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Introduction

We started this project aiming to build a model with:

e well suited for pdf estimation and pdf sampling
e built-in pdf normalization (close form expression)

e very flexible with a small number of parameters

We decided to look at energy models, specifically Boltzmann Machines.
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Theory



Boltzmann machine

Graphical representation:




Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]
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Boltzmann machine

Graphical representation: [Hinton, Sejnowski ‘86]

Connection Binary valued

states {0,1}

—_— W
matrices

e Boltzmann machine (BM): T"and @ # 0.
e Restricted Boltzmann machine (RBM): T'=Q = 0.



Boltzmann machine
Energy based model:

[Hinton, Sejnowski ‘86]

View as statistical mechanical system.
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Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

1 1
E(v,h) = ivtTU + §thh + v'Wh+ Bph + Byv



Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]

View as statistical mechanical system.

The system energy for given state vectors (v, h):

E(v,h) = fvav—F thh—i—v Wh + Bph + Byv
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Boltzmann machine

Energy based model: [Hinton, Sejnowski ‘86]
Starting from the system energy for given state vectors (v, h):

1 1
E(v,h) = ivtTv + ithh +v'Wh + Bph + By

The canonical partition function is defined as:

7 — Ze—E(w,h)

h,v

Probability the system is in specific state given by Boltzmann distribution:

e—E(v,h)
P(v,h) = —
with marginalization:
Pv) = e—;(v) — Free energy



Boltzmann machine

Learning: [Hinton, Sejnowski ‘86]

Theoretically, general compute
medium.

Via adjusting W, T, Q, By, B, able
to learn the underlying probability

n, distribution of a given dataset.

However: practically not feasible
For applications only RBMs have been considered.



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

Continuous
valued € R

Continuous
valued € R

P(v) = multi-variate gaussian (too trivial)



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

“Quantized”
S/

Continuous
valued € R

Something interesting happens

Under mild constraints on connection matrices (positive definiteness,...)



Riemann-Theta Boltzmann machine

How to change the status quo? [Krefl, S.C., Haghighat, Kahlen ‘17]
Keep the inner sector couplings non-trivial, but the machine solvable?

“"Quantized”
S/

e Continuous
I ! valued € R
Po) = | 3T 4oiropie-piT B, 0B}, +v'W|Q)
Sy @m)fe 0(B. — BtT-1W|Q — WtT—1W)

Closed form analytic solution still available!



Riemann-Theta Boltzmann machine

RTBM [Krefl, S.C., Haghighat, Kahlen ‘17]
Novel very generic probability density:

Blu) = det T o 30'Tv—BLo—BiT B, _ 0(B), + v'W|Q)
(2m) e T 9@ <IW|Q — WET-1W)
Damping factor Riemann-Theta function

The Riemann-Theta definition:

G(Z,Q) = Z 627ri(%n‘5'2n+nf,z)

neZNn
Key properties: Periodicity, modular invariance, solution to heat
equation, etc.

Note: Gradients can be calculated analytically as well so gradient
descent can be used for optimization.



RTBM properties

We observe that P(v) stays in the same distribution under affine
transformations, i.e. rotation and translation

w=Av+b, w~ Py,v),

if the linear transformation A has full column rank.

P4 p(v) is the distribution P(v) with parameters rotated as

7' - AT7'A*, B, — (A")!B, — Tb,
W — (AY)'W, By — B, —W'.

where A7 is the left pseudo-inverse defined as

AT = (AtA) 1AL,



Applications




Implementation

In order to perform tests we prepared a public RTBM framework:

Theta: Python machine learning framework for RTBMs and TNNs (with
heavy lifting done by numpy, cython and C)

Docs » Welcome to theta's documentation!

o

Welcome to theta’s
documentation!

Theta s a machine learning (ML) framework
implementing the Riemann-Theta Boltzmann Machine

level interface to build and train RTBM based ML
architectures for probability density estimation, data
regression and classification.

The code implements the RTBM as described in the
theoretical paper arX 207581

Thetais in a proof-of-concept / research phase. You
may observe that model training requires some fine
tune to get proper results.

User documentation

[http://riemann.ai/theta]

© Edit on GitHub

(RTBM), written in Python and Cython. It offers a high-

Easy interface: Keras like
definition of model.

SGD and genetic optimizer out
of the box.

Easy integration of custom
optimizers.

Easy to extend functionality
(object oriented)

CPU based (for current version)
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Riemann-Theta Boltzmann machine

In the next we show examples of RTBMs for

Probability determination

Probability sampling

Conditional probability

Feature detection for data classification

Data regression

11



Probability determination




Riemann-Theta Boltzmann machine

RTBM P(v) examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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For different choices of parameters (with hidden sector in 1D or 2D).
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Riemann-Theta Boltzmann machine

Mixture model: [Krefl, S.C., Haghighat, Kahlen ‘17]

Expectation: y
As long as the density is well enough &«
(AN

behaved at the boundaries it can be
learned by an RTBM mixture model.
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Riemann-Theta Boltzmann machine

Examples: [Krefl, S.C., Haghighat, Kahlen ‘17]
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Probability sampling




RTBM sampling algorithm

The probability for the visible sector can be expressed as:

P(v) =) P(v|h)P(h) P(h)
[h] V2
where P(v|h) is a multivariate gaussian. The P(v) E(h) h
sampling can be performed easily by:
e sampling h ~ P(h) using the RT numerical A
evaluation 6 = 6,, + ¢(R) with ellipsoid radius R so P(v)
e(R)
=" <1
p gn + E(R) < 7B, v
is the probability that a point is sampled outside the  ®
ellipsoid of radius R, while ¢ . e .
0 n 2 : .
S P(h) =~ % :
O R ’ . .
[R](R) T 6( ) -2 . .
i.e. sum over the lattice points inside the ellipsoid. B T T s T3

e then sampling v ~ P(vlh) 15



Sampling examples

RTBM P(v) sampling examples: [S-C. and Krefl ‘18]
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Sampling distance estimator

Distribution  Xfrpu/Noms MSEjeiig® MSE4P"8 MSERT KS distance

Gamma 0.02/50 2.107° 2.6-107° 3.4-107* 0.01
Cauchy 0.12/50 29-107* 3.7.107* 1.5-107° 0.02
Gaussian mixture  0.01/50 6.7-10°° 1.4.10° 9.3-107° 0.01
GOOG 0.10/50 2.7-107*  95.107% 2.5-107* 0.02
XOM 0.09/50 26-107*  6.7-107° 3.7-107* 0.02

TABLE I: Distance estimators for the sampling examples in figure:
given in sectio The mean squared error (MSE) is taken between the sampling, the RTBM model and the underlying
distribution (pdf). The Kolmogorov-Smirnov (KS) distance is shown in the last column of the table. For GOOG and XOM
the empirical distribution is employed as underlying pdf.

and[4] Exact definitions for all distance estimators are

Distribution Mean 2nd moment 3th moment 4th moment
Gamma 7.43 (7.43) [7.49] | 6.91 (6.89) [7.41] | 10.03 (10.03) [13.79] | 154 (153.23) [195.8]
Cauchy 0057 (-0.057) [] | 11.64 (11.64) [] -4.63 (-4.97) [-] 1749.8 (1753) []
Gaussian mixture|-1.48 (-1.48) [-1.31][34.45 (34.45) [34.29][134.35 (136.67) [131.78][3558.7 (3571.8) [3569.1]
GOOG 0.06 (0.06) [0.08] | 3.28 (3.23) [3.58] 1.52 (1.42) [6.04] 117 (108) [191]
XOM 0.02 (0.02) [0.03] | 2.13 (2.15) [2.36] | -0.42 (-0.18) [1.44] 38.3 (40.2) [97.1]

TABLE II: Mean and central moments for the sampling data, the RTBM model (round brackets) and the underlying true
distribution (square brackets). Note that the moments of the Cauchy distribution are either undeﬁned or infinite. The given
values correspond to the RTBM model approximation and its sampling, which are defined and finite. . For the GOOG
and XOM distributions the true moments (square brackets) are evaluated from the underlying empirical di: rlblmon.
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Sampling examples with affine transformation

RTBM P(v) sampling with affine transformation: [S.C. and Krefl ‘18]

For a rotation of § = /4 and scaling of 2 (N, = 2, N, = 2).
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Conditional probability




Conditional probability estimation

[Papaluca, S.C., Krefl ‘19 in preparation]

Considering a probability function P(v) modelled by a RTBM, given
some observed data d and some future outcome y, i.e. v = (y,d):

Pyld) = 20D _ Vo v~y g B2 05, — v'W|Q)
P(d) 2 (B! —rtw|Q — Wols )

to

Examples in 2D:

06 06
04 04
02 02
o,

-4

-25 00 25 50 715

0.4 ? 10
Vad o = 3
i

-25 00 25 50 715

-1
04 o
02 a4 2 o 2 a 6 05
o o

25 00 25 50 715 -4

B 19



Feature dectection




Riemann-Theta Boltzmann machine

Feature detector: [Krefl, S.C., Haghighat, Kahlen ‘17]
Similar to [Krizhevsky ‘09]

New:
Conditional expectations of hidden

states after training ;

& Segmentation | E 2 g

1 V;0(u'W + B! s o
E(huly) = =W BilQ) oo B
2w §(v'W + B|Q) N N NP : :

The detector is trained in probability ) ,
mode and generates a feature vector. Input image E : .

P(v) E(h|v)
feature vector
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Feature detector example - jet classification

Jet classification: [Krefl, S.C., Haghighat, Kahlen ‘17]
Data from [Baldi et al. ‘16, 1603.09349]

Descriminating jets from single

.
hadronic particles and overlapping Jm’ Ei;
jets from pairs of collimated AT 3
hadronic particles. NS _SB :f
Data (images of 32x32 pixels) t =

L

e 5000 images for training Input image

e 2500 images for testing P) ' E(hlv)

feature vector

Classifier ‘ Test dataset precision
Logistic regression (LR) 77%
RTBM feature detector + LR 83%
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Data regression




Riemann-Theta Boltzmann machine

Theta Neural Network: [Krefl, S.C., Haghighat, Kahlen ‘17]

Idea:
Use as activation function in a P R —

standard NN. The particular form of Ll Llea

non-linearity is learned from data.

Key point: v
smaller networks needed but |

Riemann-Theta evalution is expensive.
Example (1:3-3-2:1):

y(t) = 0.02¢t 4+ 0.5sin(t + 0.1) + 0.75 cos(0.25¢ — 0.3) + N(0,1)

, ‘ :
: W i : o } M“f
| , | \ W il
ar »MA W S i MU‘ M W
: V‘WW O mw“f\,f W
y(t) TNN fit TNN activations
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Conclusion




In summary:

e New BM architecture based on the Riemann-Theta function.

e Results are encouraging, several application opportunities.
For the future:

e Perform systematic benchmarks.
e Develop better optimization algorithms.

e Provide a more complete physics interpretation (if possible)
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Thank youl!
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