topics.

As written in the beginning of section 1.2.1, a classifier is a model that tries to learn which
of k categories some input belongs to. In binary classification, a label 0 or 1 is attached to each
sample of the dataset. Then, we design a model such that its output will be a scalar in the
interval [0, 1]. This outcome is in fact a random variable T , since it is a function of a sample
in a dataset, which is drawn from the data generating distribution pdata. We fix a decision
threshold t that divide the unit interval into two parts: if the model’s prediction is less than t,
a predicted label of 0 is assigned to the sample, 1 otherwise. t is fixed a priori to 1/2 to ensure
the correct balance between decisions, but it will be sometimes interesting changing this value in
order to assess classifier’s performances in different regimes. Within the multiclass framework,
with k categories, we shape the model such that it has a vectorial output with k components,
each ranging in the unit interval. The predicted label of a sample will be, in this case, the
component’s index with the highest output value.

The comparison between the true label and the predicted label of a collection of samples tells
the goodness of the trained model. We divide predictions in four subsets:

• true negative (TN), number of 0s correctly predicted;

• false positive (FP), number of 0s predicted as 1s, type I error;

• false negative (FN), number of 1s predicted as 0s, type II error;

• true positive (TP), number of 1s correctly predicted.

Fig. 1.10a shows how we can visualize results from a binary classifier as a 2×2 matrix. We can
print the confusion matrix either with each matrix element corresponding to the absolute number
of predictions in that subset, or rather normalizing across columns and setting each element to
a percentage between 0 and 1. A good classifier has high diagonal entries, while off-diagonal
ones are close to zero. In the normalized format, the mean computed across the diagonal values
equal the total accuracy of the model. In the multiclass classification it is possible to print
the classification matrix as well, but this time it will be a k × k matrix and of course all the
nomenclature about true/false positive/negative subsets will then be nonsense.

From a trained model we can also compute the scrores’ distributions of true 0 and 1 labeled
data. Practically, we have to make a large number of predictions and work out the histogram
of the results. This method allow us to visualize the f0 and f1 pdfs of true 0s and true 1s
labelled data. We can assess the goodness of a discriminator if it manages to keep separate the
two distributions: an optimal model will draw the f0 and f1 as two delta distributions centered
respectively in 0 and 1, while the worst possible classifier will represent the two pdf as flat
distributions. Fig 1.10b shows an example of such a plot. A decision threshold would divide each
pdf’s plot into two regions, as in the statistical test discussed in the appendix. We now define
some related quantities:

• true negative rate, TNR = P
(
T < t|f0

)
= TN

TN+FP ;

• false positive rate, FPR = P
(
T > t|f0

)
= FP

TN+FP ;

• false negative rate, FNR = P
(
T < t|f1

)
= FN

FN+TP ;

• true positive rate, TPR = P
(
T > t|f1

)
= TP

FN+TP .

20

(a) Confusion matrix of a binary classifier. (b) Example of the two scores’ pdfs, normal refers
to true 0s, while anomalous means true 1s.

(c) Examples of ROC curves.

Figure 1.10: Classifier assessment tools.

The last tool we want to introduce shows the behaviour of the classifier when the decision
threshold t is changed. The four ratios directly depend on the value of t via an integration
interval’s extremum. If we consider the couples

(
FPR(t),TPR(t)

)
and move continuously the

value of the threshold, they will describe a line in a plane, called Receiver Operating Characeristic
(ROC) curve. By construction, any ROC curve always goes through two fixed points: (0, 0) and
(1, 1). In fig. 1.10c we display three examples of such curves. There is also plotted the dashed
diagon line, which is called "line of no discrimination" and signals the situation of random
guessing the labels. In the ROC space there are two special lines: the curve referring to the best
possible discriminator, which starts from the origin and goes up until the point (0, 1) and from
then turns right and remains constan up to (1, 1), and the other curve corresponding to the worst
possible classifier, that stays flat from (0, 0) to (1, 0) and then joins the latter point with (1, 1).
In between of these two lines there are infinite options, depending on the particular model.

The area under the curve (AUC) is a parameter that tells how good is the classifier. It can
be proved that this quantity tells the probability that picked two random samples, the first with
true label 0 with score t0 and the second with true label 1 with score t1, the quantity t1 will be
greater than the value t0:

AUC = P(t1 > t0 | t0 ∼ f0, t1 ∼ f1)

The area under the curve ranges in the interval [0, 1] and if it is greater than 0.5, the model is
doing better than random guessing the labels.

1.2.4 Generative Models - GANs
In ML learning literature there are a lot of examples of generative models, such as auto encoders
(AEs) and their variational form (VAEs), boltzmann machines and generative adversarial net-
works (GANs). We focus on GANs, which were firstly proposed by Goodfellow et al. in [4]
and since 2014 have been refined and improved in several variants. GANs are deep neural net
architectures comprised of two nets: the generator G which tries to learn the data generating
distribution and the discriminator D, that outputs the probability that a input sample came from
the training data, rather than from G. In the original paper authors explain their framework
ideally as two teams competing one against the other: the first one (the generator) is made by
counterfeiters, that try to produce fake currency and use it without being detected; opponents
(the discriminator) are analogous to the police, that try to uncover the counteirfeiters’ actions.

Mathematically, we start from samples x from a dataset and a prior distribution pz used to
draw the input z of the generator’s net. We choose pz to be a distribution with high entropy,
such as a normal gaussian. Then G is a FFNN with parameters θg that defines a mapping to
data space G(z; θg), so we can think the generator as a tool that sample random artificial data
with pdf pg starting from an input noise z. We implement a second neural network D(x; θd)
that outputs a single scalar value, which represents the probability that the input came from the
training dataset, rather than from G. The novelty of the proposal consist in the way the nets are
trained, formally they play a so called minimax game:

min
G

max
D
L(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1.7)

The expected values are taken, during training, over a whole mini-batch of samples. The
equation for the loss function has therefore two contributes that are related to the accuracy of
the discriminator. The first one is the expected value for the logarithm of the probability of D
to correctly classify a sample x from the training set, in binary classification theory we would
call this prediction as true negative. The second term is the expected value of the logarithm of
the probability of D to correctly classify an artificial sample taken from G, again this prediction

22

Algorithm 1 Minibatch stochastic gradient descent training of generative
adversarial nets. k is the number of steps to apply to the discriminator.

for number of epochs do
for k steps do

• Draw a mini-batch of m noise samples {z(1), . . . , z(m)} from noise
prior z ∼ pz

• Select a mini-batch of m samples {x(1), . . . ,x(m)} from the training
set

• Update the discriminator’s parameters θd by ascending its stochastic
gradient:

θd ←− θd + ∇θd
1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G(z(i))

))]
end for
• Draw a mini-batch of m noise samples {z(1), . . . , z(m)} from noise

prior z ∼ pz
• Update the generator’s parameters θg by descending its stochastic

gradient:

θg ←− θg − ∇θg
1

m

m∑
i=1

log
(

1−D
(
G(z(i))

))
Table 1.2: Pseudo-code for training a vanilla GAN. Note that SGD can be replaced by every preferred
algorithm.

corresponds to a true positive in a binary classification scheme. In the minimax game, then,
we want to adjust D’s parameters in order to maximize the loss function, while θg has to be
optimized in the opposite direction, namely to grow the chances of D making a mistake. The
training algorithm is summarized in the pseudo-code in tab. 1.2.

It can be proven that if the discriminator is trained till optimality, theoretically, minimizing
the GAN’s loss function equals to minimize the Jensen-Shannon divergence (JSD) between the
generating data distribution pdata and pg, which is defined as:

JSD(pdata‖pg) = KL
(
pdata

∥∥∥pdata + pg
2

)
+ KL

(
pg

∥∥∥pdata + pg
2

)
(1.8a)

KL(p‖q) =

∫
Ω

p(x) log
(p(x)

q(x)

)
dµ(x) (1.8b)

where KL is the Kullback-Leibler divergence. JSD is a mesure of distance between probabilities.
In practice it is computationally proibitive to re-train D till optimality at every epoch, then
we employed the k steps for loop in the algorithm, that unfortunately does not ensure that the
discriminator is trained enough. This is the main source of instability in GANs’ training.

In practice we have to build two nets: the discriminator itself and a combined model of the
generator and the discriminator with freezed weights, that allow us to update G’s parameters
in a supervised way. Although the idea of realizing an unsupervised model through adversarial
training of two supervised nets is quite interesting, the authors of [4] themselves faced problems
of instability especially during initial phases of training and they proposed to change the second
term in the loss function with: logD(G(z)). This change leads to the same fixed point in the
dynamics of G and D, but provides much stronger gradients in the intial phases of training.
However this trick does not solve the instability problem in training. This is why a lot of

23

alternative improved forms of the GAN architecture have been proposed in recent years. In the
present work we discuss ls-GANs, wGANs and wGANs-gp.

The least squares GAN (ls-GAN) is an alternative form of generative adversarial networks,
introduced in [11]. In the article, authors redefine the objective function of eq. 1.7 and replace
it with:

min
D
LlsGAN(D) =

1

2
Ex∼pdata(x)

[(
D(x)− b

)2]
+

1

2
Ez∼pz(z)

[(
D(G(z))− a

)2] (1.9a)

min
G
LlsGAN(G) =

1

2
Ez∼pz(z)

[(
D(G(z))− c

)2] (1.9b)

where a and b represent the label scheme for the discriminator, respectively for artificial and real
data. The number c instead is the value that G wants D to believe for fake data. In our code,
we always fix b = c = 0 and a = 1. It can be proven that minimizing the objective function of
ls-GANs yields minimizing the Pearson χ2 divergence between pdata+2pg and pdata+pg, defined
as:

χ2
Pearson(p‖q) =

∫
Ω

f
(p(x)

q(x)

)
q(x)dµ(x) (1.10)

where f(t) = (t− 1)2.
This alternative architecture for GANs does not solve all the problems of the vanilla GAN: in

our work we found lsGAN very likely to fail converging to a good minimum of the loss function
and we then discarded it and turned to a stabler version of the model, the wGAN. As we
previously said, GANs are really difficult to train because the two models have to improve in
parallel: neither has to overwhelm the other, both have to become better step by step, otherwise
the training simply stops. It is clear that in an adversarial training D has to inform G about the
direction to follow in order to output better fake data, but this only works if G is in fact on the
right track. That is why if D is too powerful it can easily uncover the fake data, whereas if G’s
loss suddenly goes down, it means that the generator has found the way to fool D with some
garbage data that does not in fact even resemble the true samples.

Wasserstein GAN is an adversaral network framework, defined in [1], in which the cost func-
tion is modified in order to minimize the following earth mover’s distance, or wasserstein-1,
between probabilities:

W (pdata‖pg) = inf
γ∈Π(pdata,pg)

E(x,y)∼γ

[
‖x− y‖

]
(1.11)

where Π(pdata, pg) is the set of all joint distributions that have as marginals pdata and pg. We
can think of this quantity as the smallest amount of work needed to transport the mass difference
‖x−y‖ along each possible path γ in the distribution space. The fact thatW goes to zero implies
that also the difference between pdfs is going to zero.

Since the infimum in equation 1.11 is highly intractable from a computational point of view,
we end up minimizing the following objective function:

L = Ex∼pdata

[
D(x)

]
− Ex̃∼pg

[
D(x̃)

]
(1.12)

It can be proven that this equation sets un upper limit for the wasserstein-1 distance, if the
function defined by D is a 1-Lipschitz function. In order to enforce the Lipschitz constraint, we
introduce a weight clipping procedure on discriminator’s parameters. Weight clipping consists
in replacing the value w of every weight in a net with the quantity (sign(w) · c) if |a| > c, where
c is a real positive value. This way we are sure that weights lie in the compact interval [−c, c].
The weight clipping procedure must be applied every time we update the discriminator weights

24

Algorithm 2 wGAN with gradient penalty. Default values are: λ = 10,
nd = 5. nd is the number of D iteration per G iteration in a single epoch.
m is the mini-batch size.

for number of epochs do
for nd steps do
for i = 1, . . . ,m steps do

• Sample real data x ∼ pdata, noise z ∼ pz, a random number from
uniform distribution ε ∈ [0, 1]

• x̃←− G(z; θg)
• Interpolate real and fake samples: x̂←− εx + (1− ε)G(z; θg)
• L(i) ←− D(x̃)−D(x) + λ(‖∇x̂D(x̂)‖2 − 1)2

end for
• θd ←− Adam(∇θd 1

m

∑m
j=1 L(j))

end for
• Sample a mini-batch of noise from prior distribution z ∼ pz
• θg ←− Adam(−∇θgE[D(G(z))])

end for
Table 1.3: Pseudo-code for training a wGAN-gp. We discuss Adam algorithm in appendix A.2.

and unluckily it is very computationally expensive, since we have to directly access and edit all
the parameters in the net.

In order to avoid the time consuming weight clipping process we exploit an improved version
of the wGAN with gradient penalty (wGAN-gp), which was introduced in [5]. The algorithm
described in tab. 1.3 implement the pseudo-code for a minimax game with objective function:

L = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)] + λEx̂∼Px̂
[(‖D(x̂)‖2 − 1)2] (1.13)

where λ is a parameter which ensures that the three terms in the loss function are equally
important. The third contribute to L is a quantity that penalizes the model if the expected
value for the gradients in an iteration differ from unity. There exists a theorem which states
that a differentiable function is 1-Lipschitz if and only if it has gradients at most 1 everywhere,
therefore the introduction of gradient penalty in the objective function defines a way to enforce
the Lipschitz constraint alternative to the weight clipping procedure.

25

Chapter 2

Applications

In this chapter we present our work involving the wGAN-gp architecture and its applications to
two particular issues: data augmentation and anomaly detection. We present our work as follows:
first we discuss the dataset used for training and testing our setup, then we focus on training
the GAN architecture in section 2.2, section 2.3 gives a description of the data augmentation
problem, while in section 2.4 we deal with unsupervised anomaly detection. In order to help the
flow of exposure, we moved some big figures at the end of the chapter.

2.1 Dataset
In this section we introduce the dataset used as input of the algorithm. Our studies focus on
learning the probability distribution function of a one dimensional random variable x, which
takes values in the interval [0, 1]. We employ a generator of pseudo-random numbers to simulate
outcomes of x: we use functions implemented in NumPy library, in particular in the module
called random [6]. A sample in the dataset is an array of values corresponding to an histogram
of 256 bins computed from 10k points of outcomes of x. We refer to an example in the dataset
also as an image, since it has a grid shape and can be viewed as a one dimensional image. The
dataset is a mixture of images from different classes, depending on the particular functional form
of the pdf that x follows. We discriminate between six different probability distribution functions
(pdfs):

• exponential pdf ρ(x) ∼ exp(−8x);

• linear pdf: ρ(x) = 1− x

• exponential pdf plus gaussian signal in the tail: ρ(x) ∼ exp(−8x) + AN (0.8, 0.02), where
N (µ, σ) is the gaussian distribution centred at mean µ with variance σ2;

• exponential pdf plus gaussian signal in the bulk: ρ(x) ∼ exp(−8x) +AN (0.2, 0.02);

• linear pdf plus triangular signal in the tail: ρ(x) ∼ 1− x+AT (0.8, 0.02), where T (a, b) is
the triangular distribution peaked in a, with lower and upper limit equal to (a − b) and
(a+ b) respectively;

• linear pdf plus traingular signals in the tail and in the bulk: ρ(x) ∼ 1−x+A[T (0.8, 0.02)+
T (0.2, 0.02)].

26

class pdf

0 exponential or linear
1 exp + gaussian N peak in the tail
2 exp + gaussian N peak in the bulk
3 linear + triangular T peak in the tail
4 linear + T peak in the bulk and in the tail

Table 2.1: Summary of classes in the dataset

A is a coefficient that measures the relative height of the anomalous peak: in our experiments is
fixed to 5 · 10−3.

We arrange the pdfs in in five classes: we group together exponential and linear pdfs and
refer to them as normal or background, while the others are usually called anomalous. Tab. 2.1
summarizes dataset composition, while fig 2.0 (end of the chapter) shows different panels with
normal and anomalous images randomly picked out from the dataset. The number of images per
class in the dataset depends on the model we have to train: for GANs’ training, indeed, only
images from a specific class are employed, whereas for classifiers’ training the number of images
must be balanced between classes, otherwise the models can easily reach better values for the
loss simply learning the most represented class and neglecting others.

We have just described the composition of training sets. Test sets are a little different, since
we would like to be sure that processing them with trained models gives a good estimate of
the generalization error. We refer to test sets with the term "featured", in order to underline
that we sometimes apply little transformations on images, such as left/right shifting or smearing
parameters that control the shape of either the pdfs or the anomalous signals (A parameter,
mean standard deviation of the singal). This way we ensure that the model has never seen such
images during training.

(a) Exponential pdf (b) Linear pdf

27

(c) Class 1 (d) Class 2

(e) Class 3 (f) Class 4

Figure 2.0: Example of classes in the dataset. Plots (a)-(b) refer to normal images. Plots (c)-(f) show
anomalous images, the curve in each upper box describes the ratio ys

i −yb
i

yb
i+1E−10

, where yb/si is the mean
value (across the background/signal images in the dataset) of the i-th bin in the histograms.

(a) Generator G.

(b) Discriminator D.

Figure 2.1: wGAN-gp model’s architecture.

2.2 GAN training
Our work focuses on implementing different types of GANs as discussed in section 1.2.4. Ac-
cording to our experience, the best performing architecture is the wGAN-gp. The problem in
training a GAN is mainly due to the instability of the minimax game: in adversarial training
the algorithm converges if a dynamical equilibrium is reached between the discriminator and the
generator. In game theory this situation is called Nash equilibrium. The issue concerning Nash
equilibrium is that it is really difficult to find it searching in the multi-dimensional parameter
space. In principle, training history, namely records of all loss function’s values at each epochs, is
not informative regarding the success of training: a small loss’ value does not imply good quality
of images generated by G. Nevertheless, there are some recurrent patterns that clue a successful
training.

Although we tried different architectures as explained before, our experiments are based only
on wGAN-gps, since their training is more stable than that of other kinds of GAN. They require
minimal parameter tuning compared to the original model proposed in [5] and are less likely to
collapse generating only random noise images. Both generator and discriminator are deep models:
fig. 2.1 shows how layers are stacked in order to form these nets. 2-dimensional convolutional
layers are used to inspect images: in order to fit convolutional kernel’s size, samples are pre-
processed adding a second dimension of lenght one in the array. According to the discussion in
section 1.2, convolutional layers, unlike dense ones, introduce some benefits (sparse interactions,
parameter sharing, equivariant representations) that we would like to exploit.

It is important to note the role of activation functions: inside the generator in particular we
used ReLU because the output images are non-negative arrays of values. Further improvements,
beyond the scope of the present thesis, can be made in the design of the model in the following
sense: since ReLU activation function allows the generator to output exact zero values for bins
in the tail, one possible issue could be that after training G cuts to zero tails of distributions.
We will in fact highlight this again in a following paragraph. We suggest to cure this behaviour
substituting the final ReLU with an ELU, which provides a more smooth trend where the pdf
described in an image approaches zero values. ELU activation indeed does not cut to zero
negative values, it tries to interpolate the transition from positive to negative values with an
exponential form.

The code is written in Python language and based on version 1.10 of TensorFlow library [8].
None of the high level Keras Application Programming Interfaces (APIs) are used to implement
neural networks, because we would like to have the best possible control over the model. Therefore
we code the entire algorithm starting from low level tensorial manipulations. We define functions
containing instructions on how each layer performs (we work with dense, 2D convolutional and
2D convolutional transposed layers) and then we implement a class called GAN that groups

29

Parameter Value

α 0.2
momentum 0.48641

ε 1E − 5
optimizer Adam
initial lr 1E − 4
batch size 128
epochs 30
D capacity 861 953
G capacity 6 317 185

Table 2.2: GAN hyperspace.

properties describing all the GAN’s parameters and methods that allow the compiler to initialize
(in this stage we build the model stacking the corresponding layers and defining its loss function),
train (here we set model’s optimizer) and test the model. We note that the same approach is
employed with classifiers with the implementation of a class called DISC.

In every described experiment we will always train a GAN over a set of 25k images belonging
to the desired class, for 30 epochs and fixing the batch size for the optimization at 128 examples
from the dataset. We decide to set the number of epochs to such a relatively small value,
considering that the algorithms take approximately 30 minutes to finish on an NVIDIA GeForce
GTX 1070 GPU and in the following, during simulations, we will implement 60 different models.
Finally and more importantly, we see that the quality of images does not substantially improve
from 30 epochs up to 100 epochs. Tab. 2.2 lists GAN’s hyperparameter values. Momentum and
ε are parameters of the BatchNormalization layer, defined in [9].1 α is the parameter used in
LeakyReLU activation.

Within the list of hyper-parameters figures the initial learning rate of Adam optimizer, cor-
responding to the value of 1E− 4. We call it "initial" because we apply a learning rate schedule:
the plan consists in halving the learning rate once the discriminator’s loss is sufficiently small,
in particular when it is in the range [−0.25, 0.25] after ten epochs of training. Since Adam is an
adaptive learning method, it is not suggested to implement learning schedules, but we find this
ad hoc strategy very effective, allowing us to generate more precise artificial images, as pointed
out in fig. 2.2, shown at the end of this section.

During training, we checkpoint the model at each epoch. The big issue concerning GANs is
how to find the best model within the set of saved nets: simply looking at loss’ values do not
ensure good performances. We would like to implement a selection algorithm that signal which
is the generator that output the best looking artificial samples. We initially used to choose best
G, inspecting each generator by eye, but this not automated method takes too much time when
there are a lot of models. Furthermore, we would like to erase any form of subjective decision
from our experiments, according to the experimental method. In order to overcome this problem,
at the end of each epoch of training, we sample from G a batch of images and perform over them
a chi-squared test. This test evaluates the distance of the distribution of the mean over the
generated sample from the reference distribution of the mean over a batch of real images from

1BatchNormalization layer helps to reduce covariate shift. The term covariate shift refers to a change in the
distributions of layers’ inputs. In deep FFNN, final layers experience as input the output of the upstream layers,
then a change in net’s parameters can be amplified while feedforwarding, forcing later layers to continously adapt
to new distributions. This behaviour can dramatically slow down learning, then BatchNormalization layers act
as architecture embedded regularizers.

30

the training set. Formally, a chi squared test is defined by:

χ2 =

nbins∑
i=1

(Ei −Oi)2

Ei

where Ei and Oi are respectively expected (real images) and observed (artificial images) his-
togram’s values. We keep only the five models with the lowest chi squared result and select the
best one from them inspecting by eye this smaller subset.

This proposed algorithm saves some time, but unfortunately do not solve at all the subjec-
tivity issue described above. We leave the addressing of this problem for further studies, noting
that one way out could be keeping track of several statistical metrics across epochs (not just
chi squared) and selecting the best model according to the one that performs better in most of
these quantities. We mention some tests and metrics that can be useful in this direction, such
as Kolmogorov-Smirnov test, Kullback-Leibler divergence, Jensen-Shannon divergence, Wasser-
stein 1 distance and in general all the f-divergences. A little of post-processing in this evaluation
could be needed: it would be interesting to know how the chosen metrics change when little
trasformations, like shifting or smearing, are applied to artificial images. The best model should
have the well-desired quality of being roubust against this small perturbations.

In the following we perform a data augmentation task with GANs, enhancing the dataset of a
new classifier, in order to test improvements in classifications. We train several wGAN-gp models
for each of the classes in the dataset described in section 2.1. Fig 2.3 displays some examples of
fake and real images from trained models.

31

(a) Epoch 3 (b) Epoch 8

(c) Epoch 16 (d) Epoch 17

(e) Epoch 29 (f) Smoothed Losses

Figure 2.2: wGAN-gp training session. Plots (a)-(e) display the evolution during epochs of the images
generated by G. Note the decrease of generated images’ standard deviation on the mean (yellow bands)
from epoch 16 to epoch 17, due to the special learning rate schedule. Box (f) shows loss functions’
trends: discriminator’s loss contains informative details. During the initial 5 epochs, the curve is spiky,
reporting that training has to get stabler yet and correspondent images are dominated by random noise
(compare it with figure (a)). The vertical dashed line corresponds to learning rate’s halving. Right after
the line a little bump appears in the curve, due to the employed Adam optimization algorithm. We
showed that despite this enhancement, this method improves the image quality. Generator’s loss instead
has the typical pattern of the blue curve. It is not informative, in the sense that lower values of the cost
function do not always imply better images.

(a) Class 0, exp. (b) Class 0, linear.

(c) Class 1. (d) Class 2.

(e) Class 3. (f) Class 4.

Figure 2.3: Examples of generated and real images. x axis’ labels correspond to the numer of bin in the
image, rather than the value of the random variable. Conversion is made with the formula: x = nbin/256.
Fake ones are almost undistinguishable from reals, the only issue is the one regarding the relationship
between ReLU and ELU activation functions that causes the cut in tail clearly visible in plots (e)-(f).

2.3 Data Augmentation
Data augmentation in ML literature is a technique exploited to enhance small datasets. In
medicine and other fields of application supervised techniques are strongly penalized by the lack
of enough labelled data. In medicine, for example, data that come from invasive medical tests and
exams can not be simply carried out for the purpose of collecting large datasets. New images are
usually created from original ones, applying on them little transformations, such as rotations,
introduction of gaussian noise, cropping, flipping and scaling. In HEP, instead, a potentially
infinite number of data is available thanks to MC simulations.

In this thesis the aim of data augmentation is not just to enhance a small dataset, but also
assess the quality of GAN generated images. The experiment consists in training a GAN for each
of the classes of images in the training set of a multiclass discriminator. Hence, we exploit G to
output an arbitrary number of artificial images to be inserted either in the classifier’s training
set or in its test set, rather than in both of them. We expect two possible outcomes of the
experiment: in the first case the artificial data have a bad quality and spoil the classification,
alternatively they are good enough to mantain performances of the classifier as it were before
augmentation or even improve them.

We perform two different experiments: a reduced one and a complete one. In the former we
implement a binary classifier, that tries to distinguish between just two particular classes of the
dataset described in section 2.1, namely images belonging to the class 0 with exponential pdf
and class 1, the exponential pdf with a signal in the tail. In the latter we use the full dataset
including images drawn from all the possible pdfs and we implement a multiclass discriminator.
Data augmentation is made with images coming from two and six GANs respectively. Fig. 2.4
shows the architectures of the classifiers, while hyper-spaces are summarized in tab. 2.2a and
tab. 2.2b. Note that the number of C’s trainable parameters, the capacity, in the reduced problem
is less than the complete form of C by a factor of 10. This is a natural choice, since model’s
capacity parameter has to be proportionate to the complexity of the dataset to be learnt.

Each training set is made of 10k images, equally divided between the classes of the corre-
sponding classifier. From training set we hold 15% of the images to be used as a validation set.
Test set, instead, counts 5k featured images equally divided between classes as well. In order to
fix the hyper-parameters of the two classifiers, for each we run 200 trials of hyperopt optimization
algorithm, maximizing model’s accuracy on validation data. The classifier loss function in both
cases is the sparse softmax crossentropy. Models are trained for a high number of epochs, namely
500. But since early stopping is employed to prevent overtraining, every instance of C trains for
a different amount of time. We set early stopping with a patience of 10 epochs and stop training
when model’s accuracy has not experienced any improvement. We check for this improvements

(a) Reduced problem.

Parameter Value

α LeakyReLU 0.2
batch size 74
optimizer RMSProp

learning rate 2.0452 · 10−4

C capacity 83 639

(b) Complete problem.

Parameter Value

α LeakyReLU 0.2
batch size 71
optimizer Adam

learning rate 4.1561 · 10−4

C capacity 832 904

Table 2.3: C’s hyperspace.

34

(a) C reduced problem.

(b) C complete problem.

Figure 2.4: Classifiers C.

(a) Augmenting test set. (b) Augmenting traininig set. (c) Augmenting both test and train-
ing set.

Figure 2.5: Reduced problem: classifier’s accuracy as a function of the augmentation percentage. Taking
the mean of the accuracy in the three instances of C at p = 0 yields the reference value of 92± 6%.

only after the 50-th epoch and from that time, every 10 epochs.2
In summary, each experiment consists in training a GAN for each class in the problem.

Then we train three instances of the classifier C, with a fixed augmentation percentage p: one
augmenting its test set, one augmenting its training set and one augmenting both.3 The aim
is to check performances of C when p ranges in the interval [0, 2] with steps of 20%. Since the
algorithm is not deterministic, we are interested of presenting results with a consistent statical
support. Therefore we repeat the experiment 10 times, in order to compute mean values and
standard errors on the mean.

Fig. 2.5 and fig. 2.7 - 2.9 display results for the reduced experiment in terms of accuracy
trends and classification matrices respectively. Plots show that the reference value for accuracy,
when augmentation percentage p is zero, equals to 92 ± 6%. This estimate is provided by the
mean of the values extracted from the three confusion matrices with p = 0. With this in mind
we present results divided in the three different approaches to data augmentation of a classifier’s
dataset.

• Augmenting test set: classification accuracy clearly decreases as p increases. This behaviour
is perfectly natural, since we are testing models on images that they have never processed.
Confusion matrices tell in particular that models completely mis-classify exponential images

2The optimization in early stages of training is unstable: loss and accuracy fluctuates before settling. Then
early stopping may be triggered before the model has even learnt nothing.

3Augmentation percentage is the fraction of GAN generated images we add to a particular dataset over the
total number of examples in the same dataset before augmentation.

35

(a) Augmenting test set. (b) Augmenting traininig set. (c) Augmenting both test and train-
ing set.

Figure 2.6: Complete problem: classifier’s accuracy as a function of the augmentation percentage.

as p increases, they in fact simply randomly guess the label, leading to an accuracy next to
50%. Even accuracy over class 1 images slightly drops in the p = 200% confusion matrix.

• Augmenting training set: accuracy distribution is basically flat, has most values are around
96%. Some points have lower accuracy with a large error, but are equally consistent with
the flat trend. Therefore GAN generated images in the training set do not spoil the
classification.

• Augmenting both: again the figure shows a flat trend for the accuracy, but globally this
quantity is higher in this kind of augmentation than in the others. This signals that artificial
images are correctly learned by Cs.

Fig. 2.6 and fig. 2.10 - 2.12 depict results of the complete experiment in the same way as
before, with trends and confusion matrices. This time our algorithm records a reference accuracy
of 78± 3 when p = 0. We immediately note that a multiclass discrimination is far more difficult
than a binary one. In particular, models struggle in learning the difference between class 3 and
class 4, resulting in off-diagonal high entries for the 2× 2 submatrix in the lower right corner of
confusion matrices. Another important source of mis-classification is given by mistakes between
class 2 and class 0, due to the similarity of the exponential pdf and the exponential plus bump in
the bulk one. Data augmentation with the completed experiment provides more marked trends
than in the previous problem.

• Augmenting test set: left panel of fig. 2.6 show a smooth decrease in accuracy.

• Augmenting training set: after an initial increase in performances, accuracy drops. This
probably because augmenting the training with more and more artificial images cause the
model to be focused in learning their distribution which could be slightly different from the
real images’ one. This behaviour suggests that our algorithm leaves constant performances
of the classifier up to about 100% of augmentation, in the range [0, 50%] results are even
better, but after that point trend reverses and definitely worsens the accuracy. Confusion
matrices underline that the problem resides in the classification between classes 3-4 and
0-2.

• Augmenting both: right panel of fig. 2.6 prove again that, in fact, GAN generator outputs
good quality images, that are correctly classified by C with increasing accuracy as the
augmentation percentage increases. Except from the point at p = 140%, that corresponds
to a drop in performances probably due to a failure in some of the trainings that lowers

36

a lot the mean value, the trend is clearly positive. We reach an accuracy of 89 ± 2 at
p = 200%, that corresponds to a relative increment of 14% with respect to the reference
value.

Alongside clean trends in plots, there is always a source of randomness in training that leads
to unconsistent points with global trends or unexpected large errors. Randomness in our training
procedure has to main contributions. The first one is the fact that GAN’s generator samples
images from gaussian random noise (with mean 0 and variance 1). It could be interesting to
study what happens when fake images are generated by G from gaussian noise centered at a
slightly different mean value. The second factor that contributes to randomness in the algorithm
is the process of training itself: weights in the net are randomly initialized, samples in the dataset
are feeded in batches to the model in casual order, shuffling of the training set is applied at each
epoch end. The optimization algorithm do not always start at the same point in net’s parameter
space and do not even follow the same updates’ path during every training.

We can conclude from our experiment that data augmentation with the trained GAN gener-
ator helps classification, even in the complete multiclass mode, if the augmentation percentage is
kept below the 50% threshold. Fake images from G are not drawn from the same data generating
distribution as the real ones. Discrepancy between the two functional forms is the main reason
of performances’ worsening above threshold. A deeper study in GAN architectures and model
designing might improve the obtained results.

37

(a) p = 0 (b) p = 100% (c) p = 200%

Figure 2.7: Reduced problem: augmenting test set

(a) p = 0 (b) p = 100% (c) p = 200%

Figure 2.8: Reduced problem: augmenting training set

(a) p = 0 (b) p = 100% (c) p = 200%

Figure 2.9: Reduced problem: augmenting both test and training set

(a) p = 0 (b) p = 100% (c) p = 200%

Figure 2.10: Complete problem: augmenting test set

(a) p = 0 (b) p = 100% (c) p = 200%

Figure 2.11: Complete problem: augmenting training set

(a) p = 0 (b) p = 100% (c) p = 200%

Figure 2.12: Complete problem: augmenting both test and training set

2.4 Anomaly Detection
In this section we evaluate performances of GAN’s discriminator as an unsupervised tool that
warns the user of a tension in inspected images, due to anomalous signals, from the reference
pdf learnt during training. The idea is to employ Ds trained over background images, following
either exponential or linear pdfs, to process a featured test set made of 5k images containing all
possible types of histograms. We train 20 wGAN-gps and predict the loss score of each example
in the test set. We would like this score to answer the question "is the sample fake?", therefore
consider from wGAN-gp’s loss function just the second term, red circled in fig 2.13.

Figure 2.13: wGAN-gp loss. Red circle highlights discriminator’s estimate of the image to be anomalous:
greater values signal greater probabilities of the sample to be anomalous

Of course, GANs trained over exponential images are feeded only with exponential-like images
(normal exponentials, class 1 and 2), while the others experience linear-like examples. We first
build for each trained D its estimates of the pdfs of background and anomalous images. In order
to reach this aim, two histograms of scores’ records are computed from background images and
anomalous ones. The separation between the two curves gives the discrimination power of the
corresponding D. Since each instance of the discriminator comes from a separate training, scores
range in very different intervals, then a standardization of the pdfs is applied: we process the
entire gan’s training set and evaluate from it the mean and standard error of the scores and with
these values standardize test set’s results.

Fig. 2.16 - 2.17 show outcomes of the described procedure. These plots prove that D in fact
succed in discriminating between background and anomalous images. In order to quantitatively
evaluate the goodness of these discriminators, we will separately train four different supervised
classifiers and compute their pdfs over the same test set as before. Binary classifiers are trained
with slices of the 10k images dataset (retaining the relevant classes only) used also in the data
augmentation application in section 2.3. We expect from comparisons of supervised and un-
supervised models a simple qualitative outcome regarding performances: supervised classifiers
have a greater quantity of available information during traning, because they have access to
samples’ labels, therefore it is perfectly natural that an unsupervised algorithm performs worse.
This unavoidable drawback in unsupervised discriminators is offset by the fact that these tools
are sensitive to a wide spectrum of anomalies. We would like to compare the two approaches
quantitatively: a ROC curve for each GAN’s dicriminator is drawn together with ROC curves
for supervised classifiers in fig 2.15.

Our final goal is to integrate all the unsupervised discriminators trained on exponential-like
and linear-like images in two different tools for anomaly detection. Trasparent ROC curves in
those plots make clear that each D performs better in a specific region of the ROC space, indeed
none of the curves lies above the others in the whole range of the plot. The aim is to find a receipt
that allows to process each sample in the test set with all the 10 discriminators, but records only
the best score. The best score, in this case, is the one that creates a better separation between the
two pdfs in the classification. The perfect situation is when this algorithm automatically selects
the smallest possible output within the ten given from a background image and the greatest from
an anomalous one. The problem is that, since unsupervised learning must be performed, we do
not know a priori data’s labels while predicting them. Moreover, in principle, we can not take
any decision looking at anomalous pdfs’ shapes, because before the final assessment, training is

40

done only with background images.4
We investigate two possible strategies. The first one is to retain for each image in the test

set the maximum score within the 10 provided. This option is motivated by the fact that
discriminators should perform well on normal images producing a pdf sharply peaked around
zero, because they have already experienced background data during training. In comparison
discriminators’ response to anomalous samples is less predictable. This idea is confirmed from the
20 plots presented, because the light blue shaded area is almost the same across all of them, unlike
the green and red step curves. Then taking maximum values should shift right the anomalous
pdf of the final discriminator enhancing separation between pdfs, the hope is that the normal
one stands in its place almost unchanged after this operation. The ROC curve produced by this
selection algorithm is shown in the figures below with point dashed lines. The second algorithm
we propose consists in selecting the best discriminator from the group of ten, that has the lowest
90-th quantile of the background pdf. The underlying idea is that the discriminator with the
background pdf closest to a delta function centred in zero can hardly overlap with the anomalous
pdfs. In the ROC space’s plots this curve is labelled as the "best quantile" line.

We compare performances of the unsupervised discriminators with four supervised binary
classifiers trained on the following mixtures of images:

• exponential background images and class 1 (exponential plus peak in the tail);

• exponential background images and class 2 (exponential plus peak in the bulk);

• linear background images and class 3 (linear plus peak in the tail);

• linear background images and class 4 (linear plus peaks in both tail and bulk).

Classifiers’ architecture and training methods are the same as those in the reduced problem in
section 2.3. Fig. 2.14 shows the scores’ pdfs built as histograms computed from slices of the
5k images test set. Plots prove that, except from C trained on exponential and class 2, binary
classifiers achieve almost perfect separation between pdfs: background images are predicted as
zeros, while anomalous ones are predicted as ones. Just a few images are mis-classified. Fig. 2.14b
highlights that even a supervised classifier do not manage to tell perfectly apart exponential
images and class 2 images. The light blue pdf has an heavy right tail, while the green function
has a high peak placed at zero: there is an high probability that C predicts a score of zero for a
class 2 image. This model is the most difficult to assess, probably a different architecture should
be considered for this specific classifier in order to improve its performances.

Fig. 2.16 and fig. 2.15a provide a complete picture about anomaly detection of exponential-
like images: plots (d)-(e)-(f) achieve the largest separations between pdfs, but, as we can see, the
discrimination is mostly due to the correct prediction of class 1, while the red curve has a little
contribution in the region to the right of the light blue area. Therefore class 2, as happend for
the supervised classifier, is hardly told apart from background images, except in discriminators
(b)-(d)-(i) that have a small enhancement just outside the light blue area. ROC curves prove
that the GAN discriminator with the highest AUC succeds in overpowering the exponential-class
2 supervised discriminator, which, in fact, has poor discriminating powers. Maxed scores are
better than the best GAN in the FPR range [0.04, 0.2], after that they are almost the same,
indeed their difference in AUC is only of 7‰. The best quantile curve instead is not effective in

4In real life experiments, we can produce an arbitrary amount of background events and consequently of
normal images following SM distributions from a MC generator. However, we can not specify the alternative
BSM scenario, otherwise we would fall in the conventional supervised approach. Selection receipts can take
advantage on the exact form of scores’ pdf of background examples, but not on the shape of the one evaluated on
the anomalies.

41

(a) C with linear and class 4 images (b) C with linear and class 4 images

(c) C with linear and class 4 images (d) C with linear and class 4 images

Figure 2.14: Supervised classifiers’ pdfs of background and anomalous images. Almost perfect discrim-
inations are achieved, except for the classifier trained over exponential and class 2 (exponential plus
gaussian peak in the distriution’s bulk) images. Panel (b) shows how even a supervise model struggles
in this classification.

this case. Finally we note that the performance loss in employing an unsupervised tool in place
of the supervised classifier (with respect to the exponential-class 1 classifier) is about of 21%.5

Within the plots in fig. 2.17 the best is without any doubt the a one. Also discriminator j
provides good separation between the two pdfs, because the background distribution is really
focused around zero with just few points in the tail. In the linear-like case discrimination is helped
by class 4, that gives larger contributions outside the light blue area. This fact is probably due
two the shape of the anomalous pdf of class 4 images, that has two gaussian peaks instead of
one and makes calssification easier. Fig. 2.15b show that "max scores" strategy has an AUC
parameter less than 2% the best GAN, this is probably because the best GAN performs far
better than others, than "max" operation corresponds to consider just its outputs and neglect
others. Performance loss in this case corresponds to a difference of AUC of 22% between maxed
scores and the supervised classifier linear-class 4.

We note that the employed method might not be the most effective one. It is based on the
5Recall from the definition of Area Under Curve that this loss implies that we have 20% less probability that

an anomalous image obtains an higher score from the detector than a background one.

42

(a) Exponential-like images (b) Linear-like images

Figure 2.15: ROC curves.

idea that "in GAN training, best model for G implies also best model for D" since they are
trained together adversarially. This, in fact, is not necessarily true. A further improvement of
the technique could be to select the best model for the generator and train the corresponding
discriminator till optimality with G fixed. This trick would probably enhance performances
in anomaly detection and give models that perform without big differences between each other.
Moreover, if the pdfs on background and anomalous images were similar, they could be compared
in order to build plots supported by statical analysis with mean values and error bars, as done
in the previous section.

Plots of ROC spaces prove that for small values of FPR, the "max scores" strategy always
underestimate the optimal GAN discriminator. Small values of FPR implies an high value of the
threshold used to discriminate between the two classes in a binary problem: we are looking at
right tails of distributions. There, the problem is that we could not have enough points to build
correctly the histogram that estimates the pdf, a lot of bins remain empty and this methods
does not give good results. Further improvements could be made enlarging test set in order to
populate more the tails with rare events. In any case, our study assesses that the "max scores"
strategy performs better than the one based on the least 90-th quantile. Maybe it could be
combined with another ad hoc strategy that gives good results in low probability regions, but
the reassuring fact is that in the bulk of the pdf the chosen receipt performs well.

43

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2.16: Pdfs of GAN discriminators’ scores over exponential-like images. Red and green histogram
are stacked to visualize the contribution of each class to the anomalous pdf. Class 1 is better separated
than class 2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2.17: Pdfs of GAN discriminators’ scores over linear-like images. Since class 4 has two peaks in
its pdf, D has a better discriminative power for this particular anomaly.

Finally, we focus on evaluate further the quality of supervisely trained binary classifiers
with data augmentation. Each of these models perform almost perfectly in its correspondent
competence area, except the one trained with exponetial-class 2 images. We would like to cross
test if they also have the ability to classify images from other classes. Fig. 2.18 presents the pdfs
of each classifier evaluated on the test set’s images.

• C trained with exponential-class 1 images identifies all linear-like images in the test set
as aomalous, while the class 2 is mainly classified as background, but a non negligible
amount of these images are predicted with score 1. We can not conclude that the model
has good generalization properties, because seems that it is not sensitive to all gaussian
or triangular anomalies regardless of where they are. Moreover it is strange that this
discriminator classifies linear images as anomalous, since they do not present any peak in
the pdf.

• Fig. 2.18b shows that the correspondent discriminator has difficulties in learning even its
competence images, indeed class 1 images give an almost flat distribution: there is high
probability to classify them as normal images. Linear-like classes instead are all almost the
same, sharply peaked next to one.

• Linear-class 3 classifier’s cross pdfs tell that the discriminator behave the same with ex-
ponential and class 2 images, this is understandable since they are really similar. Class 1
instead has a pdf concentrated under the threshold value of 0.5. Then all exponential-like
images are told to be normal from this classifier. The most problematic issue in this cross
checking is that the classification of class 4 resembles the behaviour of random guessing,
probably caused by the fact that class 4 has the same peak of class 3 plus another peak in
the left of the distribution that confuses the model.

• The last classifier, namely the one trained over linear-class 4 images behaves the same as
the previous one. The only difference consists in the presence of much more points from
classes 1 and 2 that have scores above the 0.5 threshold.

We conclude that these models do not have the ability of generalizing to other regions of the
test set. They can not be employed as anomaly detector of course, because they are strongly
bounded on the functional forms of the two alternative pdfs they were trained on. This is an
example of the situation pictured in the introduction, regarding the fact that supervised models
can not be sensitive to signals of nature different from the one they are looking for. Nevertheless
it is interesing to observe in the present case that exponential-class 1 and exponential-class 2 view
linear-like examples as anomalies, whereas linear-class 3 and linear-class 4 predict exponential-
like histograms as background. The motivation could be found in the fact that exponentials have
thin tails while straight lines have thicker ones. In our datasets, anomalies introduce peaks in
distributions, but in light of the cross check performed we might say that discriminators try to
generalize to other images according to the thickness of the tails rather than on the spikes found.

ROC space allow us to view how performances of a binary classifier vary depending on the
threshold used to discriminate between classes. Fig. 2.19 show how the ROC curves change while
augmenting the training set from 0 to 200%. The exponential-class 1 classifiers achieve optimal
results until the FPR value of 0.02. Below 1% we have a resolution problem since we computed the
background and anomalous pdfs with the histogram method with 100 bins. The AUC parameters
get worse with augmentation, but the plot shows no correlation between p and AUC. Fig. 2.19b
is the most interesting one because the case p = 0 has the worst AUC value. We measure an
improvement in this parameter at most of 0.19 between p = 0 and p = 20% curves. This fact
might imply that when the classification is not good without augmentation, the introduction of

46

(a) C trained over exponential images and class 1

(b) C trained over exponential images and class 2

(c) C trained over linear images and class 3

(d) C trained over linear images and class 4

Figure 2.18: Cross tests of binary classifiers in and out their regimes of competence.

(a) C trained over exponential images and class 1 (b) C trained over exponential images and class 2

(c) C trained over linear images and class 3 (d) C trained over linear images and class 4

Figure 2.19: Area under curve - augmentation percentage

arificial images can help increasing performances, adding more separation between background
and anomalous pdfs. The linear-class 3 and linear class-4 cases are perfectly aligned with this
idea, because since their discriminations are good when p = 0, data augmentation do not help
improving the AUC parameter.

This hint is supported by plots in fig. 2.20 which prove that augmenting training sets in a
situation of good classification, say with initial AUC above 95%, does not translate in improve-
ments correlated with p. Otherwise in a bad initial situation, like in case of the exponential-class
2 classifier, our experiment shows that the introduction of artificial images in training set leads
to an improvement in AUC parameter at most of about 19%.

48

(a) C trained over exponential images and class 1 (b) C trained over exponential images and class 2

(c) C trained over linear images and class 3 (d) C trained over linear images and class 4

Figure 2.20: Area under curve - augmentation percentage

Chapter 3

Conclusions

In the present thesis we performed a feasibility study exploiting machine learning unsupervised
training techniques in order to investigate anomalies in high energy physics. This preliminary
study paved the way to future extensions in the context of real-life applications. We worked out
several experiments on toy datasets, presenting two applications of the GAN system.

We studied how data augmentation can improve performances of a classifier either binary,
either multiclass. Diagrams representing accuracy as a function of data augmentation percentage
showed that our GAN can be employed, up to 50% of augmentation, as a consistent way to
enhance supervised algorithms’ performances. This procedure can be refined to increase this
threshold value and, as explained in the introduction, to use GAN’s generator as a support for
MC simulations. This way, large amount of computational resources, that sample large datasets
with MC generators, can be avoided. A well trained GAN generator can output a large amount
of artificial data in far less time and with less storage memory needed. The issue would be to
estimate the systematic error to which we expose ourselves with this method: GAN’s training
takes the generator to be an estimator of the data generating distribution, but always with a
certain discrepancy between the real and the learnt pdfs; then we can sample a potentially infinite
number of fake data that lead to zero random errors in computations, meanwhile introducing an
increasingly more dominant systematical error. An efficient GAN training algorithm can then
support a MC generator to improve performances of existing supervised methods, in addition to
saving time and size-on-disk costs to study new experimental and theoretical models.

With the anomaly dection application we built an instrument that allow us to classify anoma-
lies in a model independent way. This could help the scientfic community discovering new beyond
standard model physics. Performance loss with respect to the supervised case is in the order
of 20 percentage points in the area under curve parameter. Despite this fact, training several
supervised models is not an effective way of searching for new physics in terms of training time
and the possibility to miss signals present in data due to a wrong selection of the alternative
hypothesis. We believe that a general question like "does data contain any kind of anomalies?"
must be addressed with the most general possible strategy. Therefore the model independent
approach is best suited to the problem. Once tension between the reference model and data is
found, it will be possible to investigate further the sample with powerful specifical supervised
methods, tailored on the dataset, in order to identify the correct model with which we represent
the new physics.

Experiments in this thesis were made over a simple dataset of images representing one di-
mensional binned histograms. Nothing forbids to substitute this image approach with a dataset
made of events of a random variable, instead of images of its probability distribution function.

50

Moreover GAN architecture’s design can be improved and adapted to more complicated datasets,
maybe based on MC generated data following realistic processes of SM and BSM physics. We
judge experiments’ outcomes as globally positive, meaning that the work done confirms that this
research direction is a fertile ground for future developments. Some improvements were given
throughout the exposition, while other issues remain still open questions, such as the choice of
the best model in GAN training, either for the discriminator and the generator, or the best
receipt that returns the best anomaly detection score within the pool of available ones. In ma-
chine learning literature new methods and algorithms are continously proposed and are always
evolving, therefore future further improvements with respect to presented results are guaranteed.

51

Appendix A

Optimization Algorithms

Equation 1.6 is the core ingredient in the process of learning. Without Gradient Descent (GD)
we would not be able to properly tune hundreds of thousand of parameters or even more. This
algorithm is a simple idea that performs well in the case of a convex loss function. Unfortunately,
when we deal with large nets, the landscape of the loss function is much more complicated and
the naive GD or its Stochastic form do not ensure algorithm’s convergence to a global minimum,
unless perfectly tuned. This section presents two common and more improved optimization
algorithms, that implement new ideas to cure some unstable behaviours of SGD.

A.1 RMSProp
SGD performs bad when it has to come across a path in the loss function landscape where
gradients in one direction are greater than gradients in all other directions (like ravines). In
fig. A.1 we draw this situation in a two dimensional problem. Ravines often occur around local
minima and cause the algorithm to oscillate in the vertical direction, making only very little
progresses in the horizontal one. A technique called momentum was invented in order to reduce
oscillations and provide a stabler convergence to the minimum. As a result, stability of this
method allows to set learning rates to larger values, speeding up the algorithm. The idea behind
momentum is driven from classical point dynamics: if a ball is thrown down a hill, it accelerates
increasing its momentum and going downhill faster and faster. When momentum is high, it is
more difficult for the ball to make sharp turns in the wrong direction.

Figure A.1: Oscillations of the SGD algorithm around a local minimia. The red point is the minumum,
gradients give great contributions in the vertical direction, resulting in slow convergence.

52

RMSProp optimizer implements these ideas. During the t-th step, it adds a fraction γ of the
update vector of the past step to the current update vector:

v(t) = γv(t− 1) + η∇θL (A.1a)
θ ←− θ − v(t) (A.1b)

where η is the learning rate as usual and γ is called momentum. Momentum term is usually set
to a 0.9 or a similar value. This way the update vector v account for the sum of all the past
collected gradients weighted with the exponential dumping parameter gamma:

v(t) = γtv(0) + η

t∑
k=0

γt−kgt (A.2)

where gt is a shorthand for the gradient w.r.t net’s weights at step t, ∇θL(t). The problem with
this method is that as more steps are taken in the same direction, v keeps increasing and when
the minimum is reached its value is too high for the ball to be slowed down at the opitmum
point.

Nesterov accelerated gradient (NAG) method try to face this problem, computing gradients
of the loss function not in the current position θ, but approximately in the position where the
ball will be after the update:

v(t) = γv(t− 1) + η∇θ−γv(t−1)L (A.3a)
θ ←− θ − v(t) (A.3b)

A.2 Adam
Different algorithms were proposed in ML literature after the introduction of RMSProp. De-
velopement of optimization methods is an active research field, because new proposals always
appear trying to gather all the benefits from previous methods while introducing others. In
this sense adaptive moment (Adam) estimation optimizer is one of the newest algorithms in
ML literature, proposed in [10]. It is a method that compute adaptive learning rates for each
parameters, it stores an exponentially decaying average of past squared gradients vt along with
a moving average of past gradients mt (similar to momentum). The algorithm is based on the
following equations:

gt ←− ∇θL (A.4a)
mt ←− β1mt−1 + (1− β1) · gt (A.4b)

vt ←− β2vt−1 + (1− β2) · g2
t (A.4c)

m̂t ←− mt/(1− βt1) (A.4d)

v̂t ←− vt/(1− βt2) (A.4e)

θt ←− θt−1 − η · m̂t/(
√
v̂t + ε) (A.4f)

where parameters β1 and β2 control the exponential decay rate of gradients and are usually set to
values 0.9 and 0.999 respectively. ε is a small regularizing factor suggested to be set to 1E− 8 to
prevent division by zero. η is the learning rate. mt and vt are estimates of the first and the second
raw moments, their unbiased forms m̂t and v̂t are used to update net’s parameters. Initial values
for m0, and v0 parameters are fixed to 0. In the ball example going downhill, Adam method can

53

be compared to a heavy ball with friction that then prefers flat minima in the error surface. Since
this is an adaptive method, learning rate schedules are not needed, because updates’ magnitude
is authomatically adjusted according to the form of the loss function. Nonetheless we experienced
in our experiments that while training a complex system like a GAN, reducing the learning rate
can definitely help nets’ optimization.

54

Appendix B

Statistical hypothesis testing

A statistical hypothesis test is a method of statistical inference. It is based on two hypothesis,
respectively called null H0 and alternative H1. After observing the properties of a relevant
population, we aim to accept or reject the null hypothesis at the expense or in favour of the
alternative one. In order to carry out the decision process, we must select in advance the
test statistic T and the significance level α we will employ. The former is a function of the
observations, while the latter is a probability threshold below which the null hypothesis will be
rejected (common values are 5% or 1%). Since we usually deal with empirical observations that
have an intrisic probabilistic character (as we do in high energy physics with quantum mechanical
observables), a function of the measurements, such as T, will be a random variable itself. Hence T
follows a particular probability distribution function. Very often the two hypothesis are mutually
exclusive statements about the nature of that distribution function.

In this section, to make it easier, we restrict the discussion to a one dimensional problem.
We suppose that we made a set of measurements {xi}ni=1 of a specific property of the sample in
order to compute over them the observed value tobs for the test statistic T. tobs then follows two
important conditional probability distributions f0 and f1 with the following partition functions:

F0(t) = P (T < t|H0) =

∫ t

−∞
f0(x) dx (B.1a)

F1(t) = P (T < t|H1) =

∫ t

−∞
f1(x) dx (B.1b)

This integrals tell the probability that T takes a value lower than t, once either the null or the
alternative hypothesis is assumed to be true.

Fig. B.1 shows that fixing a significance level α sets a threshold vertical line that divides the
plot in four regions (t is the (1− α)-th quantile of the f0 distribution: t = F−1

0 (1− α)).

• f0 < t: it is the probability of confirming the null hypothesis, 1−α = P (accept H0|H0is true)

• f0 > t: critical region, it tells the probability of making a type I error, α = P (reject H0|H0 is true)

• f1 < t: probability of making a type II error, β = P (accept H0|H1is true)

• f1 > t: defines the power of a test, namely the probability of correctly rejecting the null
hypothesis, 1− β = P (reject H0|H1 is true)

55

Figure B.1: Statistical Test with the threshold value t. The red region is called critical. The value 1− β
is the power of the test.

The final decision is made on the evaluation of a p-value, which is defined as the probability,
under the null hypothesis, of sampling a test statistic at least as extreme as tobs. Mathematically,
p-value = P (T > tobs|f0). Since the significance α is defined as the probability of rejecting the
null hypothesis when this is true, it is natural to decide of rejecting the null hypothesis when the
condition p-value < α holds.

56

Bibliography

[1] Arjowsky, M., Chintala, S., Bottou, L. (2017) Wasserstein GAN, arXiv:1701.07875.

[2] Cerri, O., Nguyen, T. Q., Pierini, M., Spiropulu, M., Vlimant, J.R., (2019), Variational
Autoencoders for New Physics Mining at the Large Hadron Collider, J. High Energ. Phys.
(2019) 2019: 36, arXiv:1811.10276.

[3] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.

[4] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y. (2014). Generative Adversarial Nets, Advance in neural information processin
system: 2672-2680.

[5] Gulrajani, I., Ahmed, F., Arjovski, M., Dumoulin, V., Courville, A. (2017), Improved Train-
ing of Wasserstein GANs, arXiv:1704.00028.

[6] https://docs.scipy.org/doc/numpy/reference/routines.random.html

[7] https://en.wikipedia.org/wiki/Universal_approximation_theorem.

[8] https://www.tensorflow.org/versions/r1.10/api_docs/python/tf

[9] Ioffe, S., Szegedy, C., (2015), Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv:1502.03167.

[10] Kingma, D. P., Lei Ba, J., (2017), Adam: a Method for Stochastic Optimization,
arXiv:1412.6980.

[11] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P. (2017) Least Squares Gener-
ative Adversarial Networks, arXiv:1611.04076.

[12] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

[13] Mockus, J., (1974). The application of Bayesian methods for seeking the extremum, Opti-
mization Techniques: 400-404.

57

	Introduction
	Anomalies in High Energy Physics
	Classification Algorithms in HEP

	Machine Learning
	Learning Algorithms
	Neural Networks
	Classification Models
	Generative Models - GANs

	Applications
	Dataset
	GAN training
	Data Augmentation
	Anomaly Detection

	Conclusions
	Optimization Algorithms
	RMSProp
	Adam

	Statistical hypothesis testing
	Bibliography

