

MACHINE LEARNING PRECISION HIGH ENERGY PHYSICS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

MÜNCHEN, SEPTEMBER 11, 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

ENERGY FRONTIER vs. ACCURACY FRONTIER

"There are historical reasons not to expect too much from the LHC. (...)

There have been sixteen important discoveries" (in HEP) "between 1945 and 2008: four discoveries on the energy frontier, four on the rarity frontier, eight on the accuracy frontier"

PHYSICS AT THE LHC

"There are two reasons to be skeptical about the importance of the LHC: one technical and one historical".

"The technical weakness of the LHC arises from the nature of the collisions that it studies. These are collisions of protons with protons, and they have the unfortunate habit of being messy" Freeman Dyson, 2008

PRECISION PHYSICS AT THE LHC: EXPERIMENT MEASUREMENT OF STANDARD MODEL PROCESSES

PRECISION PHYSICS AT THE LHC: THEORY NNLO QCD CALCULATIONS OF COLLIDER PROCESSES

				NN	LO			
	• anter	nna						$\gamma + \mathrm{jet}$
	• qt							$ep \rightarrow \text{jet}$
	 N-jet 	tiness					H WW	$H(m_t \to \infty)$
			oved r.s.				ZH	$\gamma\gamma$
	o proje	ction to	Born			_	ZZ	W + jet
	• colorf	ul				$Z\gamma$	$W\gamma$	Z + jet
			11.07.5	$\int \operatorname{diff} W_{I}$	Z		pp	$p \rightarrow 2 \text{jets}$
		d	$\operatorname{diff} H$ $\operatorname{iff} W/Z$	1	$\gamma\gamma$	_	Z H	+ jet + jet $(m_t \to \infty)$
		diff	H		W H	$o_{tot} \iota$	$H + \frac{1}{2}$	$\det(m_t \to \infty)$
	$\sigma_{\rm tot} V$	V H		$\sigma_{ m tc}$	$_{ m tt}$ Hjj (VI	3F)	H + 1	jet $(m_t \rightarrow \infty)$
	$\sigma_{\rm tot} H$		e ⁺ e ⁻ -	3 jets			$t \bar{t}_{H}$	ii (VBF)
σ	tot W/Z		e'e –	> event sha	apes		e	$e^- \rightarrow 3 \text{jets}$
01	2003	2005	2007	2009	2011	2013	2015	2017

(G. Heinrich, 2017)

PERTURBATIVE CALCULATIONS? THE MIRACLE OF FACTORIZATION

THE FEYNMAN PARTON MODEL

R. Feynman explaining the parton model at CERN PROBE THE PROTON WITH A SHORT-WAVELENGTH PHOTON:

- ASSUME PHOTON STRIKES A FREE MASSLESS "PARTON" (QUARK, GLUON) THAT CARRIES FRACTION x OF ITS PARENT PROTON $p_{\text{quark}} = x P_{\text{proton}}$
- VALUE OF x FIXED BY FINAL-STATE KINEMATICS
- CROSS-SECTION PROPORTIONAL TO PROBABILITY $q_i(x)$ OF FINDING PARTON OF SPECIES i WITH MOMENTUM-FRACTION x IN TARGET PROTON

THE MIRACLE OF FACTORIZATION

PERTURBATIVE QCD

PROBE THE PROTON WITH A SHORT-WAVELENGTH PHOTON:

Wilson

Politzer

Gross

Altarelli

Sterman

- THE PARTON MODEL IS THE FIRST ORDER OF A PERTURBATIVE EXPANSION
- AT ALL ORDERS, THE CALCULATION FACTORIZES: $\sigma_{\text{experimental}} = \hat{\sigma}_{\text{perturbative}} \otimes q_i$
- CAN BE PROVEN RIGOROUSLY USING THE OPE (WILSON EXPANSION)

THE MIRACLE OF FACTORIZATION

PERTURBATIVE QCD

PROTON-PROTON COLLISIONS WITH A SHORT DISTANCE SCALE λ :

Wilczek

Wilson

Parisi

Altarelli

ns Sterman

Politzer

 $\lambda \sim \frac{1}{M_{\rm Higgs}}$ Higgs production at LHC at N³LO

RYMMAM

- THE PARTON MODEL IS THE FIRST ORDER OF A PERTURBATIVE EXPANSION
- AT ALL ORDERS, THE CALCULATION FACTORIZES: $\sigma_{\text{experimental}} = \hat{\sigma}_{\text{perturbative}} \otimes q_i \otimes q_j$
- CAN BE SHOWN ORDER BY ORDER USING DIAGRAMMATIC ARGUMENTS

A PORTRAIT OF THE PROTON AS SEEN FROM A HIGGS BOSON

(PDG 2018)

THE "PARTON DISTRIBUTIONS"

- MOMENTUM FRACTION DISTRIBUTIONS FOR EACH TYPE OF QUARK, ANTIQUARK & THE GLUON
- $\int_0^1 f_{\rm up}(x) \, dx = N_{\rm up}, \ldots$
- "VALENCE" $N_{\rm up} N_{\rm antiup} = 2$; $N_{\rm down} N_{\rm down} = 2$
- RESULT DEPENDS ON SCALE μ (RESOLUTION); dep. on scale perturbatively computable

HOW IS THE PORTRAIT TAKEN?

- COMPUTE PHYSICAL PROCESS \Rightarrow DEPENDS ON PDF
- COMPARE TO DATA
- INVERT

HOW IS THE PORTRAIT TAKEN? A TYPICAL DATASET (NNPDF3.1)

- EACH PDF IS A FUNCTION actually, a distribution
 ⇒ WE ARE DETERMINING A
 PROBABILITY DISTRIBUTION IN A SPACE OF FUNCTIONS
- WE ARE DETERMINING A FUNCTIONAL (CONTINUOUS) FROM A DISCRETE SET OF DATA

FLASHBACK: PDFs CIRCA 2004 SIMPLE SOLUTION: PICK A FUNCTIONAL FORM gluon parametrization (MRST 2004)

 $xg(x,Q_0^2) = A_g(1-x)^{\eta_g}(1+\epsilon_g x^{0.5}+\gamma_g x)x^{\delta_g} - A_-(1-x)^{\eta_-}x^{-\delta_-}$

- PRO: PROBLEM REDUCED TO FINITE-DIMENSIONAL
- CON: WHO PICKS THE FUNCTIONAL FORM?

W.K.Tung, DIS 2004

THE HERA-LHC WORKSHOP

... this is when Dyson made his comments!

"TOLERANCE"

2002: FIRST PDFs with uncertainties

 \Rightarrow REALISTICS PDF UNCERTAINTIES NEED SIZABLE "TOLERANCE" RESCALING (T = 5 - 10)

THE HERA-LHC BENCHMARK

- RESTRICTED AND VERY CONSISTENT DATASET USED
- RESULTS COMPARED TO THEN-BEST RESULT FROM FULL DATASET

BENCHMARK VS DEFAULT GLUON

"...the partons extracted using a very limited data set are completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with an identical treatment of errors...The comparison illustrates the problems in determining the true uncertainty on parton distributions." (R.Thorne, HERALHC, 2005)

Published by Institute of Physics Publishing for SISSA/ISAS Receives: April 24, 2002 Revised: May 30, 2002 Accepted: May 31, 2002

Neural network parametrization of deep-inelastic structure functions

Stefano Forte,^a Lluís Garrido,^b José I. Latorre^b and Andrea Piccione^c

^aINFN, Sezione di Roma Tre Via della Vasca Navale &, 1-00146 Rome, Italy ^bDepartament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain ^eINFN sezione di Genova and Dipartimento di Fisica, Università di Genova, via Dodeaneso 33, 1-16146 Genova, Italy

FROM THE PROOF OF CONCEPT...

... TO THE NNPDF TIMELINE

COMBINING DATA BY MONTE CARLO

TWO MEASUREMENTS: $\mu_1 \pm \sigma_1$; $\mu_2 \pm \sigma_2$ **ML COMBINATION**: $\bar{\mu} \pm \bar{\sigma}$; $\bar{\mu} = \frac{\frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}; \bar{\sigma}^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$

MONTE CARLO REPRESENTATION

 $\mu^{(i)} \Leftrightarrow \text{REPLICA SAMPLE} \Leftrightarrow \text{REPRESENTATION OF PROBABILITY DISTRIBUTION}$

THE NNPDF APPROACH THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE

FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{\text{rep}}$

UNBIASED INTERPOLANTS: NEURAL NETWORKS

PARAMETERS

- WEIGHTS ω_{ij}
- THRESHOLDS θ_i

$$F_{\rm out}^{(i)}(\vec{x}_{\rm in}) = F\left(\sum_{j} \omega_{ij} x_{\rm in}^{j} - \theta_{i}\right)$$

SIMPLEST EXAMPLE 1-2-1

NNPDF: 2-5-3-1 NN FOR EACH PDF: $37 \times 8 = 296$ parameters

GENETIC MINIMIZATION BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER, SELECTION OF THE FITTEST

NEURAL LEARNING

- CHOOSE HIGHLY REDUNDANT PARAMETRIZATION
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

NEURAL LEARNING

- CHOOSE HIGHLY REDUNDANT PARAMETRIZATION
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

NEURAL LEARNING

- CHOOSE HIGHLY REDUNDANT PARAMETRIZATION
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)

GO!

• WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

- 68% C.L. ALSO SHOWN
- UNCERTAINTY \leftrightarrow STANDARD DEVIATION
- EXPECTED CENTRAL VALUE \leftrightarrow MEAN
- PROBABILITY DISTRIBUTION OF PDFs \leftrightarrow ensemble of replicas

CLOSURE TESTS

THE IDEA

- ASSUME PDFs known: Generate fake experimental data
- CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR . . .)
- FIT PDFs to fake data
- CHECK WHETHER FIT REPRODUCES UNDERLYING "TRUTH":
 - CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT
 - CHECK WHETHER UNCERTAINTIES FAITHFUL
 - TRACE DIFFERENT SOURCES OF UNCERTAINTY

CLOSURE TESTS RESULTS

- CENTRAL VALUES: FITTED VS. "TRUE" χ^2 : $\Delta \chi^2 = 0.001 \pm 0.003$
- UNCERTAINTIES: DISTRIBUTION OF DEVIATIONS BETWEEN FITTED AND "TRUE": 69.9% FOR ONE-SIGMA, 94.8% FOR TWO-SIGMA C.L.

NORM. DISTRIBUTION OF DEVIATIONS

SUCCESS NNPDFs increasingly standard! INSPIRE 2017 TOPCITE LIST

20. 491 core citations in 2017

Particle Creation by Black Holes

S.W. Hawking (Cambridge U.). Aug 1975. 22 pp. Published in Commun.Math.Phys. 43 (1975) 199-220, Erratum: Commun.Math.Phys. 46 (1976) 206 DOI: 10.1007/BF02345020

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote AMS MathSciNet; Project Euclid

21. 490 core citations in 2017

Measurements of Omega and Lambda from 42 high redshift supernovae

Supernova Cosmology Project Collaboration (S. Perlmutter (UC, Berkeley, CfPA) *et al.*). Dec 1998. 33 pp. Published in **Astrophys.J. 517 (1999) 565-586** LBNL-41801, LBL-41801 DOI: <u>10.1086/307221</u> e-Print: <u>astro-ph/9812133 | PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u>

ADS Abstract Service; OSTI Information Bridge Server

22. 487 core citations in 2017

Parton distributions for the LHC Run II

NNPDF Collaboration (Richard D. Ball (U. Edinburgh, Higgs Ctr. Theor. Phys. & CERN) *et al.*). Oct 31, 2014. 138 pp. Published in **JHEP 1504 (2015) 040** EDINBURGH-2014-15, IFUM-1034-FT, CERN-PH-TH-2013-253, OUTP-14-11P, CAVENDISH-HEP-14-11 DOI: <u>10.1007/JHEP04(2015)040</u> e-Print: <u>arXiv:1410.8849</u> [hep-ph] | <u>PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u>

CERN Document Server; ADS Abstract Service; Link to Article from SCOAP3

23. 462 core citations in 2017

Results from a search for dark matter in the complete LUX exposure

LUX Collaboration (D.S. Akerib (Case Western Reserve U. & KIPAC, Menlo Park & SLAC) *et al.*). Aug 26, 2016. 8 pp. Published in **Phys.Rev.Lett. 118 (2017) no.2, 021303** DOI: 10.1103/PhysRevLett.118.021303 e-Print: <u>arXiv:1608.07648</u> [astro-ph.CO] | <u>PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service; Link to Science News article</u>

24. 434 core citations in 2017

The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems Alan H. Guth (SLAC). Jul 1980. 32 pp. Published in Phys.Rev. D23 (1981) 347-356 SLAC-PUB-2576 DOI: 10.1103/PhysRevD.23.347

References | BihTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

MINIMIZATION INEFFICIENCY!

- BEST OF TWO MORE STABLE SIGNIFICANT STABILIZATION
- IF **REFIT**, FIND **DIFFERENT** VALUES

- TUNE PARMS SO $P(v) = \sum_{h} P(v, h)$ reproduces probability
- Use P(h|v) as NN activation function

...TO THE N³PDF PROJECT

Machine Learning • PDFs • QCD

THE TEAM

STAY TUNED!

NNPDF Collaboration & N3PDF Kickoff Meeting

16-19 September 2018 Palazzo Feltrinelli, Gargnano, Lake Garda Europe/Rome timezone	Search	Q		
---	--------	---	--	--

Overview

Timetable

Contribution List

My Conference

. My Contributions

Participants List

... TOWARDS A SINGLE AI AGENT FOR PDF DETERMINATION

CONTEMPORARY PDF TIMELINE (ONLY PUBLISHED GLOBAL)

	20	08	20	09	20	10	2011	20	12	20	13	20	14	2015	20	017
SET	CTEQ6.6	NNPDF1.0	MSTW 01	ABKM09	NNPDF2.0	(NLO)	NNPDF2.1 (NNLO)	ABM11 (02)	NNPDF2.3	(NNLO)	ABM12 (10)	ONNPDF3.0	MMHT (12)	CT14 (06)	ABMP16	NNPDF3.10
F. T. DIS	(0=)	(00)	()	((=)		(01)	()		(=)	(= -)	(=)	(,	(1)	(
ZEUS+H1-HI Comb. HI	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
7FUS+H1-HII	×	×	×	×	~	×	some	×	~	× some	~	~	×	×	~	~
	×	×	×	×	×	×		×	×		×	~	×	×	~	
HERA JEIS	×	×	~	×	×	×	×	×	×	×	×	×	~	×	×	×
F. T. DY	~	×	~	~	~	~	~	 ✓ 	~	 ✓ 	 	 ✓ 	 	 	~	 Image: A second s
TEV W+Z	 ✓ 	×	~	×	~	~	~	×	~	 ✓ 	X	~	~	~	X	 I
LHC W+Z	×	×	×	×	×	×	×	×	 ✓ 	×	some	~	~	~	some	~
TEV JETS	~	×	~	×	~	~	×	~	~	 ✓ 	×	~	 	 	×	
LHC JETS	×	×	×	×	×	×	×	×	~	×	×	 	~	 	×	✓
TOP TOTAL	X	×	×	×	X	×	X	×	×	×	~	~	×	×	~	 Image: A start of the start of
SINGLE TOP TOTAL	×	×	×	×	X	×	×	X	×	×	X	X	×	X	~	×
TOP DIFFERENTIAL	×	X	X	X	X	X	X	X	×	×	X	X	X	X	X	~
$W p_T$	x	X	X	X	X	X	X	x	x	x	x	~	X	X	X	X
W+c	×	r. X	r. X	r: X	r. X	r: X	Y I	x	×	r. X	Y I		r X	r. X	Y N	Y II
$Z p_T$	x	x	< ×	< ×	x	x	×	x	X	x	x	X	×	x	x	~

THEORY PROGRESS:

- MSTW, ABKM: all NNLO; NNPDF NNLO since 07/11 (2.1), CT since 02/13 (CT10); NNPDF THRESHOLD RESUMMATION (3.0RESUM, 07/15), SMALL *x* RESUMMATION (3.1SX, 10/17)
- MSTW, CT, NNPDF all GM-VFN; NNPDF since 01/11 (2.1); ABM FFN+ZM-VFN since 01/17 (ABMP16)
- NNPDF FITTED CHARM since 05/16 (NNPDF3IC)
- PHOTON PDF: (mrst2004qed), NNPDF2.3QED (08/13), NNPDF3.0QED (06/16), NNPDF3.1LUXQED (12/17)

CMS (2013)

GENETIC MINIMIZATION BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER, SELECTION OF THE FITTEST

- Large number of mutant (~ 100) PDF sets generated from parent
- FIGURE OF MERIT COMPUTED
- BEST-FIT KEPT & PASSED TO NEXT GENERATION

$$w \to w + rac{\eta r_{\delta}}{N_{
m ite}^{r_{
m ite}}}$$

CHOICES

- MUTATION RATE η
- POINTLIKE VS. NODAL MUTATION

	$N_{\text{gen}}^{\text{wt}}$	$N_{\text{gen}}^{\text{mut}}$	$N_{\text{gen}}^{\text{max}}$	E^{sw}	$N_{\rm mut}^a$	$N_{\rm mut}^b$
NNPDF 2.3	10000	2500	50000	2.3	80	30
NNPDF 3.0	-	-	30000	-	80	-

- NUMBER (POINTLIKE) OR PROBABILITY (NODAL) OF MUTATIONS
- TARGETED WT: WEIGTHS $p_i = E_i / E_i^{\text{targ}}$
- GA EPOCHS: $N_{\text{gen}}^{\text{mut}}$

	NNPDI	F2.3	NNPDF3.0					
Single I	Paramet	er Mutation	Nodal Mutation					
PDF	N _{mut}	η	PDF	$P_{\rm mut}$	η			
$\Sigma(x)$	2	10, 1	$\Sigma(x)$	5% per node	15			
g(x)	3	10, 3, 0.4	g(x)	5% per node	15			
$T_3(x)$	2	1, 0.1	V(x)	5% per node	15			
V(x)	3	8, 1, 0.1	$V_3(x)$	5% per node	15			
$\Delta_S(x)$	3	5, 1, 0.1	$V_8(x)$	5% per node	15			
$s^+(x)$	2	5, 0.5	$T_3(x)$	5% per node	15			
$s^{-}(x)$	2	1, 0.1	$T_8(x)$	5% per node	15			

TRACING SOURCES OF UNCERTAINTY

- LEVEL 0: FAKE DATA GENERATED WITH NO UNCERTAINTY \rightarrow INTERPOLATION AND EXTRAPOLATION UNCERTAINTY
- LEVEL 1-2: FAKE DATA GENERATED WITH SAME UNCERTAINTY AS REAL DATA (INCLUDING CORRELATIONS)
- LEVEL 1: NO PSEUDODATA REPLICAS: \Rightarrow REPLICAS FITTED TO SAME DATA OVER AND OVER AGAIN \rightarrow FUNCTIONAL UNCERTAINTY DUE TO INFINITY OF EQUIVALENT MINIMA
- LEVEL 2: STANDARD NNPDF METHODOLOGY \Rightarrow REPLICAS FITTED TO PSEUDODATA REPLICAS \rightarrow DATA UNCERTAINTY
- THREE SOURCES OF UNCERTAINTY COMPARABLE IN DATA REGION

FITTING EFFICIENCY LEVEL 0

- ASSUME VANISHING EXPERIMENTAL UNCERTAINTY
- MUST BE ABLE TO GET $\chi^2 = 0$
- UNCERTAINTY AT DATA POINTS TENDS TO ZERO (NOT NECESSARILY ON PDF!) DEFINE $\phi \equiv \sqrt{\langle \chi^2_{rep} \rangle - \chi^2}$, EQUALS FIT UNCERTAINTY/DATA UNCERTAINTY; CHECK $\phi \rightarrow 0$
- CAN STUDY EFFICIENCY OF MINIMIZATION

 χ^2 VS TRAINING LENGTH

Effectiveness of Genetic Algorithm in Level 0 Closure Tests

FRACTIONAL UNCERTAINTY VS TRAINING LENGTH

THE GLUON

THE IMPACT OF LHC DATA PDF UNCERTAINTIES: PAST \Rightarrow PRESENT (NNPDF3.0 NNLO)

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- SWEET SPOT: VALENCE Q G; UNCERTAINTIES DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

THE IMPACT OF LHC DATA PDF UNCERTAINTIES: PRESENT \Rightarrow FUTURE (NNPDF3.1 NNLO) **GLUON** SINGLET **FLAVORS** Relative uncertainty for gg-luminosity Relative uncertainty for qq-luminosity Relative uncertainty for ud-luminosity NNPDF31 nnlo as 0118 - $\sqrt{s} = 13000.0 \text{ GeV}$ NNPDF31 nnlo as 0118 - $\sqrt{s} = 13000.0 \text{ GeV}$ NNPDF31 nnlo as 0118 - \sqrt{s} = 13000.0 GeV 10⁴ · 10^{4} · 104 2 0 5 Relative uncertainty (%) G 0 0 C Relative uncertainty (%) ر 10 م Relative uncertainty (%) 10³ 10^{-3} 10³ M_X (GeV) M_X (GeV) M_X (GeV) 10² 10^{2} 10² 10¹ 10 10¹ -2 -4 -2 2 -4 0 2 -2 0 v y Relative uncertainty for gg-luminosity Relative uncertainty for gg-luminosity Relative uncertainty for du-luminosity NNPDF31 nnlo as 0118 - \sqrt{s} = 13000.0 GeV NNPDF31 nnlo as $0118 - \sqrt{s} = 13000.0 \text{ GeV}$ NNPDF31 nnlo as 0118 - \sqrt{s} = 13000.0 GeV 10^{4} 10^{4} 10^{4} 25 Relative uncertainty (%) G 0 5 Relative uncertainty (%) ں م م م Relative uncertainty (%) 10³ 103 10³ M_X (GeV) M_X (GeV) M_X (GeV) 10² 10^{2} 10² 10¹ 10^{1} 10^{1} -4 -2 0 ż _4 -2 2 -4 -2 Ó ż 0 v

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- Sweet spot: valence Q G; uncertainties down to 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- NEW LHC DATA \Rightarrow SIZABLE REDUCTION IN UNCERTAINTIES

$\begin{array}{c} \text{PROGRESS I} \\ \text{MC} \Leftrightarrow \text{HESSIAN} \end{array}$

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA

(Carrazza, SF, Kassabov, Rojo, 2015)

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-CAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

(Carrazza, Latorre, Kassabov, Rojo, 2015)

- CONSTRUCT A VERY LARGE REPLICA SAMPLE
- SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR
- \Rightarrow FOR ALL PDFS ON A GRID OF POINTS// MINIMIZE DIFFERENCE OF: FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ , 2σ , INFINITY)
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN CMS W + c production

- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUE TO LARGE UNCERTAINTY + POSITIVITY BOUNDS \Rightarrow RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- Well reproduced by compressed MC

- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\rm KL} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- $D_{\rm KL}$ between prior and hessian depends on degree of gaussianity
- $D_{\rm KL}$ between prior and compressed MC does not

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN; (B) ASSESS THE ACCURACY OF COMPRESSION

MONTE CARLO DATA GENERATION

- BCDMS+ NMC PROTON & DEUTERON F_2 DATA (FULL CORRELATED SYSTEMATICS AVAILABLE), TAKEN AT 4 BEAM ENERGIES
- ON TOP OF STAT. ERRORS, 4 SYSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS + 1 ABSOLUTE & 2 RELATIVE NORMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF CORRELATION (FULL, OR FOR EACH TARGET, OR FOR EACH BEAM ENERGY)

GENERATE DATA ACCORDING TO A MULTIGAUSSIAN DISTRIBUTION

$$\begin{split} F_i^{(art)\,(k)} &= \\ (1+r_5^{(k)}\,\sigma_N)\sqrt{1+r_{i,6}^{(k)}\,\sigma_{N_t}}\sqrt{1+r_{i,7}^{(k)}\,\sigma_{N_b}} \Bigg[F_i^{(exp)} + \frac{r_{i,1}^{(k)}\,f_b + r_{i,2}^{(k)}\,f_{i,s} + r_{i,3}^{(k)}\,f_{i,r}}{100}F_i^{(exp)} + r_{i,s}^{(k)}\,\sigma_s^i\Bigg] \end{split}$$

r univariate gaussian random nos., one $r_{i,s}$ for each data, but single $r_{i,j}$ for all correlated data

Proton

SCATTER PLOT ART. VS. EXP. FOR 10 (RED) 100 (GREEN) AND 1000 (BLUE)

Non-linear models timeline

WHAT DETERMINES PDF UNCERTAINTIES? THE NNPDF SOLUTION (HERALHC 2008)

- SINGLE PARAMETRIZATION AND STAT. TREATMENT CAN ACCOMMODATE DIFFERENT DATASETS
- IMPACT OF DATA CAN BE STUDIED INDEPENDENT OF THEORETICAL FRAMEWORK