

CAPIRE LA STRUTTURA DEL PROTONE CON L'INTELLIGENZA ARTIFICIALE

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

MILANO, 23 FEBBRAIO 2018

SEMINARIO PLS

MA NON È UNA "PARTICELLA ELEMENTARE"?

The history of physics shows that whenever experimental techniques advance to an extent that matter, as then known, can be analyzed into "elemental" parts, newer and more powerful studies subsequently show that the "elementary particles" have a structure themselves Robert Hofstadter, 1961 Nobel Lecture

RUTHERFORD, 1919 \rightarrow MISURA DEL RAGGIO DEL NUCLEO R. HOFSTADTER, 1953 \rightarrow MISURA DEL RAGGIO DEL PROTONE

COME SI FA LA "RADIOGRAFIA" DI UNA PARTICELLA?

- SONDA CON LUNGHEZZA D'ONDA < DIMENSIONI DELLA PARTICELLA Esempio: reticoli cristallini $\rightarrow \lambda \sim 10^{-8} cm \rightarrow$ raggi X
- MISURA DELLA "LUCE DIFFUSA" \Rightarrow SEZIONE D'URTO Numero di particelle diffuse per unità di flusso incidente

CARICA PUNTIFORME: urto coulombiano distanza minima b proiettile–bersaglio vs. angolo d'urto θ

$$1 + \frac{1}{\sin\theta/2} = Kqq'\frac{b}{k}$$

 $k = \frac{\hbar c}{\lambda}$: IMPULSO; $q \in q'$: CARICHE; K: COST. NUMERICA

MAGGIORE AVVICINAMENTO \Leftrightarrow DIFFUSIONE A GRANDE ANGOLO MINORE AVVICINAMENTO \Leftrightarrow DIFFUSIONE A PICCOLO ANGOLO MAGGIORE ENERGIA (IMPULSO) \Leftrightarrow MAGGIORE AVVICINAMENTO MINORE ENERGIA (IMPULSO) \Leftrightarrow MINORE AVVICINAMENTO

LA FORMA DEL PROTONE

CARICA NON PUNTIFORME: MINORE DISTANZA $b \rightarrow$ IL PROIETTILE "VEDE" MENO CARICA $q \rightarrow$ \rightarrow MINORE DEFLESSIONE N. DI PARTICELLE (SEZ. D'URTO) σ RIDOTTO: FATTORE DI FORMA $F^2(Q^2)$ ANGOLO $\theta \Leftrightarrow$ IMPULSO TRASFERITO $Q^2 \equiv -q^2 \approx 2p^2(1 - \cos \theta), q \equiv p - p'$:

F16. 26. Typical angular distribution for elastic scattering of 400-Mev electrons against protons. The solid line is a theoretical curve for a proton of finite extent. The model providing the theoretical curve is an exponential with rms radii= 0.80×10^{-18} cm.

FATT. DI FORMA (HOFSTADTER, 1956)

FIG. 27. The square of the form factor plotted against q^3 , q^3 is given in units of 10^{-94} cm². The solid line is calculated for the exponential model with rms radii= 0.80×10^{-11} cm.

DECRESCITA
$$\leftrightarrow$$
 RAGGIO DEL PROTONE ($R = raggio$): $F(q^2) \sim \exp(-R^2q^2)$

Sempre più in profondità

 $S\text{truttura dei costituenti} \Rightarrow U\text{rto inelastico}$

- URTO INELASTICO \Rightarrow IL PROTONE SI SPEZZA
- URTO SUI COSTITUENTI \Leftrightarrow RAGGIO DEI COSTITUENTI

CASO ELASTICO:

CASO INELASTICO:

Sempre più in profondità

Struttura dei costituenti \Rightarrow Urto inelastico

- URTO INELASTICO \Rightarrow IL PROTONE SI SPEZZA
- URTO SUI COSTITUENTI \Leftrightarrow RAGGIO DEI COSTITUENTI

FIG. 27. The square of the form factor plotted against q^3 , q^3 is given in units of 10^{-36} cm³. The solid line is calculated for the exponential model with rms radii= 0.80×10^{-13} cm.

LA SEZ. D'URTO INELASTICA DECRESCE MOLTO LENTAMENTE CON L'ENERGIA COSTITUENTI MOLTO PICCOLI DENTRO AL PROTONE?

SCALING(Feynman, Bjorken, 1969)

COSTITUENTI LIBERI, PUNTIFORMI, SENZA MASSA IMPULSO \hat{p} PROPORZIONALE ALL'IMPULSO DEL PROTONE p; $\hat{p} = xp$.

- x misurabile! $x = Q^2/(2p \cdot q)$
- FATTORE DI FORMA (FUNZ.DI STRUTTURA) A FISSO x indipendente da Q^2

L'URTO INELASTICO "VEDE" COSTITUENTI PUNTIFORMI, SENZA MASSA, LIBERI. SONO I QUARK?

IL PROTONE È FATTO DI QUARK?

u	d	s
1/2	1/2	0
1/2	-1/2	0
2/3	-1/3	-1/3
0	0	-1
$ar{u}$	$ar{d}$	\overline{s}
1/2	1/2	0
1 /0	1 /0	0
1/2	-1/2	0
$\frac{1/2}{-2/3}$	$\frac{-1/2}{1/3}$	$\begin{array}{c} 0 \\ 1/3 \end{array}$
	$ \frac{u}{1/2} \\ \frac{1/2}{2/3} \\ 0 \\ \overline{u} \\ \frac{1/2}{1/2} \\ 1/2 $	$\begin{array}{c cccc} u & d \\ \hline 1/2 & 1/2 \\ 1/2 & -1/2 \\ \hline 2/3 & -1/3 \\ \hline 0 & 0 \\ \hline \hline \bar{u} & \bar{d} \\ \hline 1/2 & 1/2 \\ \hline 1/2 & 1/2 \\ \hline \end{array}$

PARTICELLE FORTEMENTE INTERAGENTI

 PROPRIETÀ STATICHE(CARICA, MASSE, MOMENTO MAGNETICO...) ⇒ STATI LEGATI COSTITUENTI ELEMENTARI (QUARK) CON CARICA ELETTRICA FRAZIONARIA (M. Gell-Mann e G. Zweig, 1964)

• "BARIONI" (PROTONE, NEUTRONE) \Rightarrow TRE QUARK MESONI (π) \Rightarrow QUARK+ANTIQUARK.

• TRE QUARK "LEGGERI", MASSA CIRCA UGUALE: UP, DOWN, STRANGE

DOVE SONO I QUARK?

- QUARK LIBERI (= PARTICELLE CON CARICA ELETTRICA FRAZIONARIA) MAI TROVATI IN URTI DI ALTA ENERGIA, RAGGI COSMICI, NELLA MATERIA (ESPERIMENTI TIPO MILLIKAN).
- LIMITI TIPICI:
 - SEZ. D'URTO DI PRODUZIONE $\leq 10^{-10} \times$ SEZ. D'URTO P-P
 - Flusso cosmico $\leq 10^{-14} \times$ flusso di muoni;
 - densità $\leq 10^{-20}$ guark/nucleone.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

t' (4th Generation) Quark, Searches for

 $\begin{array}{l} m(t'(2/3)) > \ 782 \ {\rm GeV}, \ {\rm CL} = 95\% & ({\rm neutral-current \ decays}) \\ m(t'(2/3)) > \ 700 \ {\rm GeV}, \ {\rm CL} = 95\% & ({\rm charged-current \ decays}) \\ m(t'(5/3)) > \ 800 \ {\rm GeV}, \ {\rm CL} = 95\% & \end{array}$

Free Quark Searches

All searches since 1977 have had negative results.

CHE COSA C'E' DENTRO AL PROTONE?

IL "VUOTO" QUANTISTICO

- INDETERMINAZIONE \Rightarrow PARTICELLA CIRCONDATA DA UNA NUBE DI PARTICELLE VIRTUALI
- "VUOTO" QUANTISTICO \Rightarrow MEZZO

PARTICELLA QUANTISTICA

VUOTO QUANTISTICO

SCHERMAGGIO E ANTI-SCHERMAGGIO QED

- VUOTO \Rightarrow "DIELETTRICO"
- CARICA ELETTRICA SCHERMATA A GRANDE DISTANZA
- CARICA ELETTRICA A CORTA DISTANZA \Rightarrow CRESCE

QCD

- QUARK \Rightarrow CARICA "COLORATA"
- IL VUOTO RAFFORZA LA CARICA DI COLORE
- CARICA COLORATA A CORTA DISTANZA \Rightarrow DECRESCE

LIBERTÀ ASINTOTICA

INTERAZIONE FORTE \Rightarrow FORZA FRA QUARK "COLORATI" MEDIATA DA "GLUONI"

- Bassa energia (grande distanza) \leftrightarrow Quark confinati negli adroni
- Alta energia (piccola distanza) \leftrightarrow Quark liberi

COSTANTE D'ACCOPPIAMENTO FORTE VS. ENERGIA

FACTORIZATION IN PERTURBATIVE QCD DEEP-INELASTIC LEPTON-HADRON SCATTERING PROBE THE PROTON WITH A SHORT-WAVELENGTH PHOTON: **QCD IS ASYMPTOTICALLY FREE, USE PERTURBATION THEORY:**

- AT FIRST PERTURBATIVE ORDER, SUM OF CONTRIBUTIONS FROM CHARGED CONSTITUENTS (QUARKS)
- MOMENTUM OF THE CONSTITUENT PROPORTIONAL TO PROTON MOMENTUM $\hat{p}=xp$
- "MOMENTUM FRACTION" x ENTIRELY FIXED BY KINEMATICS, BY Q^2 & W^2 (I.E. $\cos\theta$ & W^2)
- CROSS-SECTION PROPORTIONAL TO THE PROBABILITY $q_i(x)$ of the photon striking a guark of the *i*-th flavor or antiflavor with momentum $\hat{p} = xp$

PARTON MODEL; PARTON= STRUCK CONSTITUENT (QUARK): $q_i(x) \Rightarrow$ PARTON DISTRIBUTION (PDF)

FACTORIZATION IN PERTURBATIVE QCD DEEP-INELASTIC LEPTON-HADRON SCATTERING

TRUE TO ALL PERTURBATIVE ORDERS

$$\frac{d\sigma}{d\cos\theta dW^2} = \sum_i e_i^2 \frac{d\hat{\sigma}}{d\cos\theta dW^2} \otimes q_i$$

- PROCESS FACTORIZES: PARTONIC PROCESS (QUARKS AND GLUONS) \otimes PDF (QUARK, ANTIQUARK, GLUONS)
- PARTONIC PROCESS \Rightarrow PERTURBATIVE; PDF \Rightarrow PROTON W.F.
- PDF: PROBABILITY OF EXTRACTING PARTON WITH FRACTION x OF PROTON
- PDF DEPENDS ON SCALE (RESOLUTION) \Rightarrow DEPENDENCE COMPUTABLE

- FACTORIZATION: PDFS \otimes PARTONIC CROSS-SECTION FOR SUB-PROCESS
- ONE PARTON PER HADRON: $\hat{p}_1 = x_a p_1$; $\hat{p}_2 = x_2 p_2$

FACTORIZATION FOR HADRONIC PROCESSES
THE PARTON LUMINOSITY

$$\sigma_X(s, M_X^2) = \sum_{a,b} \mathcal{L}_{ab} \otimes \hat{\sigma}_{ab}$$

 $\sigma_X(s, M_X^2) = \sum_{a,b} \int_{x_{\min}}^1 dx_1 dx_2 f_{a/h_1}(x_1) f_{b/h_2}(x_2) \hat{\sigma}_{q_a q_b \to X} (x_1 x_2 s, M_X^2)$

- PARTON LUMINOSITY $\mathcal{L}_{ab}(\tau) = f_a \otimes f_b = \int_{\tau}^1 \frac{dx}{x} f_{a/h_1}(x) f_{b/h_2}(\tau/x)$
- PARTONIC CROSS SECTION $\hat{\sigma}_{q_a q_b \to X}$

EXAMPLE: THE DRELL-YAN PROCESS (LEADING ORDER)

- Hadronic c.m. energy: $s = (p_1 + p_2)^2$
- PARTONIC C.M. ENERGY: $\hat{s} = x_1 x_2 s$
- MOMENTUM FRACTIONS $x_{1,2} = \sqrt{\frac{\hat{s}}{s}} \exp \pm y$; at leading order $\hat{s} = M^2$

THE PDFs

(PDG 2016)

- THE MOMENTUM PROBABILITY DENSITY $xf_i(x)$ IS SHOWN AT TWO DIFFERENT SCALES (RESOLUTIONS) (LEFT \Rightarrow LOW SCALE; RIGHT \Rightarrow HIGH SCALE)
- PDFs vs x at one scale $Q_0^2 \Rightarrow$ determined for all scales by evolution equations
- As $x \ge 1$ kinematic constraint $f_i(x) = 0$
- "VALENCE" UP AND DOWN: PEAKED AT $x \sim 0.3$; EXPECT $f_x(x) \underset{x \to 1}{\sim} (1-x)_i^{\beta}$
- "SEA" ANTIQUARK AND GLUON GROW AT SMALL x

$\begin{array}{c} PDF \\ DATA \end{array} \rightarrow PARTON \\ DATA \end{array} \rightarrow PARTON \\ DISTRIBUTIONS \end{array}$

- FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS, CONVOLUTE WITH PARTONIC CROSS-SECTIONS
- SEPARATE DIFFERENT PDFs: CHOOSE PROCESSES WHICH MEASURE DIFFERENT COMBINATIONS (UP, DOWN...)
- FIT?

$\begin{array}{c} PDF \\ DATA \end{array} \rightarrow PARTON \\ DISTRIBUTIONS \end{array}$

- FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS, CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS
- DISENTANGLING PDFS: CHOOSE A BASIS OF PDFS ($2N_f$ guarks + 1 gluon) & a set of suitable physical processes to determine them all
- **PROBABILITY IN THE SPACE OF FUNCTIONS:** CHOOSE A STATISTICAL APPROACH (HESSIAN, MONTE CARLO, ...)
- UNCERTAINTY ON FUNCTIONS: CHOOSE A FUNCTIONAL FORM

CMS (2013)

DETERMINING PDFS MODEL-DEPENDENT APPROACH

- CHOOSE A FIXED FUNCTIONAL FORM
 - SINCE 1973, PHYSICALLY MOTIVATED ANSATZ $f_i(x,Q_0^2) = x^{lpha}(1-x)^{eta}g_i(x);$ $g_i(x)$ polynomial in x or \sqrt{x}
 - MMHT 2015:
 - * BASIS FUNCTIONS g; $u_v = u \bar{u}$; $d_v = d \bar{d}$; $S = 2(\bar{u} + \bar{d}) + s + \bar{s}$; $s_+ = s + \bar{s}$; $\Delta = \bar{d} \bar{u}$; $s_- = s \bar{s}$.
 - * FOR ALL BUT $\Delta s_{-}, g \Rightarrow x f_i(x, Q_0^2) = A x^{\alpha} (1-x)^{\beta} \left(1 + \sum_{i=1}^4 a_i T_i(y(x))\right);$ T_i Chebyshev polynomials, $y = 1 - 2\sqrt{x} \leftrightarrow$ must map x = [0, 1] into y = [-1, 1]; $T_i(-1) = T_i(1) = 1$
 - * GLUON $xg(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta} \left(1 + \sum_{i=1}^2 a_i T_i(y(x))\right) + A'xT\alpha'(1-x)^{\beta'}$
 - * SEA ASYMMETRY $x\Delta(x,Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1+\gamma x+\epsilon x^2)$
 - * STRANGENESS ASYMMETRY $x\Delta(x,Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1-x/x_0)$
 - * 41 PARAMETERS, 4 FIXED BY SUM RULES
 - * 12 PARMS FIXED AT BEST FIT, REMAINING 25 USED FOR (HESSIAN) COVARIANCE MATRIX
- WHAT ABOUT MODEL DEPENDENCE?

THE NNPDF APPROACH BASIC IDEA: MONTE CARLO SAMPLING OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}$ OF THE ORIGINAL DATASET $\sigma^{(\text{data})}$ \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma]$ AT DISCRETE SET OF POINTS IN DATA SPACE
- FIT A PDF REPLICA TO A DATA REPLICA \Rightarrow EACH PDF REPLICA $f_i^{(k)}$ IS A BEST-FIT PDF SET FOR GIVEN DATA REPLICA
- THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

$$\langle f_i \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} f_i^{(k)}$$

NEURAL NETWORKS

- EACH PDF REPLICA FITTED TO A DATA REPLICA \Rightarrow NEED BEST-FIT, COVARIANCE MATRIX IN PARAMETER SPACE NOT NEEDED
- CAN USE VERY LARGE PARAMETRIZATION

NEURAL NETWORKS

 $\omega_{jk}^{(2)}, heta_{j}^{(2)}$

MULTILAYER FEED-FORWARD NETWORKS $\omega_{ij}^{(3)}, \theta_i^{(3)}$

- Each neuron receives input from neurons in preceding layer and feeds output to neurons in subsequent layer
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right)$$

• Sigmoid activation function $g(x) = \frac{1}{1 + e^{-\beta x}}$

THANKS TO NONLINEAR BEHAVIOUR, ANY FUNCTION CAN BE REPRESENTED BY A SUFFICIENTLY BIG NEURAL NETWORK

GENETIC MINIMIZATION BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER, SELECTION OF THE FITTEST

- LARGE NUMBER OF MUTANT (~ 100) PDF sets generated from parent
- χ^2 computed
- **BEST-FIT KEPT & PASSED TO NEXT GENERATION**

$$w \to w + \frac{\eta r_{\delta}}{N_{\rm ite}^{r_{\rm ite}}}$$

CHOICES

- MUTATION RATE η
- POINTLIKE VS. NODAL MUTATION
- NUMBER (POINTLIKE) OR PROBABILITY (NODAL) OF MUTATIONS
- TARGETED WT: WEIGTHS $p_i = E_i / E_i^{\text{targ}}$
- GA EPOCHS: $N_{\text{gen}}^{\text{mut}}$

	Ngen	$N_{\text{gen}}^{\text{inde}}$	Ngen	Esu	$N_{\rm mut}^a$	$N_{\rm mut}^{o}$
NNPDF 2.3	10000	2500	50000	2.3	80	30
NNPDF 3.0	—	-	30000	-	80	-
			-	-		

3 Trout 3 Trous There

NNPDF2.3			NNPDF3.0		
Single Parameter Mutation			N	odal Mutation	
PDF	N _{mut}	η	PDF	$P_{\rm mut}$	η
$\Sigma(x)$	2	10, 1	$\Sigma(x)$	5% per node	15
g(x)	3	10, 3, 0.4	g(x)	5% per node	15
$T_3(x)$	2	1, 0.1	V(x)	5% per node	15
V(x)	3	8, 1, 0.1	$V_3(x)$	5% per node	15
$\Delta_S(x)$	3	5, 1, 0.1	$V_8(x)$	5% per node	15
$s^+(x)$	2	5, 0.5	$T_3(x)$	5% per node	15
$s^-(x)$	2	1, 0.1	$T_8(x)$	5% per node	15

NEURAL LEARNING

- ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION EXAMPLE: NNPDF: 2 - 5 - 3 - 1 NN for each PDF: $37 \times 7 = 259$ parameters
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

NEURAL LEARNING

- ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION EXAMPLE: NNPDF: 2 - 5 - 3 - 1 NN for each PDF: $37 \times 7 = 259$ parameters
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

NEURAL LEARNING

- ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION EXAMPLE: NNPDF: 2 - 5 - 3 - 1 NN for each PDF: $37 \times 7 = 259$ parameters
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

TESTING THE PDF DETERMINATION:

CLOSURE TESTS

- ASSUME PDFs known: Generate fake experimental data
- CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR ...)
- FIT PDFs to fake data
- CHECK WHETHER FIT REPRODUCES UNDERLYING "TRUTH":
 - CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT
 - CHECK WHETHER UNCERTAINTIES FAITHFUL
 - TRACE DIFFERENT SOURCES OF UNCERTAINTY

TRACING SOURCES OF UNCERTAINTY

- LEVEL 0: FAKE DATA GENERATED WITH NO UNCERTAINTY \rightarrow INTERPOLATION AND EXTRAPOLATION UNCERTAINTY
- LEVEL 1-2: FAKE DATA GENERATED WITH SAME UNCERTAINTY AS REAL DATA (INCLUDING CORRELATIONS)
- LEVEL 1: NO PSEUDODATA REPLICAS: \Rightarrow REPLICAS FITTED TO SAME DATA OVER AND OVER AGAIN \rightarrow FUNCTIONAL UNCERTAINTY DUE TO INFINITY OF EQUIVALENT MINIMA
- LEVEL 2: STANDARD NNPDF METHODOLOGY \Rightarrow REPLICAS FITTED TO PSEUDODATA REPLICAS \rightarrow DATA UNCERTAINTY
- THREE SOURCES OF UNCERTAINTY COMPARABLE IN DATA REGION

FITTING EFFICIENCY LEVEL 0

- ASSUME VANISHING EXPERIMENTAL UNCERTAINTY
- MUST BE ABLE TO GET $\chi^2 = 0$
- UNCERTAINTY AT DATA POINTS TENDS TO ZERO (NOT NECESSARILY ON PDF!) DEFINE $\phi \equiv \sqrt{\langle \chi^2_{rep} \rangle - \chi^2}$, EQUALS FIT UNCERTAINTY/DATA UNCERTAINTY; CHECK $\phi \rightarrow 0$
- CAN STUDY EFFICIENCY OF MINIMIZATION

 χ^2 VS TRAINING LENGTH

Effectiveness of Genetic Algorithm in Level 0 Closure Tests

FRACTIONAL UNCERTAINTY VS TRAINING LENGTH

THE GLUON

TESTING THE PDF DETERMINATION RESULTS

- CENTRAL VALUES: COMPARE FITTED VS. "TRUE" χ^2 BOTH FOR INDIVIDUAL EXPERIMENTS & TOTAL DATASET FOR TOTAL $\Delta\chi^2 = 0.001 \pm 0.003$
- UNCERTAINTIES: DISTRIBUTION OF DEVIATIONS BETWEEN FITTED AND "TRUE" PDFS SAMPLED AT 20 POINTS BETWEEN 10^{-5} and 1 FIND 0.699% FOR ONE-SIGMA, 0.948% FOR TWO-SIGMA C.L.

LEVEL-2 FITTED χ^2 VS "TRUE"

Distribution of χ^2 for experiments

NORM. DISTRIBUTION OF DEVIATIONS

- Q^2 : INVARIANT MASS OF FINAL STATE \Rightarrow WIDENING OF AVAILABLE PROCESSES
- AS ENERGY GROWS, DROP OF CROSS-SECTION MAY BE OFFSET BY GROWTH OF SMALL *x* PDFS

BEFORE AND AFTER THE LHC II PDFs with run I data

NEW DATA (NNPDF3.1 VS NNPDF3.0):

- TEVATRON LEGACY Z RAPIDITY, W ASYMMETRY & JET DATA
- ATLAS W, Z rapidity, and total xsect (incl. 13TeV), high and low mass DY, jets
- CMS W Asymmetry, W + c total & ratio, double-differential DY and jets
- LHCB W and Z rapidity distributions
- ATLAS AND CMS $Z p_T$ distributions
- ATLAS AND CMS TOP TOTAL CROSS-SECTION & DIFFERENTIAL RAPIDITY DISTRIBUTION

THE IMPACT OF LHC DATA PDF UNCERTAINTIES: PAST \Rightarrow PRESENT (NNPDF3.0 NNLO)

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- SWEET SPOT: VALENCE Q G; UNCERTAINTIES DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

THE IMPACT OF LHC DATA PDF UNCERTAINTIES: PRESENT \Rightarrow FUTURE (NNPDF3.1 NNLO) **GLUON** SINGLET **FLAVORS** Relative uncertainty for gg-luminosity Relative uncertainty for qq-luminosity Relative uncertainty for ud-luminosity NNPDF31 nnlo as 0118 - $\sqrt{s} = 13000.0 \text{ GeV}$ NNPDF31 nnlo as 0118 - $\sqrt{s} = 13000.0 \text{ GeV}$ NNPDF31 nnlo as 0118 - \sqrt{s} = 13000.0 GeV 10⁴ · 10^{4} · 10^{4} 2 0 5 Relative uncertainty (%) G 0 0 C Relative uncertainty (%) ر 10 م Relative uncertainty (%) 10³ 10^{-3} 10³ M_X (GeV) M_X (GeV) M_X (GeV) 10² 10^{2} 10² 10¹ 10 10¹ -2 -4 -2 2 -4 0 2 -2 0 v y Relative uncertainty for gg-luminosity Relative uncertainty for gg-luminosity Relative uncertainty for du-luminosity NNPDF31 nnlo as 0118 - \sqrt{s} = 13000.0 GeV NNPDF31 nnlo as $0118 - \sqrt{s} = 13000.0 \text{ GeV}$ NNPDF31 nnlo as 0118 - $\sqrt{s} = 13000.0 \text{ GeV}$ 10^{4} 10^{4} 10^{4} 25 Relative uncertainty (%) G 0 5 Relative uncertainty (%) ں م م م Relative uncertainty (%) 10³ 103 10³ M_X (GeV) M_X (GeV) M_X (GeV) 10² 10^{2} 10² 10¹ 10^{1} 10^{1} -4 -2 0 ż _4 -2 2 -4 -2 Ó ż 0 v

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- Sweet spot: valence Q G; uncertainties down to 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- NEW LHC DATA \Rightarrow SIZABLE REDUCTION IN UNCERTAINTIES

The N3PDF project, led by PI Stefano Forte, aims at revolutionizing the theory of strong interactions and its application to the determination of the structure of the proton, by introducing extensively techniques of artificial intelligence (AI). The core of the project is the development of an AI agent for the determinations of the parton distributions which encode the quark and gluon structure of the proton, using machine learning techniques. The project also includes an integrated set of studies on higher-order computations and resummation in perturbative QCD, and the development of parton distributions interfaced to resummation and Monte Carlo generators. The project will work in synergy with the NNPDF collaboration, to which it will provide methods and tools, and from which it will gain physics input and insight.

There are currently no positions available but we will be looking for two PhD students very soon!

AI & GO

AI & PDFs

