New ideas from physics to machine learning

Stefano Carrazza

Durham, 3-6th April 2018.

European Organization for Nuclear Research (CERN)

Acknowledgement: This project has received funding from HICCUP ERC Consolidator grant (614577) and by the European Unions Horizon 2020 research and innovation programme under grant agreement no. 740006.

Introduction

Motivation

Usually, machine learning methods require investigation and tuning of:

Parameterization, e.g.

- NN, Deep NN
- New architectures
- Auto-ML

Minimization, e.g.

- Gradient descent methods
- Genetic optimizers
- Reinforcement/Q-learning

In the context of NNPDF the next level of refiniments includes:

- Better minimizers based on SGD algorithms:
 - \rightarrow possibility to test algorithms for modern DNN training
 - \rightarrow improve fit convergence/speed
- Test more efficient architectures:

 \rightarrow NN, DNN and new models.

The development of both points will provide hints towards new methodological ideas (single multi-flavour agent, Q-learning).

In this talk we present new a machine learning architecture:

Riemann-Theta Boltzmann Machine

- flexible as NN but with less parameters
- allow multiple applications:
 - data regression
 - data classification
 - feature detection
 - pdf sampling

We derive a new architecture from physics:

- model based on physics \rightarrow ML new architecture

Theory

Graphical representation:

Graphical representation:

[Hinton, Sejnowski '86]

Boltzmann machine

Graphical representation:

- Boltzmann machine (BM): T and Q symmetric arbitrary.
- Restricted Boltzmann machine (RBM): T = Q = 0.

Boltzmann machine

Energy based model:

[Hinton, Sejnowski '86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

$$E(v,h) = \frac{1}{2}v^{t}Tv + \frac{1}{2}h^{t}Qh + v^{t}Wh + B_{h}h + B_{v}v$$

$$\uparrow \uparrow$$
State vectors
Connection matrices
Biases

Energy based model:

[Hinton, Sejnowski '86]

Starting from the system energy for given state vectors (v, h):

$$E(v,h) = \frac{1}{2}v^{t}Tv + \frac{1}{2}h^{t}Qh + v^{t}Wh + B_{h}h + B_{v}v$$

The canonical partition function is defined as:

$$Z = \sum_{h,v} e^{-E(v,h)}$$

Probability the system is in specific state given by Boltzmann distribution:

$$P(v,h) = \frac{e^{-E(v,h)}}{Z}$$

with marginalization:

$$P(v) = \frac{e^{-F(v)}}{Z} \qquad \qquad \text{Free energy}$$

Boltzmann machine

Learning:

[Hinton, Sejnowski '86]

Theoretically, general compute medium. Via adjusting W, T, Q, B_h, B_v able to learn the underlying probability N_v distribution of a given dataset.

However: practically not feasible

For applications only RBMs have been considered.

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen '17] Keep the inner sector couplings non-trivial, but the machine solvable? \rightarrow Create the domain of state values.

 $P(v) \equiv$ multi-variate gaussian (too trivial)

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen '17] Keep the inner sector couplings non-trivial, but the machine solvable? \rightarrow Create the domain of state values.

Something interesting happens

Under mild constraints on connection matrices (positive definiteness,...)

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen '17] Keep the inner sector couplings non-trivial, but the machine solvable? \rightarrow Create the domain of state values.

Closed form analytic solution still available!

RTBM

[Krefl, S.C., Haghighat, Kahlen '17]

Novel very generic probability density:

$$P(v) \equiv \sqrt{\frac{\det T}{(2\pi)^{N_v}}} e^{-\frac{1}{2}v^t T v - B_v^t v - \frac{1}{2}B_v^t T^{-1}B_v} \frac{\tilde{\theta}(B_h^t + v^t W|Q)}{\tilde{\theta}(B_h^t - B_v^t T^{-1}W|Q - W^t T^{-1}W)}$$

Damping factor
Riemann-Theta function

Mathematically striking:

$$\theta(z,\Omega) := \sum_{n \in \mathbb{Z}^{N_h}} e^{2\pi i \left(\frac{1}{2}n^t \Omega n + n^t z\right)}$$

Key properties: Periodicity, modular invariance, solution to heat equation, etc.

Note: Gradients can be calculated analytically as well so gradient descent can be used for optimization.

Applications

In the next we show examples of RTBMs for

- Probability determination
- Data classification
- Data regression

RTBM P(v) examples:

[Krefl, S.C., Haghighat, Kahlen '17]

For different choices of parameters (with hidden sector in 1D or 2D)

Mixture model:

Expectation:

As long as the density is well enough behaved at the boundaries it can be learned by an RTBM mixture model.

[Krefl, S.C., Haghighat, Kahlen '17]

Examples:

[Krefl, S.C., Haghighat, Kahlen '17]

Feature detector:

[Krefl, S.C., Haghighat, Kahlen '17] Similar to [Krizhevsky '09]

New:

Conditional expectations of hidden states after training

$$E(h_i|v) = -\frac{1}{2\pi i} \frac{\nabla_i \tilde{\theta}(v^t W + B_h^t|Q)}{\tilde{\theta}(v^t W + B_h^t|Q)}$$

The detector is trained in probability mode and generates a feature vector.

Feature detector example - jet classification

Jet classification:

Descriminating jets from single hadronic particles and overlapping jets from pairs of collimated hadronic particles.

Data (images of 32x32 pixels)

- 5000 images for training
- 2500 images for testing

[Krefl, S.C., Haghighat, Kahlen '17] Data from [Baldi et al. '16, 1603.09349]

Classifier	Test dataset precision
Logistic regression (LR)	77%
RTBM feature detector + LR	83%

Theta Neural Network:

Idea:

Use as activation function in a standard NN. The particular form of non-linearity is learned from data.

Key point:

smaller networks needed but Riemann-Theta evalution is expensive.

Example:

[Krefl, S.C., Haghighat, Kahlen '17]

 $y(t) = 0.02t + 0.5\sin(t+0.1) + 0.75\cos(0.25t - 0.3) + \mathcal{N}(0,1)$

Implementation

Implementation

Theta: Python machine learning framework for RTBMs and TNNs (with heavy lifting done by numpy, cython and C)

[riemann.ai/theta]

- Easy interface: Keras like definition of model.
- SGD and genetic optimizer out of the box. Easy integration of custom optimizers.
- Easy to extend functionality (object oriented)
- CPU based GPU, ,FPGA support in work Better math backend in work

Expected speedup will bring large scale applications in reach.

Thank you!