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Introduction

We started this project aiming to build a model with:

= well suited for pdf estimation and pdf sampling
= built-in pdf normalization (close form expression)

= very flexible with a small number of parameters

We decided to look at energy models, specifically Boltzmann Machines.
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Boltzmann machine

Graphical representation:
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Graphical representation: [Hinton, Sejnowski ‘86]
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Graphical representation: [Hinton, Sejnowski ‘86]
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

Connection Binary valued

states {0, 1}

v

matrices

= Boltzmann machine (BM): T'and @ # 0.
= Restricted Boltzmann machine (RBM): T'= @ = 0.



Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.



Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

1 1
E(v, h) = ivtTv—F §thh+ ! Wh + Bph + Byv



Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]
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View as statistical mechanical system.

The system energy for given state vectors (v, h):

1 1
E(v, h) = ivt Tv+ =h'Qh + v! Wh+ Brh+ Byv

e N N

State vectors Connection matrices Biases



Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

Starting from the system energy for given state vectors (v, h):
L 1.4 ¢
E(v,h) = §U’T11—|— ih’Qh—&— v' Wh+ Bph+ Byv

The canonical partition function is defined as:

7= Z e—E(’U,h,)

h,v

Probability the system is in specific state given by Boltzmann distribution:

Plo.h 6—E(’U,h)
(U7 )_ Z
with marginalization:
eiF('U)
P(v) = 7 Free energy



Boltzmann machine

Learning: [Hinton, Sejnowski ‘86]

Theoretically, general compute

medium.

Via adjusting W, T, Q, By, B, able

to learn the underlying probability
00 0 distribution of a given dataset.

However: practically not feasible
For applications only RBMs have been considered.



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous
valued € R

Continuous
valued € R

P(v) = multi-variate gaussian (too trivial)



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

“Quantized”
cZ

Continuous
%
B valued € R

Something interesting happens

Under mild constraints on connection matrices (positive definiteness,...)



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

Eanntlzed / N,
Continuous
§ @ Ny
A — valued € R
P(v) = det T o~ 3 To—Blo—B,T1B, _ 0(B;, + v'W|Q)
(2m) N 0(B. — BET-1W|Q — WtT-1 W)

Closed form analytic solution still available!



Riemann-Theta Boltzmann machine

RTBM [Krefl, S.C., Haghighat, Kahlen ‘17]
Novel very generic probability density:

P(U) - det T e_%q;' Tv—Blv—B.T7'B, ~ éVQBZ T ot VV] Q)
(27) N T 9(<B;1_\R€1MQ— W)
Damping factor Riemann-Theta function

The Riemann-Theta definition:

0(z0) = Y Fr(w B )

neZNn

Key properties: Periodicity, modular invariance, solution to heat
equation, etc.

Note: Gradients can be calculated analytically as well so gradient
descent can be used for optimization.



RTBM properties

We observe that P(v) stays in the same distribution under affine
transformations, i.e. rotation and translation

w=Av+b, w~ Py;(v),

if the linear transformation A has full column rank.

P4 p(v) is the distribution P(v) with parameters rotated as

T' = AT 'A', B,— (AN)!B,— Tb,
W — (AJr)tW, B},, — B},, = I/th

where A7 is the left pseudo-inverse defined as

AT = (AtA)LAL
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Implementation

In order to perform tests we prepared a public RTBM framework:

Theta: Python machine learning framework for RTBMs and TNNs (with
heavy lifting done by numpy, cython and C)

Docs » Welcome to theta's documentation!
© Edit on GitHub

= Easy interface: Keras like
definition of model.

Welcome to theta's
documentation!

SGD and genetic optimizer out

‘Theta is a machine learning (ML) framework

e T of the box.

(RTBM), written in Python and Cython. It offers a high-

s o by deny simnn Easy integration of custom
The code implements the RTBM as described nthe optimizers.

theoretical paper arXiv:1712

81

= Easy to extend functionality
Theta s in a proof-of-concept / research phase. You

e T SR T o KT (0 b_j ect oriented )

tune to get proper results.

User documentation

[http://riemann.ai/theta]

CPU based (for current version)
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Riemann-Theta Boltzmann machine

In the next we show examples of RTBMs for

= Probability determination
= Data classification
= Data regression

= Sampling

11



Riemann-Theta Boltzmann machine

RTBM P(v) examples:

[Krefl, S.C., Haghighat, Kahlen ‘17]
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different choices of parameters (with hidden sector in 1D or 2D).
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Riemann-Theta Boltzmann machine

Mixture model: [Krefl, S.C., Haghighat, Kahlen ‘17]

Expectation:

As long as the density is well enough
behaved at the boundaries it can be

¥ 3

learned by an RTBM mixture model.

13



Riemann-Theta Boltzmann machine

Examples: [Krefl, S.C., Haghighat, Kahlen ‘17]

0200 o
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0175 0175
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s 4 = o 2 4 & o0 o2 J5 & 2 o 5 & & o o3 050
v P v P

Top N, =1, N, = 3,2, 3, button N, =2, N, = 1(2x RTBM), 2. 14



Riemann-Theta Boltzmann machine

Feature detector: [Krefl, S.C., Haghighat, Kahlen ‘17]
Similar to [Krizhevsky ‘09]

New:
Conditional expectations of hidden
states after training

~ Segmentation ]
E(h4|v)——ivi0(vtw+ B|Q)
T 2mi (W B Q)

The detector is trained in probability

mode and generates a feature vector. ~ Tnput image

E(hlv)

feature vector
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Feature detector example - jet classification

Jet classification: [Krefl, S.C., Haghighat, Kahlen ‘17]
Data from [Baldi et al. ‘16, 1603.09349]

Descriminating jets from single

hadronic particles and overlapping

Segmentation

jets from pairs of collimated

hadronic particles.

‘/Classiﬁer(i

Data (images of 32x32 pixels)

= 5000 images for training Input image

= 2500 images for testing P EGW)

feature vector

Classifier ‘ Test dataset precision
Logistic regression (LR) 77%
RTBM feature detector + LR 83%
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Riemann-Theta Boltzmann machine

Theta Neural Network: [Krefl, S.C., Haghighat, Kahlen ‘17]
Idea:

Use as activation function in a
standard NN. The particular form of

non-linearity is learned from data.

Key point:

smaller networks needed but

Riemann-Theta evalution is expensive.
Example (1:3-3-2:1):

y(t) = 0.02t + 0.5sin(t+ 0.1) + 0.75 cos(0.25¢ — 0.3) + N(0, 1)

Y
V‘WWW ‘L‘V ;AMWPA,MW /1

y(1) TNN fit TNN activations 17




RTBM sampling algorithm

The probability for the visible sector can be expressed as:

P(U) = ZP(’U‘h)P(h) P(h)
[A vE
where P(v|h) is a multivariate gaussian. The P(v) E(h) L
sampling can be performed easily by:
= sampling h ~ P(h) using the RT numerical L
evaluation 6 = 6, + €¢(R) with ellipsoid radius R so P(v)
e(R)
=— K1
P 0, + €(R) S T-1B, v
is the probability that a point is sampled outside the s
ellipsoid of radius R, while ¢ P,
0, n 2 : .
Y Phy= " 1 - .
On + €(R) ' : :
[RI(R) - . .
i.e. sum over the lattice points inside the ellipsoid. T S

= then sampling v ~ P(v]h) 18



Sampling examples

RTBM P(v) sampling examples:

[S.C. and Krefl ‘18]

o016 — Gamma paf — Gaussian mixture pdf 030 — Cauchy pat
014 — RTBM model 0.08 — RTBM model — RTBM model
Sampling N; = 10° 007 Sampling N, = 10° Sampling N, = 10°
012 025
0.06
010 0.20
b, 5 005
o008 004 015
0.06
0.03 010
.08 002
0.02 001 005
o o
0 s 0 15 20 -20 1o 0 10 20
— RTBM model o035 — RTBM model
030 Sampling N, = 10° Sampling N, = 10°
1 6OOG data 030 3 xoM data
025
0.25
020
P 020
015
015
010
0.10
005 0.05
0 o
2 -1s -0 -5 0 5 10 15 20 15 o -5 s IR

Top N, = 1, N, = 2,3 (2x RTBM), 3, button N, = 1, N, = 3.
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nce estimators

Distribution  xZreu/Noine MSEjrng™® MSERP'™ MSER], KS distance

Gamma 0.02/50 2-107°  2.6-107° 3.4-107* 0.01
Cauchy 0.12/50 29-107*  37-107* 1.5-107% 0.02
Gaussian mixture  0.01/50 6.7-107 1.4-107° 9.3-107° 0.01
GOOG 0.10/50 2.7-107*  9.5.107% 2.5.107* 0.02
XOM 0.09/50 2.6-10"*  6.7-107° 3.7-107* 0.02

Exact definitions for all distance estimators are
I} The mean squared error (MSE) is taken between the sampling, the RTBM model and the underlying
distribution (pdf). The Kolmogorov-Smirnov (KS) distance is shown in the last column of the table. For GOOG and XOM
the empirical distribution is employed as underlying pdf.

TABLE I: Distance estimators for the sampling examples in ﬁguresand
given in section

Distribution Mean 2nd moment 3th moment 4th moment
Gamma 7.43 (7.43) [7.49] | 6.91 (6.89) [7.41] 10.03 (10.03) [13.79] 154 (153.23) [195.8]
Cauchy -0.057 (-0.057) [-] 11.64 (11.64) [-] -4.63 (-4.97) [-] 1749.8 (1753) [-]
Gaussian mixture|-1.48 (-1.48) [-1.31]|34.45 (34.45) [34.29]|134.35 (136.67) [131.78]|3558.7 (3571.8) [3569.1]
GOOG 0.06 (0.06) [0.08] | 3.28 (3.23) [3.58] 1.52 (1.42) [6.04] 117 (108) [191]
XOM 0.02 (0.02) [0.03] | 2.13 (2.15) [2.36] -0.42 (-0.18) [1.44] 38.3 (40.2) [97.1]

TABLE II: Mean and central moments for the sampling data, the RTBM model (round brackets) and the underlying true
distribution (square brackets). Note that the moments of the Cauchy distribution are cither undefined or infinite. The given
values correspond to the RTBM model approximation and its sampling, which are defined and finite, . For the GOOG
and XOM distributions the true moments (square brackets) are evaluated from the underlying empirical distribution.
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Sampling examples with affine transformation

RTBM P(v) sampling with affine transformation: [S.C. and Krefl ‘18]

For a rotation of § = /4 and scaling of 2 (N, = 2, N;, = 2).
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Conclusion




In summary:

= New BM architecture based on the Riemann-Theta function.

= Results are encouraging, several application opportunities.
For the future:

= Perform systematic benchmarks.
= Develop better optimization algorithms.

= Provide a more complete physics interpretation (if possible)

22



Thank youl!
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