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Introduction



Introduction

We started this project aiming to build a model with:

• well suited for pdf estimation and pdf sampling
• built-in pdf normalization (close form expression)
• very flexible with a small number of parameters

We decided to look at energy models, specifically Boltzmann Machines.
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Theory



Boltzmann machine

Graphical representation:

[Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector
Binary valued
states {0, 1}

Connection
matrices
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

“Visible” sector

“Hidden” sector

Binary valued
states {0, 1}

Connection
matrices

• Boltzmann machine (BM): T and Q ̸= 0.
• Restricted Boltzmann machine (RBM): T = Q = 0.
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

E(v, h) = 1
2vtTv + 1

2htQh + vtWh + Bhh + Bvv

State vectors Connection matrices Biases
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

Starting from the system energy for given state vectors (v, h):

E(v, h) = 1
2vtTv + 1

2htQh + vtWh + Bhh + Bvv

The canonical partition function is defined as:

Z =
∑
h,v

e−E(v,h)

Probability the system is in specific state given by Boltzmann distribution:

P(v, h) = e−E(v,h)

Z
with marginalization:

P(v) = e−F(v)

Z
Free energy
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Boltzmann machine

Learning: [Hinton, Sejnowski ‘86]

Theoretically, general compute
medium.
Via adjusting W,T,Q,Bh,Bv able
to learn the underlying probability
distribution of a given dataset.

However: practically not feasible
For applications only RBMs have been considered.
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous
valued ∈ R

Continuous
valued ∈ R

P(v) ≡ multi-variate gaussian (too trivial)
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Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]

Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous
valued ∈ R

“Quantized”
∈ Z

Something interesting happens
Under mild constraints on connection matrices (positive definiteness,...)

P(v) ≡

√
det T
(2π)Nv

e− 1
2 vtTv−Bt

vv−Bt
vT−1Bv

θ̃(Bt
h + vtW|Q)

θ̃(Bt
h − Bt

vT−1W|Q − WtT−1W)

Closed form analytic solution still available!
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Riemann-Theta Boltzmann machine

RTBM [Krefl, S.C., Haghighat, Kahlen ‘17]

Novel very generic probability density:

P(v) ≡

√
det T
(2π)Nv

e− 1
2 vtTv−Bt

vv−Bt
vT−1Bv

θ̃(Bt
h + vtW|Q)

θ̃(Bt
h − Bt

vT−1W|Q − WtT−1W)

Damping factor Riemann-Theta function

The Riemann-Theta definition:

θ(z,Ω) :=
∑

n∈ZNh

e2πi( 1
2 ntΩn+ntz)

Key properties: Periodicity, modular invariance, solution to heat
equation, etc.

Note: Gradients can be calculated analytically as well so gradient
descent can be used for optimization.
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RTBM properties

We observe that P(v) stays in the same distribution under affine
transformations, i.e. rotation and translation

w = Av + b, w ∼ PA,b(v),

if the linear transformation A has full column rank.

PA,b(v) is the distribution P(v) with parameters rotated as

T−1 → AT−1At , Bv → (A+)tBv − Tb ,
W → (A+)tW , Bh → Bh − Wtb .

where A+ is the left pseudo-inverse defined as

A+ = (AtA)−1At.
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Applications



Implementation

In order to perform tests we prepared a public RTBM framework:

Theta: Python machine learning framework for RTBMs and TNNs (with
heavy lifting done by numpy, cython and C)

[http://riemann.ai/theta]

• Easy interface: Keras like
definition of model.

• SGD and genetic optimizer out
of the box.
Easy integration of custom
optimizers.

• Easy to extend functionality
(object oriented)

• CPU based (for current version)
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Riemann-Theta Boltzmann machine

In the next we show examples of RTBMs for

• Probability determination
• Data classification
• Data regression
• Sampling
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Riemann-Theta Boltzmann machine

RTBM P(v) examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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For different choices of parameters (with hidden sector in 1D or 2D).
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Riemann-Theta Boltzmann machine

Mixture model: [Krefl, S.C., Haghighat, Kahlen ‘17]

Expectation:
As long as the density is well enough
behaved at the boundaries it can be
learned by an RTBM mixture model.

13



Riemann-Theta Boltzmann machine

Examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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Top Nv = 1, Nh = 3, 2, 3, button Nv = 2, Nh = 1 (2x RTBM), 2. 14



Riemann-Theta Boltzmann machine

Feature detector: [Krefl, S.C., Haghighat, Kahlen ‘17]
Similar to [Krizhevsky ‘09]

New:
Conditional expectations of hidden
states after training

E(hi|v) = − 1
2πi

∇iθ̃(vtW + Bt
h|Q)

θ̃(vtW + Bt
h|Q)

The detector is trained in probability
mode and generates a feature vector.
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Feature detector example - jet classification

Jet classification: [Krefl, S.C., Haghighat, Kahlen ‘17]
Data from [Baldi et al. ‘16, 1603.09349]

Descriminating jets from single
hadronic particles and overlapping
jets from pairs of collimated
hadronic particles.

Data (images of 32x32 pixels)

• 5000 images for training
• 2500 images for testing

Classifier Test dataset precision

Logistic regression (LR) 77%
RTBM feature detector + LR 83%
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Riemann-Theta Boltzmann machine

Theta Neural Network: [Krefl, S.C., Haghighat, Kahlen ‘17]
Idea:
Use as activation function in a
standard NN. The particular form of
non-linearity is learned from data.

Key point:
smaller networks needed but
Riemann-Theta evalution is expensive.
Example (1:3-3-2:1):

y(t) = 0.02t + 0.5 sin(t + 0.1) + 0.75 cos(0.25t − 0.3) +N (0, 1)
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RTBM sampling algorithm
The probability for the visible sector can be expressed as:

P(v) =
∑
[h]

P(v|h)P(h)

where P(v|h) is a multivariate gaussian. The P(v)
sampling can be performed easily by:

• sampling h ∼ P(h) using the RT numerical
evaluation θ = θn + ϵ(R) with ellipsoid radius R so

p =
ϵ(R)

θn + ϵ(R)
≪ 1

is the probability that a point is sampled outside the
ellipsoid of radius R, while∑

[h](R)

P(h) = θn

θn + ϵ(R)
≈ 1

i.e. sum over the lattice points inside the ellipsoid.

• then sampling v ∼ P(v|h)
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Sampling examples

RTBM P(v) sampling examples: [S.C. and Krefl ‘18]
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Top Nv = 1, Nh = 2, 3 (2x RTBM), 3, button Nv = 1, Nh = 3.

19



Sampling distance estimators
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Sampling examples with affine transformation

RTBM P(v) sampling with affine transformation: [S.C. and Krefl ‘18]
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For a rotation of θ = π/4 and scaling of 2 (Nv = 2, Nh = 2).
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Conclusion



Outlook

In summary:

• New BM architecture based on the Riemann-Theta function.
• Results are encouraging, several application opportunities.

For the future:

• Perform systematic benchmarks.
• Develop better optimization algorithms.
• Provide a more complete physics interpretation (if possible)
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Thank you!
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