
New ideas from physics to machine learning

Stefano Carrazza

Durham, 3-6th April 2018.

European Organization for Nuclear Research (CERN)

Acknowledgement: This project has received funding from HICCUP ERC Consolidator
grant (614577) and by the European Unions Horizon 2020 research and innovation
programme under grant agreement no. 740006.

PDFN 3
Machine Learning • PDFs • QCD



Introduction



Motivation

Usually, machine learning methods require investigation and tuning of:

Parameterization, e.g.

• NN, Deep NN

• New architectures

• Auto-ML

Minimization, e.g.

• Gradient descent methods

• Genetic optimizers

• Reinforcement/Q-learning

In the context of NNPDF the next level of refiniments includes:

• Better minimizers based on SGD algorithms:

→ possibility to test algorithms for modern DNN training

→ improve fit convergence/speed

• Test more efficient architectures:

→ NN, DNN and new models.

The development of both points will provide hints towards new

methodological ideas (single multi-flavour agent, Q-learning).
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New ideas from physics to machine learning

In this talk we present new a machine learning architecture:

Riemann-Theta Boltzmann Machine

• flexible as NN but with less parameters

• allow multiple applications:

• data regression

• data classification

• feature detection

• pdf sampling

We derive a new architecture from physics:

• model based on physics → ML new architecture
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Theory



Boltzmann machine

Graphical representation:

[Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued

states {0, 1}
Connection

matrices

• Boltzmann machine (BM): T and Q symmetric arbitrary.

• Restricted Boltzmann machine (RBM): T = Q = 0.
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

State vectors Connection matrices Biases
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

Starting from the system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

The canonical partition function is defined as:

Z =
∑
h,v

e−E(v,h)

Probability the system is in specific state given by Boltzmann distribution:

P (v, h) =
e−E(v,h)

Z

with marginalization:

P (v) =
e−F (v)

Z
Free energy
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Boltzmann machine

Learning: [Hinton, Sejnowski ‘86]

Theoretically, general compute

medium.

Via adjusting W,T,Q,Bh, Bv able

to learn the underlying probability

distribution of a given dataset.

However: practically not feasible

For applications only RBMs have been considered.
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

→ Create the domain of state values.

Continuous

valued ∈ R

Continuous

valued ∈ R

P (v) ≡ multi-variate gaussian (too trivial)
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

→ Create the domain of state values.

Continuous

valued ∈ R

“Quantized”

∈ Z

Something interesting happens

Under mild constraints on connection matrices (positive definiteness,...)

P (v) ≡

√
detT

(2π)Nv
e−

1
2 v

tTv−Bt
vv− 1

2B
t
vT

−1Bv
θ̃(Bth + vtW |Q)

θ̃(Bth −BtvT−1W |Q−W tT−1W )

Closed form analytic solution still available!
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Riemann-Theta Boltzmann machine

RTBM [Krefl, S.C., Haghighat, Kahlen ‘17]

Novel very generic probability density:

P (v) ≡

√
detT

(2π)Nv
e−

1
2 v

tTv−Bt
vv− 1

2B
t
vT

−1Bv
θ̃(Bth + vtW |Q)

θ̃(Bth −BtvT−1W |Q−W tT−1W )

Damping factor Riemann-Theta function

Mathematically striking:

θ(z,Ω) :=
∑

n∈ZNh

e2πi( 1
2n

tΩn+ntz)

Key properties: Periodicity, modular invariance, solution to heat

equation, etc.

Note: Gradients can be calculated analytically as well so gradient

descent can be used for optimization.
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Applications



Riemann-Theta Boltzmann machine

In the next we show examples of RTBMs for

• Probability determination

• Data classification

• Data regression
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Riemann-Theta Boltzmann machine

RTBM P (v) examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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For different choices of parameters (with hidden sector in 1D or 2D)

11



Riemann-Theta Boltzmann machine

Mixture model: [Krefl, S.C., Haghighat, Kahlen ‘17]

Expectation:

As long as the density is well enough

behaved at the boundaries it can be

learned by an RTBM mixture model.

12



Riemann-Theta Boltzmann machine

Examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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Riemann-Theta Boltzmann machine

Feature detector: [Krefl, S.C., Haghighat, Kahlen ‘17]

Similar to [Krizhevsky ‘09]

New:

Conditional expectations of hidden

states after training

E(hi|v) = − 1

2πi

∇iθ̃(vtW +Bth|Q)

θ̃(vtW +Bth|Q)

The detector is trained in probability

mode and generates a feature vector.
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Feature detector example - jet classification

Jet classification: [Krefl, S.C., Haghighat, Kahlen ‘17]

Data from [Baldi et al. ‘16, 1603.09349]

Descriminating jets from single

hadronic particles and overlapping

jets from pairs of collimated

hadronic particles.

Data (images of 32x32 pixels)

• 5000 images for training

• 2500 images for testing

Classifier Test dataset precision

Logistic regression (LR) 77%

RTBM feature detector + LR 83%
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Riemann-Theta Boltzmann machine

Theta Neural Network: [Krefl, S.C., Haghighat, Kahlen ‘17]

Idea:

Use as activation function in a

standard NN. The particular form of

non-linearity is learned from data.

Key point:

smaller networks needed but

Riemann-Theta evalution is expensive.

Example:

y(t) = 0.02t+ 0.5 sin(t+ 0.1) + 0.75 cos(0.25t− 0.3) +N (0, 1)
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Implementation



Implementation

[riemann.ai/theta]

Theta: Python machine learning framework for

RTBMs and TNNs (with heavy lifting done by

numpy, cython and C)

• Easy interface: Keras like definition of model.

• SGD and genetic optimizer out of the box.

Easy integration of custom optimizers.

• Easy to extend functionality (object oriented)

• CPU based

GPU, ,FPGA support in work

Better math backend in work

Expected speedup will bring large scale applications in reach.
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Thank you!
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