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FACTORIZATION REMINDER I:
DEEP-INELASTIC SCATTERING

THE STRUCTURE FUNCTIONS

Lepton fractional energy loss: y = p·q
p·k ;

gauge boson virtuality: q2 = −Q2

Bjorken x: x = Q2

2p·q

lepton-nucleon CM energy: s = Q2

xy
;

virtual boson-nucleon CM energy W 2 = Q2 1−x
x

;

d2σλpλ` (x, y,Q2)

dxdy
=

G2
F

2π(1 +Q2/m2
W )2

Q2

xy

{[
−λ` y

(
1−

y

2

)
xF3(x,Q2) + (1− y)F2(x,Q2)

+y2xF1(x,Q2)
]
− 2λp

[
−λ` y(2− y)xg1(x,Q2)− (1− y)g4(x,Q2)− y2xg5(x,Q2)

]}

λl → lepton helicity
λp → proton helicity

PARITY CONS. PARITY VIOL.
UNPOL. F1, F2 F3

POL. g1 g4, g5



FACTORIZATION REMINDER I
STRUCTURE FUNCTIONS AND PDFS

STRUCTURE FUNCTION=HARD COEFF. (PARTONIC STRUCTURE FUNCTION) ⊗PARTON DISTN.

F2(x,Q2) = x
∑

i

∫ 1

1

dy
y
Ci
(
αs(Q2), x

y

)[
qi(y,Q

2) + q̄i(y,Q
2)
]

+ Cg
(
αs(Q2), x

y

)
g(y,Q2)

qi quark, q̄i antiquark, g gluon



FACTORIZATION REMINDER II
HADRONIC PROCESSES

THE PARTON LUMINOSITY
σX(s,M2

X) =
∑

a,b

∫ 1

xmin
dx1 dx2 fa/h1

(x1)fb/h2
(x2)σ̂qaqb→X

(
x1x2s,M2

X

)
σX(s,M2) = σ0

∑
a,b

∫ 1

τ
dx
x
Lab
(
τ
x

)
C
(
x, αs(M2

H)
)

• PARTON LUMINOSITY Lab(τ) =
∫ 1

τ
dx
x
fa/h1

(x)fb/h2
(τ/x)

• COEFFICIENT FUNCTION σ̂qaqb→X
(
x1x2s,M2

X

)
= σ0C

(
M2
X

x1x2s
, αs(M2

H)

)
EXAMPLE: THE DRELL-YAN PROCESS

AT LEADING ORDER

• Hadronic c.m. energy: s = (p1 + p2)2

• Momentum fractions x1, 2 =
√

ŝ
s

exp±y;

Lead. Ord. ŝ = M2

• Partonic c.m. energy: ŝ = x1x2s

• Invariant mass of final state X
(dilepton, Higgs,. . . ):
M2
W ⇒ scale of process

• Scaling variable τ =
M2
X
s

⇒ M2 dσ
dM2 = σ0L (τ); σ0 = 4

9
πα 1

s
;



FACTORIZATION REMINDER III
EVOLUTION EQUATIONS...

d

dt
qNS(N,Q

2
) =

αs(t)

2π
γ
NS
qq (N,αs(t))qNS(N,Q

2
),

d

dt

(
Σ(N,Q2)
g(N,Q2)

)
=
αs(t)

2π

(
γSqq(N,αs(t)) 2nfγ

S
qg(N,αs(t))

γSgq(N,αs(t)) γSgg(N,αs(t))

)(
Σ(N,Q2)
g(N,Q2)

)
.

• LOG SCALE t = ln Q2

Λ2 :

• ANOMALOUS DIMENSIONS VS. SPLITTING FUNCTIONS

γ(N,αs(t)) ≡
∫ 1

0
dx xN−1P (x, αs(t))

• SINGLET Σ(x,Q2) =
∑nf

i=1

(
qi(x,Q

2) + q̄i(x,Q
2)
)

VS.
NONSINGLET qNS(x,Q2) = qi(x,Q

2)− qj(x,Q2)
COMBINATIONS OF QUARK PDFS

• PERTURBATIVE EXPANSION OF ANOMALOUS DIMENSION

γi(N,αs(t)) = γ
(0)
i (N) + αs(t)γ

(1)
i (N) + . . . ⇒

LOG RESUMMATION: LO ⇔ LLQ2; NLO ⇔ LLQ2, . . .



FACTORIZATION REMINDER III
...& THE LEADING ORDER ANOMALOUS DIMENSIONS

QUALITATIVE FEATURES

• AS Q2 INCREASES, PDFS DECREASE AT LARGE x & INCREASE AT SMALL x DUE TO RADIATION

• GLUON SECTOR SINGULAR AT N = 1 ⇒ GLUON GROWS MORE AT SMALL x

• γqq(1) = 0 ⇒ NUMBER OF QUARKS CONSERVED



FACTORIZATION IV
PARTON KINEMATICS VS. HADRON KINEMATICS
σ(τ) =

∫ 1

τ

dy
y

∑
ij
Lij(y)σ̂

(
τ
z

)
; Lij(y) ≡

∫ 1

y

dx1
x1

qi(y)qj
(
y
x1

)
• qi QUARKS AND GLUONS

• PARTONIC CHANNEL ij DEPENDS ON PHYSICAL PROCESS (e.g. W+ ⇒ ud̄ fusion)

• WHICH PARTON MOMENTUM FRACTIONS CONTRIBUTE TO A GIVEN HADRONIC PROCESS ?

INVERSION OF MELLIN TRANSFORMS
fn =

∫ 1

x
xn−1f(x) ⇔ F (x) =

∫ +i∞
−i∞ x−nfn

integrate to the right of convergence abscissa

• MELLIN INVERSION DOMINATED BY SADDLE POINT

• POSITION OF SADDLE CONTROLLED BY LUMINOSITY
DEPENDENCE ON x OF L POWERLIKE, OF σ̂ LOGARITHMIC

• PDF PEAKED AT SMALL x (“SEA” q̄ VS. “VALENCE” q − q̄) ⇒ LUMI PEAKS AT SMALL N

SADDLE VS τ = Q2/s



THE PDFS

(PDG 2016)

• THE MOMENTUM PROBABILITY DENSITY xfi(x) IS SHOWN AT
TWO DIFFERENT SCALES (LEFT ⇒ LOW SCALE; RIGHT ⇒ HIGH SCALE)

• PDFS VS x AT ONE SCALE Q2
0 ⇒ DETERMINED FOR ALL SCALES BY EVOLUTION EQUATIONS

• AS x ≥ 1 KINEMATIC CONSTRAINT fi(x) = 0

• “VALENCE” UP AND DOWN: PEAKED AT x ∼ 0.3; EXPECT fx(x) ∼
x→1

(1− x)βi

• “SEA” ANTIQUARK AND GLUON GROW AT SMALL x

• “SINGLET” AND GLUON MIX ⇒ ALL PDFS LOOK THE SAME AS x→ 0



PDF DETERMINATION
DATA → PARTON DISTRIBUTIONS

ISSUES AND TASKS:
• FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS,

CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS

• DISENTANGLING PDFS: CHOOSE A BASIS OF PDFS (2Nf QUARKS + 1 GLUON) & A SET OF
SUITABLE PHYSICAL PROCESSES TO DETERMINE THEM ALL

• PROBABILITY IN THE SPACE OF FUNCTIONS: CHOOSE A STATISTICAL APPROACH (HESSIAN,
MONTE CARLO, . . . )

• UNCERTAINTY ON FUNCTIONS: CHOOSE A FUNCTIONAL FORM



DISENTANGLING PDFS

• DEEP-INELASTIC SCATTERING DATA ON PROTON ABUNDANT AND PRECISE

• CC F1 AND F3 IN PRINCIPLE PROVIDE FOUR COMBINATIONS, AND NC F1 TWO MORE
⇒ ALL LIGHT FLAVORS

• HERA DATA ONLY DETERMINE FOUR COMBINATIONS OF PDFS:
FIXED COMBINATION OF F1 F3, SO NC AND ±CC WITH e±, PLUS SEPARATE NC γ
AND Z FROM SCALE DEPENDENCE

• W± AND Z PRODUCTION (INCLUDING DOUBLE DIFFERENTIAL: MASS AND RAPIDITY)
PROVIDE A LARGE AMOUNT OF INFORMATION

• WHEN PRODUCING ELECTROWEAK FINAL STATES, THE GLUON CAN ONLY BE
ACCESSED FROM SCALE DEPENDENCE OR HIGHER ORDERS
...EXCEPT IN HIGGS PRODUCTION!

• JET PRODUCTION GIVES A DIRECT HANDLE ON THE GLUON



FLAVOR SEPARATION FOM DIS & DY:
LEADING ORDER PARTON CONTENT

DEEP-INELASTIC SCATTERING
NC F1

γ =
∑

i
e2i (qi + q̄i)

NC F1
Z, int. =

∑
i
Bi (qi + q̄i)

NC F3
Z, int. =

∑
i
Di (qi + q̄i)

CC FW
+

1 = ū+ d+ s+ c̄

CC −FW
+

3 /2 = ū− d− s+ c̄

` e V A

u,c,t +2/3 (+1/2− 4/3 sin2 θW ) +1/2
d,s,b -1/3 (−1/2 + 2/3 sin2 θW ) -1/2
ν 0 +1/2 +1/2

e,µ, τ -1 (−1/2 + 2 sin2 θW ) -1/2

Bq(Q2) = −2eqV`VqPZ + (V 2
`

+ A2
`
)(V 2

q + A2
q)P2

Z
;Dq(Q2) = −2eqA`AqPZ + 4V`A`VqAqP

2
Z

; PZ = Q2/(Q2 +M2
Z

)

W+ → W− ⇒ u↔ d, c↔ s; p→ n ⇒ u↔ d

DRELL-YAN

Lij (x1, x2) ≡ qi(x1,M
2)q̄j(x2,M

2)

γ dσ
dM2dy

(M2, y) = 4πα2

9M2s

∑
i
e2iL

ii(x1, x2)

W dσ
dy =

πGFM
2
V

√
2

3s

∑
i,j
|V CKM
ij |Lij(x1, x2)

Z dσ
dy =

πGFM
2
V

√
2

3s

∑
i

(
V 2
i + A2

i

)
Lij(x1, x2)

V CKM
ij → CKM MATRIX (i = u, c t, j = d, s b), V CKM

ij = 11 +O(λ); λ = sin θC ≈ 0.22



IMPACT OF TEVATRON DRELL-YAN DATA:
QUARKS AND ANTIQUARKS AT A pp̄ COLLIDER (TEVATRON)

BY CHARGE CONJUGATION q̄P̄ = qp

DRELL-YAN p/d ASYMMETRY

σpn

σpp
∼

4
9
upd̄p+ 1

9
dpūp

4
9
upūp+ 1

9
dpd̄p

∣∣∣∣∣
large x

≈ d̄
ū

E866 (2001)

W± ASYMMETRY

CDF (1998)

σ
pp̄

W+

σ
pp̄
W−

=
up(x1)dp(x2)+d̄p(x1)ūp(x2)

dp(x1)up(x2)+ūp(x1)d̄p(x2)
∼ updp

dpup

if x1, x2 in valence region,

neglecting HQ & Cabibbo suppr.



IMPACT OF LHC DRELL-YAN DATA:

W± AND Z PRODUCTION
W AND Z CROSS SECTIONS
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. σpp̄
W+

= ud̄+ cs̄; σpp̄
Z

= uū+ dd̄+ ss̄: STRANGENESS DETERMINED

BY COMPARISON

W MUON ASYMMETRY

CMS (2013)

σ
pp̄

W+

σ
pp̄
W−

=
u(x1)d̄(x2)+d̄(x1)u(x2)

d(x1)ū(x2)+ū(x1)d(x2)

“VALENCE” x⇒ NEGLECT STRANGENESS

⇒ DETERMINE ū− d̄



THE GLUON FROM DIS

SCALE DEPENDENCE OF FLAVOR SINGLET STRUCTURE FUNCTIONS

d
dt
F s2 (N,Q2) =

αs(Q2)
2π

[
γqq(N)F s2 + 2nfγqg(N)g(N,Q2)

]
+O(α2

s)

ANOMALOUS DIMENSIONS

LARGE x GLUON DIFFICULT TO DETERMINE FROM DEEP-INELASTIC SCATTERING



THE GLUON IN HADRONIC COLLISIONS
THE GLUON ONLY INTERACTS THROUGH QCD

JETS
GLUON

CMS (2014)

• ONE-JET INCLUSIVE
USED TO
CONSTRAIN THE LARGE
x GLUON
SINCE TEVATRON

• WIDE KINEMATIC RE-
GION AT LHC

TOP
GLUON

prosa (LHCb data) 2015 )

• WIDE RAPIDITY RANGE:
CAN ACCESS WIDE x REGION



DETERMINING PDFS
THE HESSIAN APPROACH

• CHOOSE A FIXED FUNCTIONAL FORM
– SINCE 1973, PHYSICALLY MOTIVATED ANSATZ fi(x,Q

2
0) = xα(1− x)βgi(x);

gi(x) POLYNOMIAL IN x OR
√
x

– MMHT 2015:
∗ BASIS FUNCTIONS g; uv = u− ū; dv = d− d̄; S = 2(ū+ d̄) + s+ s̄; s+ = s+ s̄; ∆ = d̄− ū;
s− = s− s̄.

∗ FOR ALL BUT ∆ s−, g ⇒ xfi(x,Q
2
0) = Axα(1− x)β

(
1 +
∑4

i=1
aiTi(y(x))

)
;

Ti CHEBYSHEV POLYNOMIALS, y = 1− 2
√
x↔ MUST MAP x = [0, 1] INTO y = [−1, 1];

Ti(−1) = Ti(1) = 1

∗ GLUON xg(x,Q2
0) = Axα(1− x)β

(
1 +
∑2

i=1
aiTi(y(x))

)
+ A′xTα′(1− x)β

′

∗ SEA ASYMMETRY x∆(x,Q2
0) = Axα(1− x)β(1 + γx+ εx2)

∗ STRANGENESS ASYMMETRY x∆(x,Q2
0) = Axα(1− x)β(1− x/x0)

∗ 41 PARAMETERS, 4 FIXED BY SUM RULES
∗ 12 PARMS FIXED AT BEST FIT, REMAINING 25 USED FOR (HESSIAN) COVARIANCE MATRIX

• EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES

• DETERMINE BEST-FIT VALUES OF PARAMETERS

• DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS. ∆χ2 = 1(’HESSIAN
METHOD’);
PARM. SCANS ALSO POSSIBLE (’LAGR. MULTIPLIER METHOD’)



PROLEMS: TOLERANCE
• IN GLOBAL HESSIAN FITS, UNCERTAINTITES OBTAINED BY ∆χ2 = 1

UNREALISTICALLY SMALL

• UNCERTAINTIES TUNED TO DISTRIBUTION OF DEVIATIONS FROM BEST-FITS FOR
INDIVIDUAL EXPERIMENTS

MSTW TOLERANCE PLOT FOR 13TH EIGENVEC.

GLOBAL MSTW TOLERANCE

• (MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE
LIMIT FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT

• RESCALE ∆χ2 = T INTERVAL SUCH THAT CORRECT CONFIDENCE INTERVALS ARE
REPRODUCED

DOES THE NEED FOR TOLERANCE REFLECT PARAMETRIZATION BIAS?



DETERMINING PDFS II
THE MONTE CARLO APPROACH
BASIC IDEA: MONTE CARLO SAMPLING

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

• GENERATE A SET OF MONTE CARLO REPLICAS
σ(k) OF THE ORIGINAL DATASET σ(data)

⇒ REPRESENTATION OF P[σ] AT DISCRETE SET
OF POINTS IN DATA SPACE

• FIT A PDF REPLICA TO A DATA REPLICA

⇒ EACH PDF REPLICA f
(k)
i IS A BEST-FIT PDF

SET FOR GIVEN DATA REPLICA

• THE SET OF NEURAL NETS IS A REPRESENTATION
OF THE PROBABILITY DENSITY:

〈fi〉 =
1

Nrep

Nrep∑
k=1

f
(k)
i



NEURAL NETWORKS & THE MC APPROACH
• EACH PDF REPLICA FITTED TO A DATA REPLICA
⇒ NEED BEST-FIT, COVARIANCE MATRIX IN PARAMETER SPACE NOT NEEDED

• CAN USE VERY LARGE PARAMETRIZATION

NEURAL NETWORKS

MULTILAYER FEED-FORWARD NETWORKS
• Each neuron receives input from neurons

in preceding layer and feeds output to neu-
rons in subsequent layer

• Activation determined by weights and
thresholds

ξi = g

(∑
j
ωijξj − θi

)
• Sigmoid activation function
g(x) = 1

1+e−βx

EXAMPLE: A 1-2-1 NN
f(x) = 1

1+e

θ
(3)
1
−

ω
(2)
11

1+e
θ
(2)
1
−xω(1)

11

−
ω

(2)
12

1+e
θ
(2)
2
−xω(1)

21

THANKS TO NONLINEAR BEHAVIOUR,
ANY FUNCTION CAN BE REPRESENTED
BY A SUFFICIENTLY BIG NEURAL NETWORK



NEURAL LEARNING
• ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION

EXAMPLE: NNPDF: 2− 5− 3− 1 NN FOR EACH PDF: 37× 7 = 259 PARAMETERS

• MINIMIZATION (“LEARNING”) CAN BE PERFORMED USING GENETIC ALGORITHMS

• COMPLEXITY INCREASES AS THE FITTING PROCEEDS

• ⇒ THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

UNDERLEARNING



NEURAL LEARNING
• ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION

EXAMPLE: NNPDF: 2− 5− 3− 1 NN FOR EACH PDF: 37× 7 = 259 PARAMETERS

• MINIMIZATION (“LEARNING”) CAN BE PERFORMED USING GENETIC ALGORITHMS

• COMPLEXITY INCREASES AS THE FITTING PROCEEDS

• ⇒ THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

PROPER LEARNING



NEURAL LEARNING
• ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION

EXAMPLE: NNPDF: 2− 5− 3− 1 NN FOR EACH PDF: 37× 7 = 259 PARAMETERS

• MINIMIZATION (“LEARNING”) CAN BE PERFORMED USING GENETIC ALGORITHMS

• COMPLEXITY INCREASES AS THE FITTING PROCEEDS

• ⇒ THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

OVERLEARNING



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

GO!



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

STOP!



OPTIMAL FIT: CROSS-VALIDATION
MINIMIZE BY GENETIC ALGORITHM:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

TOO LATE!



TESTING THE PDF DETERMINATION:

CLOSURE TESTS

• ASSUME PDFS KNOWN: GENERATE FAKE EXPERIMENTAL DATA

• CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR . . . )

• FIT PDFS TO FAKE DATA

• CHECK WHETHER FIT REPRODUCES UNDERLYING “TRUTH”:

– CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT

– CHECK WHETHER UNCERTAINTIES FAITHFUL

– TRACE DIFFERENT SOURCES OF UNCERTAINTY



TESTING THE PDF DETERMINATION
RESULTS

THE GLUON: FITTED/”TRUE” • CENTRAL VALUES:
COMPARE FITTED VS. “TRUE” χ2

BOTH FOR INDIVIDUAL EXPERIMENTS
& TOTAL DATASET
FOR TOTAL ∆χ2 = 0.001± 0.003

• UNCERTAINTIES: DISTRIBUTION OF DEVIA-
TIONS BETWEEN FITTED AND “TRUE” PDFS
SAMPLED AT 20 POINTS BETWEEN 10−5 AND 1
FIND 0.699% FOR ONE-SIGMA,
0.948% FOR TWO-SIGMA C.L.

LEVEL-2 FITTED χ2 VS “TRUE”
NORM. DISTRIBUTION OF DEVIATIONS



BEFORE AND AFTER THE LHC I

KINEMATIC PLANE

HADRONIC CROSS-SECTIONS

• Q2 : INVARIANT MASS OF FINAL STATE ⇒ WIDENING OF AVAILABLE PROCESSES

• AS ENERGY GROWS, DROP OF CROSS-SECTION MAY BE OFFSET BY GROWTH OF SMALL x PDFS



BEFORE AND AFTER THE LHC II
PDFS WITH RUN I DATA

NNPDF3.0 (2014) DATASET

NNPDF3.1 (2017) DATASET

NEW DATA (NNPDF3.1 VS NNPDF3.0):
• TEVATRON LEGACY Z RAPIDITY, W ASYMMETRY & JET DATA

• ATLAS W , Z RAPIDITY, AND TOTAL XSECT (INCL. 13TEV), HIGH AND LOW MASS DY, JETS

• CMS W ASYMMETRY, W + c TOTAL & RATIO, DOUBLE-DIFFERENTIAL DY AND JETS

• LHCB W AND Z RAPIDITY DISTRIBUTIONS

• ATLAS AND CMS Z pT DISTRIBUTIONS

• ATLAS AND CMS TOP TOTAL CROSS-SECTION & DIFFERENTIAL RAPIDITY DISTRIBUTION



THE IMPACT OF LHC DATA
PDF UNCERTAINTIES: PAST ⇒ PRESENT (NNPDF3.0 NNLO)

GLUON SINGLET FLAVORS

• GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN

• SWEET SPOT: VALENCE Q - G; UNCERTAINTIES DOWN TO 1%

• UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS



THE IMPACT OF LHC DATA
PDF UNCERTAINTIES: PRESENT ⇒ FUTURE (NNPDF3.1 NNLO)

GLUON SINGLET FLAVORS

• GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN

• SWEET SPOT: VALENCE Q - G; UNCERTAINTIES DOWN TO 1%

• UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

• NEW LHC DATA ⇒ SIZABLE REDUCTION IN UNCERTAINTIES



SUMMARY
• PDF EXTRACTION NEEDS INPUT FROM A LARGE VARIETY OF PROCESSES ⇒ ∼ 5000

DATAPOINTS&
HIGHEST ACCURACY CALCULATIONS ⇒ NNLO+NNLL

• STATE OF THE ART ANALYSIS TOOLS ⇒ NEURAL NETWORKS DEVELOPED OR

FORTHCOMING ⇒ MACHINE LEARNING

• STATISTICAL VALIDATION TOOLS ⇒ CLOSURE TESTS

• ACCURACY GOAL FOR NEW PHYSICS SEARCHES ⇒ 1%


