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Al vs. ML
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SHIFTING OF PARADIGMS

“KNOWLEDGE BASED” Al

e LEARN AND IMPLEMENT A SET OF RULES

® GOOD FOR CHESS, BAD FOR REAL LIFE

MACHINE LEARNING
e “INTUITIVE”
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MACHINE LEARNING ALGORITHMS

Unsupervised learning

Input Data

;

Unknown Output

No Training Data Set

Discover
Interpretation
from Features

Algorithm

Y

Processing

Qutput

EXTRACT AND OPTIMIZE

DATA FEATURES

Supervised learning

Input Data

:

Training Data Set

Desired Output

Algorithm

y
Processing

Output

OPTIMIZE A PROPERTY

LEARNING FROM DATA

Reinforcement learning

Input Data

Agent

Best Action Reward

Environment

Algorithm

Output

LEARN FROM DATA

THE LEARNING STRATEGY



ML IN HEP
RECENT EXAMPLES



GANS FOR EVENT UNWEIGHTING
(Backes, Butter, Plehn, Winterhalder, 2021)

e A CLASSIC PROBLEM: DETERMINE WEIGHTS FOR INTEGRATION:
o= [dxw(z) = [ dyw(y), W(y) ~ CONST.

e STANDARD SOLUTION: IMPORTANCE SAMPLING =- RESCALE BASED ON SAMPLING (VEGAS)

GAN: USE EVENTS TO TRAIN GAN
¢ PRODUCE UNWEIGHTED EVENTS WITH GAN

MUON p7 DISTRIBUTION IN W~ PRODUCTION

10_1'% —— Train
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500K training, 1k standard unweighted, 30M uwGAN events
e FASTER EVENT GENERATION
e REILIABILITY?



1x1072 TeV?)
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NEURAL NETWORK CLASSSIFIER FOR EFT BOUNDS
(Chen, Glioti, Panico, Wulzer, 2020)

EFT CROSS SECTION dog(z;c) = doy(z)[(1 + ca(x))? + (cB(x))?]:
x kin. variables; SM = ¢ = 0; «, 3 coeflicient functions for single operator

TRAIN NEURAL NETWORKS TO REPRODUCE «a(x) B(x)
< GENERATE MC SAMPLES WITH SEVERAL VALUES OF ¢ & ¢ = 0

OBTAIN RATIO dog(x;c)/do1(x) FOR ALL ¢, x
HYPEROPTIMIZE NEURAL NETWORK PARAMETERS
FULLY LEPTONIC ZW

HYPEROPT
0.50 T T r
r = . B 4x32 RelLU [ 2x32 RelLU
B 4x32 Sigm [ 2x32 Sigm
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0 2000 4000 6000 8000 10000

Training epochs

C [10‘2 GeVZ]

STUDY WITH TOTAL INTEGRATED HL-LHC LuMI

COMPARISON TO MATRIX ELEMENT METHOD BASED ON ANALYTIC APPROX
& BINNED ANALYSIS IN P p% BASED ON THE SAME MC SIMULATIONS

NO DETERIORATION AT NLO

Gy — 20 Exclusion Reach

B ME | | QC [ BA

HHI

MG LO MG NLO

- Toy Data

Element vs NN Quadratic Classfifer
& Binned Analysis

Matrix



ML INSIGHTS ON HUMAN CLASSIFICATION (Faucett, Thaler, Witeson, 2021)

Signal/Background Pairs Black-Box
Guided

. . . . Search
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® CLASSIFICATION PROBLEM: IS EVENT SIGNAL OR BACKGROUND
EXAMPLE: W — qq SIGNAL: QUARK JETS

e START WITH SET OF HL OBSERVABLES & COMPARE TO BLACK-BOX NN CLASSIFIER
EXAMPLE OF HL: JET MASS, ENERGY CORRELATION FUNCTIONS...

e SELECT HL; OBSERVABLE WITH HIGHEST AGREEMENT,
LOOK AT EVENTS WITH HIGHEST DISAGREEMENT

e SELECT HL9 OBSERVABLE WITH HIGHEST AGREEMENT & TRAIN NN ON HL; AND HLo

e ITERATE UNTIL OPTIMAL SET OF HL,; DETERMINED

CLASSIFICATION PERFORMANCE
VS. NUMBER OF ADDED HL; VS. COMPUTING TIME

&) . Black-box Guided
) === Black-box Guided
= | Brute Force
- Brute For.'ce —— Truth Guided
002 —— Truth Guided —-—— CNN
. ---- CNN 6 HL

...... 6 HL 0.91

0.91

(O VAV

_ _ ) _ ) 1000 2000 3000 4000 5000
0 1 2 3 4 5 6 7 Computing Time (Min.)

e MORE PERFORMANT THAN TRUTH-GUIDED, SLIGHTLY LESS THAN BRUTE-FORCE
e COMPUTATIONALLY AS EFFICIENT AS TRUTH-GUIDED, MUCH MORE THAN BRUTE FORCE

a DDAV IS INCSCTALIT AN HT ARSI DIVADRT I Q



A CASE STUDY:
PDFs As A ML PROBLEM



PDF DETERMINATION

e [LHC CROSS SECTION:
_ ~ (1) £(2)
—0=2 ;0 [
— 63 PARTONIC CROSS SECTION FOR
WITH INCOMING PARTONS 1%, j

— f,fj )(:c, Q?) PDF FOR PARTON OF
SPECIES ¢ IN j-TH INCOMING PROTON

— ® CONVOLUTION OVER z

— PDF DEPENDS ON (Q? AND z, OTHER
KINEMATIC VARIABLES IN &

e PARTONIC CROSS SECTION COMPUTED
PERTURBATIVELY

e PDFS DETERMINED COMPARING o TO DATA
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PROTON STRUCTURE AS AN Al PROBLEM:

NNPDF

NNPDF F2p

proton structure function

single neural net backpropagation

NNPDF2.3

first LHC data
nodal mutation GA

NNPDF2.0
global NLO PDFs
seven neural nets

NNPDF1.0
DIS-only PDFs

First structure function
five neural nets

with neural networks

2003 2004

NNPDF2.1 NNPDF2.3QED

heavy quark mass

NNPDF nonsinglet
quark PDF
single neural net GA

NNPDF1.2
strange PDF added
six neural nets

photon PDF incl.

NNPDF3.0
several LHC data
closure test validation

architecture independence

Succesful future test of N3FIT
First PDF sets with MHOU

NNPDF3.1

full LHC runl

charm parametrized
eight neural nets

2020

NNPDF3.1luxQED First K-folding fit

NLO QED+photon
NNPDF4.1 published
First Tensorflow PDF fit
hyperparameter tuning




Al FOR PDFS: THE NNPDF APPROACH
THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS <= PROBABILITY DENSITY IN FUNCTION SPACE
KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

»

\ 4

»

A
\ 4

A
\ 4
FINAL PDF SET: f( @) (z,1);

i =up, antiup, down, antldown strange, antistrange, charm, gluon; 5 =1,2,... Ny¢p



THE PDFs

up CHARM
u at 1.7 GeV

cat 1.7 Gev

—— Current Fit 0.014
- Reference Fit

=== Current Fit
——— Reference Fit

0.012

0.010

0.008

Xc(x)

0.006

0.004

0.002

0.000

0.2 0.4 06 08 02 0.4 0.6 0.8

GLUON
g at 1.7 GeV

== Current Fit
30 - ~——— Reference Fit

2.5

2.0

xg(x)

10-5 104 10-3 10-2 10-1 100
X

MC REPLICAS <> PROBABILITY DISTRIBUTION



NEURAL NETWORKS

ARCHITECTURE ACTIVATION FUNCTIOM

x Inx nM =2

e @

n® =25

n® =20 Lo

n® = g (%) (= \ _ oy .
/ / / / \ \ \ \ oy (Tin) = F E :wwxin — i
J
(xg(x, 0y x2(x,Qy xV(x,Qp) xV3(x,Qp) xVgx,Qy) xT3(x, Q) xTg(x,Qy)  xTis(x, QO))
(xg(x, 0y  xu(x,Q) xi(x,Qp)  xd(x,Q) xd(x,Q) xs(x,Qy)  x5(x,Q)  xct(x, QO))

PARAMETERS
e UNIVERSAL INTERPOLANT e WEIGHTS wj;
® CAN REPRODUCSE :
N NOTIONAL e THRESHOLDS 0,
FORM

e COMPLEXITY GROWS
DURAING TRAINING

TRAINING: MINIMIZE LOSS FUNCION (E.G. X2)



GENETIC ALGORITHMS
BASIC IDEA

¢ RANDOM MUTATION OF THE NN PARAMETER
e SELECTION OF THE FITTEST
FEATURES
e SLOW, COMPUTATIONALLY EXPENSIVE
e AVOIDS LOCAL MINIMA

Genetic
Selection L
Algoritl]_‘nls l Generation 1 Generation 2 Generation 3
Initial population Mutations
(random sampling) and Cross-over
\ Goodness-of-fit
. (¢ estimator) Generation 4 Generation 5 Generation 6
Fit parameters: weights and
thresholds of the ANNs l
No ’
Stopping criterign? = —
y :
best-fit parameters

CHOICES
e NUMBER OF MUTANTS
e MUTATION RATES
e NODAL VS LOCAL MUTATION
o



GRADIENT DESCENT
BASIC IDEA

COMPUTE GRADIENT OF LOSS WR TO PARAMETERS
STEEPEST DESCENT PATH

FEATURES
° GE MEMORY FOOTPRINT
";‘::% A ]
/ ."‘:"‘ Oy
;ﬁ ’I":?;:?:"“ 20
J iﬁiﬁﬁ LY

e GRADIENT SAMPLING AND BATCHES
¢ MOMENTUM (MEMORY OF PREVIOUS GRADIENT)
e ADAPTIVE PER-PARAMETER RATE



NNPDF4.0 PDF LEARNING:
AN ANIMATION



NEURAL NETWORK TRAINING

SOME FEATURES: GRADIENT DESCENT OPTIMIZATION SHOWN (NADAM)
STRUCTURE BUILDS UP

OUTLIERS BROUGHT UNDER CONTROL

FEWER RANDOM FLUCTUATIONS

UNCERTAINTIES SHRINK



NEURAL LEARNING

e COMPLEXITY INCREASES AS THE FITTING PROCEEDS
e UNTIL LEARNING NOISE

e WHEN SHOULD ONE STOP?
UNDERLEARNING

Under Learning y*=2

0.08

0.07

0.06

0.05

0.04 Py TYITe LLEE R

L EEE R
LE E X
"aa

0.03 5 4

0.02

Data

0.01 # MeuMet

IIII|IIII|IIIIJIIII|IIII|IIII|IIII|IIII

D 11 1 1 | 11 1 1 | 11 1 1 I 11 1 | I | N | | N | 11
5 10 15 20 25 30

# Points
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NEURAL LEARNING

e COMPLEXITY INCREASES AS THE FITTING PROCEEDS
e UNTIL LEARNING NOISE

e WHEN SHOULD ONE STOP?
PROPER LEARNING

Proper Learning y*=1

0.08
0.07

0.06

0.05 asionas

0.04 ssEne
0.03

0.02

- Data

0.01 # MeuMet

D 11 1 1 | 11 1 1 | 11 1 1 I 11 1 | I | N | | N | 11
5 10 15 20 25 30

# Points

(=]



NEURAL LEARNING

e COMPLEXITY INCREASES AS THE FITTING PROCEEDS
e UNTIL LEARNING NOISE

e WHEN SHOULD ONE STOP?
OVERLEARNING

Over Learning y*~0

0.08

0.07

0.06

0.05

0.04

0.03

0.02

Data

0.01 . # MeuMet

IIII*IIII|IIII|IIII|IIII|IIII|IIII|IIII

D 11 1 1 | 11 1 1 | 11 1 1 I 11 1 | I | N | | N | 11
5 10 15 20 25 30

# Points

(=]



OPTIMAL FIT: CROSS-VALIDATION

DIVIDE THE DATA IN TWO SETS: TRAINING AND
MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)

WHEN THE STOPS DECREASING, STOP THE FIT

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
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——
— et

0
10°

o



OPTIMAL FIT: CROSS-VALIDATION

DIVIDE THE DATA IN TWO SETS: TRAINING AND
MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)

WHEN THE STOPS DECREASING, STOP THE FIT

GO!
[ 2] Fi° (x, @)

10 = 0.08 C
ot 0.07F- ]
°E 0061 |
TE C
6 i 0.05F- !
5 ; 0.04 ;— * . {
4E 0.03 . l
I -
) z_ 0.02 E_ ; i
1E 0.01 ;— t e
DEI L v by by v by v v by v v Pvv v b v By 0 E ! 1 1 1 * 1

20 40 60 80 100 120 140 160 180 200 10"

Generations X
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OPTIMAL FIT: CROSS-VALIDATION

DIVIDE THE DATA IN TWO SETS: TRAINING AND
MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)

WHEN THE STOPS DECREASING, STOP THE FIT
STOP!

-
o

0.08

0.07

0.06

||IIIIIIIIII]III

0.05

0.04

0.03
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0.01
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OPTIMAL FIT: CROSS-VALIDATION

DIVIDE THE DATA IN TWO SETS: TRAINING AND
MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)

WHEN THE STOPS DECREASING, STOP THE FIT
TOO LATE!
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-
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Loss

HYPEROPTIMIZATION

L4

§

Adam RMSprop Adadelta 103 1072 10! glorot_uniform glorot_normal 10000 20000 30000 40000 0.1 0.2 0.3 0.4 1.00 1.05 1.10 1 2 3

optimizer learning rate initializer epochs stopping patience positivity multiplier number of layers
HYPEROPT PARAMETERS

NEURAL NETWORK FIT OPTIONS
NUMBER OF LAYERS (*) OPTIMIZER (*)

SIZE OF EACH LAYER INITIAL LEARNING RATE (*)

DRroPOUT MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (¥*) STOPPING PATIENCE (*)
INITIALIZATION FUNCTIONS (*) POSITIVITY MULTIPLIER (*)

e SCAN PARAMETER SPACE

e OPTIMIZE FIGURE OF MERIT: VALIDATION X2
e BAYESIAN UPDATING

4 sigmoid tanh
activation function



HYPEROPTIMIZATION: OVERFITTING
DOWN QUARK: HYPEROPTIMIZED VS. HAND-PICKED

dat 1.7 GeV
0.5 1

n3fit DIS overlearning model
MMNPDF 3.1 DIS only

0.4 1
0.3 1

0.2 1

xd(x)

0.1 1

0.0 1

_Gl_

_Gz_

0.2 0.4 0.6 0.8
X

® NOT HYPEROPTIMIZED: WIGGLES: FINITE SIZE = WILL GO AWAY AS NV, rep GROWS

e N3FIT: WIGGLY PDFS < OVERFITTING = WILL NOT GO AWAY (x2 . < x2 .4

valid **



WHAT HAPPENED?

OPTIMIZATION

—_——_—  —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— — — — — — — — — — — — — — — — — — — e

PDF fit optimization > low

Quality control

\4

stable X3a|

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM



WHAT HAPPENED?

HYPEROPTIMIZATION

Target
PDF fit optimization —— > low \2...

Quality control

A\ 4

stable x2

WE ARE MISSING A SELECTION CRITERION



HYPEROPTIMIZATION: OVERFITTING
DOWN QUARK: HYPEROPTIMIZED VS. HANDPICKED

dat 1.7 GeV
0.5 1

n3fit DIS overlearning model
MMNPDF 3.1 DIS only

0.4 1
0.3 1

0.2 1

xd(x)

0.1 1

0.0 1

_Gl_

_Gz_

0.2 0.4 0.6 0.8
X

® HANDPICKED: WIGGLES: FINITE SIZE = WILL GO AWAY AS NV, rep GROWS

e N3FIT: WIGGLY PDFS < OVERFITTING = WILL NOT GO AWAY (x2 . < x2 .4

valid **

e CORRELATIONS BETWEEN TRAINING AND VALIDATION DATA



THE SOLUTION

TUNED HYPEROPTIMIZATION

Target

Quality | control

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Y
|

I

COMPARE TO A A TEST SET (NEW SET OF DATA PREVIOUSLY NOT USED AT AL)
TESTS GENERALIZATION POWER



THE TEST SET METHOD

e COMPLETELY UNCORRELATED TEST SET
e OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST

= NO OVERLEARNING

HYPEROPTIMIZED PDFS
DOWN QUARK

OVERFIT VS HANDPICKED

dat 1.7 GeV
0.5 1

0.4+
0.3+

0.2+

xd(x)

0.14

0.0

_Ol_

_0.2_

n3fit DIS overlearning model
NNFPDF 3.1 DIS only

0.2 0.4 0.6

® NO OVERFITTING
e COMPARED TO HANDPICKED

0.8

xd(x)

0.4 1

0.3 1

0.1+

0.0 1

HYPEROPT VS HANDPICKED
dat 1.7 GeV

n3fit DIS only
NNPDF 3.1 DIS anly

0.2

0.4

0.6

0.8

— MUCH GREATER STABILITY = FEWER REPLICAS FOR EQUAL ACCURACY
— UNCERTAINTIES SOMEWHAT REDUCED



K-FOLDING

THE BASIC IDEA!:

e DIVIDE THE DATA INTO n REPRESENTATIVE SUBSETS
EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET

e FIT n — 1 SETS AND USE n-TH SET AS TEST
= 1 VALUES OF X{og

¢ HYPEROPTIMIZE ON NON FITTED X2, ;
— GOOD & STABLE GENERALIZATION

FOLDED PDFSs
DOWN QUARK
TEST-SET HYPER VS HANDPICKED K-FOLD HYPER VS. TEST-SEY HYPER
datl.7 GeV dat 1.7 GeV

n3fit DIS only Current Fit
NMNPOF 3.1 DIS only Reference Fit

0.4 0.4 -

0.3~ 0.3 1

xd(x)
=
M

xd(x)

o

N

0.1+

0.0+

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8



K-FOLDING IMPLEMENTATION

;l

LGenem’ce new hyperparameter configuration

Fit to subset of folds

hyperopt l

!

!

!

Fold 1

CHORUS ot

HERA T+IT inc NC etp 920 GeV

BCDMS p

LHCb Z 940 pb

ATLAS W, Z 7 TeV 2010

CMS Z pr 8 TeV (pl, yi)

DY E605 oy

CMS Drell-Yan 2D 7 TeV 2011

CMS 3D dijets 8 TeV

ATLAS single-Z y (normalised)

ATLAS single top Ry 7 TeV

CMS ¢t rapidity y,7

CMS single top R; 8 TeV

Fold 2

HERA I+Il inc CC e™p

HERA I+II inc NC etp 460 GeV

HERA comb. oted

NMC p

NuTeV o?

LHCb Z — ee 2 fb

folds 1,2,3

folds 1,2,4

folds 1,3,4

folds 2,34

CMS W asymmetry 840 pb
DY E886 of,

ATLAS Z pr 8 TeV (plf, My)
ATLAS direct photon 13 TeV

DO W — jw asymmetry

ATLAS dijets 7 TeV, R=0.6

ATLAS single antitop y
(normalised)

CMS otot

CMS single top o1 + o7 7 TeV

X

X3

Fold 3
HERA I+II inc CC etp HERA I+1I inc NC etp 575 GeV NMC d/p
NuTeV o LHCb W, Z — pu 7 TeV. LHCb Z — ee
ATLAS W, Z 7 TeV 2011 Central ATLAS W +tjet 8 TeV ATLAS HM DY 7 TeV
selection

e EACH FOLD REPRODUCES FEATURES OF FULL DATASET
e DIFFERENT CHOICES POSSIBLE FOR LOSS (NON-FITTED)

— BEST WORST
— BEST AVERAGE

e RESULTS STABLE

CMS W asymmetry 4.7 fb

DYE 866 ofl /0T,y

CDF Z rapidity (new)

ATLAS otg*

ATLAS single top y: (normalised)

CMS ot 5 TeV

CMS ¢t double diff. (m7, ye)

Fold 4

CHORUS 0%

HERA I+1I inc NC e™p 820 GeV

LHCb W, Z = 1 8 TeV

LHCb Z — pp

ATLAS W, Z 7 TeV 2011 Fwd

ATLAS W™ +jet 8 TeV

ATLAS low-mass DY 2011

ATLAS Z pr 8 TeV (pf,yn)

CMS W rapidity 8 TeV/

DO Z rapidity

CMS dijets 7 TeV'

ATLAS single top y, (normalised

ATLAS single top Re 13 TeV

CMS single top Re 13 TeV'

xs(x)

xg(x)

NO K-FOLDING

sat 1.7 GeV

all hyperparameters optimized
0.08 poor cipnorm
0.06
0.04
0.02
0.00

0.2 0.4 0.6 08
gat 1.7 GeV
average (68 c...+10)
N max (68 c.l.+10)
25
2.0
15
1.0
05
10°° 10 103 10-2 107! 10°




MONTECARLO COMPRESSION

CAN WE REDUCE THE NUMBER OF REPLICAS?

START WITH LARGE REPLICA SAMPLE

SELECT BY GENETIC ALGORITHM SUBSET OF REPLICAS = STATISTICAL FEATURES OPTIMIZED

TO PRIOR

MINIMIZE LOSS: DIFFEREMCE OF MOMENTS, KL DIVERGENCE, . ..

50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

Correlations for NNPDF3.0 NLO
Prior N,=1000 @ Q=100 GeV

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8

-1.0

Correlations for NNPDF3.0 NLO
Compressed N,,=50 @ @¢=100 GeV

T ‘ T ‘ T

VAN VATAIN

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8

-1.0



GAN ENHANCEMENT

CAN WE FURTHER REDUCE THE NUMBER OF COMPRESSED REPLICAS WITHOUT LOSS OF
INFORMATION? GENERATIVE ADVERSARIAL NETWORKS

I

TRUE PDF DISCRIMINATOR

fahia, e am) Vok 3 {log[D(a)] + logl1 — D(G(=))]} ﬁ

GENERATED
PDF

PREDICTED
LABELS

RANDOM GENERATOR
e Vom X logll — D(G())]
=

{21,22,"',Zm}

TUNING

e TRAIN A NETWORK TO SIMULATE THE TRUE DISTRIBUTION (GENERATOR)

e TRAIN A NETWORK TO DISCRIMINATE TRUTH FROM SIMULATION (DISCRIMINATOR)
e TRAIN THE GENERATOR TO TRICK THE DISCRIMINATOR



GAN ENHANCEMENT

e ENHANCE THE STARTING PDF SET BY ADDING GAN-PDFSs TO IT
e PERFORM COMPRESSION OF THE ENHANCED SET
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Description

The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern
machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP
data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected
from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full
speed along many paths, the nineteen reviews in this book offer a self-contained, pedagogical introduction to ML models' real-life applications in HEP, written by
some of the foremost experts in their area.

Contents:

* Discriminative Models for Signal/Background Boosting:

o Boosted Decision Trees (¥ Coadou)

@ Deep Learning from Four-Vectors (P Baldi, P Sadowski, and D Whiteson)

< Anomaly Detection for Physics Analysis and Less than Supervised Learning (8 Nachman)
Data Quality Monitoring:

© Data Quality Monitoring Anomaly Detection (A Pol, G Carminara, C Germain, and M Pieriri)
Generative Models:

© Generative Models for Fast Simulation (M Paganini et al.)
o Generative Networks for LHC Events (4 Butter and T Plehn)
Machine Learning Platforms:
© Distributed Training and Optimization of Neural Networks (/ R Vimant and J Yin)
© Machine Learning for Triggering and Data Acquisition (P Harris)
Detector Data Reconstruction:

o End-to-End Analysis using Image Classification (4 Aurisano and L Whitehead)

@ Clustering (K Terao)

o Graph Neural Networks for Particle Tracking and Reconstruction (f Duarte and | R Viimant)
Jet Classification and Particle Identification from Low Level:

© Sequence-Based Learning (R Teixeira de Lima)

© Particle Identification in Neutrino Detectors (R Sharankova and T Wongjirad)

© Image-Based Jet Analysis (M Kagan)

Physics Inference:
o Simulation-Based Inference Methads for Particle Physics (f Brehmer and K Cranmer)
© Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)
© Bayesian Neural Networks (T Charnock, L Perreault-Levasseur, and F Lanusse)
o Parton Distribution Functions (S Forte and S Carrazza)

Machine Learning Challenges:
o Machine Learning Challenges and Open Data Sets (D Rousseau and A Uztyushanin)




