

This project has received funding by the European Union's Horizon 2020 research and innovation programme under grant agreement n. 740006

PDFS: FROM NN TO ML

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

MACHINE LEARNING FOR PHENO

IPPP, DURHAM, APRIL 4,2018

- PARTON LUMINOSITY $\mathcal{L}_{ab}(\tau) = \int_{\tau}^{1} \frac{dx}{x} f_{a/h_1}(x) f_{b/h_2}(\tau/x) = f_a \otimes f_b$
- PARTONIC CROSS SECTION $\hat{\sigma}_{q_a q_b \to X}$

EXAMPLE: THE DRELL-YAN PROCESS (LEADING ORDER)

- Hadronic c.m. energy: $s = (p_1 + p_2)^2$
- PARTONIC C.M. ENERGY: $\hat{s} = x_1 x_2 s$
- Momentum fractions $x_{1,2} = \sqrt{\frac{\hat{s}}{s}} \exp \pm y$; at leading order $\hat{s} = M^2$

THE PDFs

(PDG 2016)

- MOMENTUM PROBABILITY DENSITY $xf_i(x)$ AT TWO DIFFERENT SCALES (LEFT \Rightarrow LOW SCALE; RIGHT \Rightarrow HIGH SCALE)
- As $x \ge 1$ kinematic constraint $f_i(x) = 0$
- VALENCE SUM RULES $\int dx(u(x) \bar{u}(x)) = 2 \int dx(d(x) \bar{d}(x)) = 2.$
- MOMENTUM SUM RULE $\sum \int dx x f_i(x) = 1$

$\begin{array}{c} PDF \ DETERMINATION \\ \hline DATA \rightarrow PARTON \ DISTRIBUTIONS \end{array}$

- FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS, CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS
- DISENTANGLING PDFS: CHOOSE A BASIS OF PDFS ($2N_f$ guarks + 1 gluon) & a set of suitable physical processes to determine them all

NONTRIVIAL

- (1) DETERMINE FUNCTIONS FROM A DISCRETE DATASET
- (2) DETERMINE A PROBABILITY FUNCTIONAL IN THE SPACE OF FUNCTIONS

THE NNPDF APPROACH BASIC IDEA: MONTE CARLO SAMPLING OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}$ OF THE ORIGINAL DATASET $\sigma^{(\text{data})}$ \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma]$ AT DISCRETE SET OF POINTS IN DATA SPACE
- FIT A PDF REPLICA TO A DATA REPLICA \Rightarrow EACH PDF REPLICA $f_i^{(k)}$ is a best-fit PDF SET FOR GIVEN DATA REPLICA
- THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

$$\langle f_i \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} f_i^{(k)}$$

SOLUTIONS

- (1) FUNCTIONS FROM DISCRETE DATA \Rightarrow NEURAL NETWORKS
- (2) PROBABILITY IN FUNCTION SPACE \Rightarrow MONTE CARLO

NEURAL NETWORKS

- EACH PDF REPLICA FITTED TO A DATA REPLICA \Rightarrow NEED BEST-FIT, COVARIANCE MATRIX IN PARAMETER SPACE NOT NEEDED
- CAN USE VERY LARGE PARAMETRIZATION

NEURAL NETWORKS

MULTILAYER FEED-FORWARD NETWORKS

- Each neuron receives input from neurons in preceding layer and feeds output to neurons in subsequent layer
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right)$$

• Sigmoid activation function $g(x) = \frac{1}{1+e^{-\beta x}}$

CURRENTLY: 2-5-3-1 NN FOR EACH OF 8 BASIS PDFs (37x8=296 FREE PARMS.)

PREPROCESSING

- PDFS ARE PARAMETRIZED WITH NEURAL NETWORKS TIMES PREPROCESSING FUNCTION: $f_i(x) = x^{\alpha_i}(1-x)^{\beta_i}NN(x)$
- GOAL IS TO SPEED UP TRAINING WITHOUT BIASING RESULT
- α_i , β_i random replica by replica with uniform distribution in range
- RANGE DETERMINED SELF-CONSISTENTLY AS TWICE THE RANGE OF EFFECTIVE EXPONENTS α_{eff,i} = ln f_i(x)/ln 1/x β_{eff,i} = ln f_i(x)/ln(1-x) EVALUATED AT x = 0.95, 0.65 (β); x = 10⁻⁶, 10⁻³ (α)

EFFECTIVE EXPONENTS FOR QUARK SINGLET VS. PREPROCESSING RANGE 100 & 1000 REPLICAS

GENETIC MINIMIZATION

RANDOM MUTATION OF THE NN PARAMETERS STARTING FROM RANDOM VALUES

- LARGE NUMBER OF MUTANT (~ 100) PDF sets generated from parent
- FIGURE OF MERIT COMPUTED
- **BEST-FIT KEPT & PASSED TO NEXT GENERATION**

$$w \to w + rac{\eta r_{\delta}}{N_{
m ite}^{r_{
m ite}}}$$

CHOICES

- MUTATION RATE η
- POINTLIKE VS. NODAL MUTATION
- NUMBER (POINTLIKE) OR PROBABILITY (NODAL) OF MUTATIONS
- TARGETED WT: WEIGTHS $p_i = E_i / E_i^{\text{targ}}$
- GA EPOCHS: $N_{\text{gen}}^{\text{mut}}$

	$N_{\text{gen}}^{\text{wt}}$	$N_{\text{gen}}^{\text{mut}}$	$N_{\text{gen}}^{\text{max}}$	E^{sw}	$N_{\rm mut}^a$	N_{mut}^{b}
NNPDF 2.3	10000	2500	50000	2.3	80	30
NNPDF 3.0	_	-	30000	-	80	-

NNPDF2.3]	NNPDF3.0				
Single Parameter Mutation			1	Nodal Mutation				
PDF	$N_{\rm mut}$	η		PDF	P _{mut}	η		
$\Sigma(x)$	2	10, 1]	$\Sigma(x)$	5% per node	15		
g(x)	3	10, 3, 0.4		g(x)	5% per node	15		
$T_3(x)$	2	1, 0.1		V(x)	5% per node	15		
V(x)	3	8, 1, 0.1		$V_3(x)$	5% per node	15		
$\Delta_S(x)$	3	5, 1, 0.1		$V_8(x)$	5% per node	15		
$s^+(x)$	2	5, 0.5		$T_3(x)$	5% per node	15		
$s^{-}(x)$	2	1, 0.1		$T_8(x)$	5% per node	15		

NN TRAINING: EXAMPLE

- HIGHLY REDUNDANT PARAMETRIZATION
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

NN TRAINING: EXAMPLE

- HIGHLY REDUNDANT PARAMETRIZATION
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

NN TRAINING: EXAMPLE

- HIGHLY REDUNDANT PARAMETRIZATION
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

- UP TO NNPDF2.3 "INCREASING" AND "DECREASING" TRAINING AND VALIDATION χ^2 DEFINED IN TERMS OF THRESHOLD VALUES δ_{tr} AND δ_{val} : INCREASE: $\chi^2_{val}(N_{gen} + \Delta) > \chi^2(N_{gen} + \Delta) + \delta_{val}$
- FROM NNPDF3.0 USE LOOKBACK: FIT IS RUN UP TO SOME LARGE # OF GA GENERATIONS THEN ONE "LOOKS BACK" FOR ABSOLUTE MIN. OF VALIDATION χ^2
- CHECK THAT RESULTS ARE INDEPENDENT OF THE LARGE # OF GA GENS
- CHECK THAT RESULTS ARE INDEPENDENT OF FLUCTUATIONS IN VALUE OF ABSOLUTE MINIMUM DIFFERENT STOPPING POINTS, BUT INDISTINGUISHABLE PDFS

CLOSURE TESTS:

THE BASIC IDEA

- ASSUME PDFs known: Generate fake experimental data
- CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR . . .)
- FIT PDFs to fake data
- CHECK WHETHER FIT REPRODUCES UNDERLYING "TRUTH":
 - CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT
 - CHECK WHETHER UNCERTAINTIES FAITHFUL
 - CHECK STABILITY

(INDEP. OF METHODOLOGICAL DETAILS)

LEVEL-0 CLOSURE TESTS

- ASSUME VANISHING EXPERIMENTAL UNCERTAINTY
- MUST BE ABLE TO GET $\chi^2 = 0$
- UNCERTAINTY AT DATA POINTS TENDS TO ZERO (NOT NECESSARILY ON PDF!) DEFINE $\phi \equiv \sqrt{\langle \chi^2_{rep} \rangle - \chi^2}$, EQUALS FIT UNCERTAINTY/DATA UNCERTAINTY; CHECK $\phi \rightarrow 0$
- BEST FIT ON TOP OF "TRUTH" IN DATA REGION

THE GLUON Level 0 closure test vs. MSTW

Effectiveness of Genetic Algorithm in Level 0 Closure Tests 10^{-1} \rightarrow Old (2.3) genetic algorithm $-\infty$ New genetic algorithm 10^{-2} $0^{$

 χ^2 VS TRAINING LENGTH

Effectiveness of Genetic Algorithms in Level 0 Closure Tests

LEVEL-0, LEVEL-1 AND LEVEL-2

- LEVEL 0: FAKE DATA GENERATED WITH NO UNCERTAINTY \rightarrow INTERPOLATION AND EXTRAPOLATION UNCERTAINTY
- LEVEL 1-2: FAKE DATA GENERATED WITH SAME UNCERTAINTY AS REAL DATA (INCLUDING CORRELATIONS)
- LEVEL 1: NO PSEUDODATA REPLICAS: \Rightarrow REPLICAS FITTED TO SAME DATA OVER AND OVER AGAIN \rightarrow FUNCTIONAL UNCERTAINTY DUE TO INFINITY OF EQUIVALENT MINIMA
- LEVEL 2: STANDARD NNPDF METHODOLOGY \Rightarrow REPLICAS FITTED TO PSEUDODATA REPLICAS \rightarrow DATA UNCERTAINTY
- THREE SOURCES OF UNCERTAINTY COMPARABLE IN DATA REGION

LEVEL-2: CENTRAL VALUES AND UNCERTAINTIES THE GLUON: FITTED/"TRUE"

level-2 fitted χ^2 vs "true"

Distribution of χ^2 for experiments

• CENTRAL VALUES: COMPARE FITTED VS. "TRUE" χ^2 BOTH FOR INDIVIDUAL EXPERIMENTS & TOTAL DATASET

FOR TOTAL $\Delta \chi^2 = 0.001 \pm 0.003$

• UNCERTAINTIES: DISTRIBUTION OF DEVIATIONS BETWEEN FITTED AND "TRUE" PDFS SAMPLED AT 20 POINTS BETWEEN 10^{-5} and 1 FIND 0.699% FOR ONE-SIGMA, 0.948% FOR TWO-SIGMA C.L.

NORM. DISTRIBUTION OF DEVIATIONS

LEVEL-2 STABILITY TESTS

- INCREASE MAXIMUM GA TRAINING LENGTH TO 80K TESTS EFFICIENCY OF CROSS-VALIDATION
- INCREASE NN ARCHITECTURE TO 2-20-15-1NUMBER OF FREE PARAMETRES INCREASE BY MORE THAT $10 \times$
- CHANGE PDF PARAMETRIZATION BASIS OLD: ISOTRIPLET, $\bar{u} - \bar{d}$, $s + \bar{s}$, $s - \bar{s}$; NEW: ISOTRIPLET, SU(3)-OCTET, BOTH TOTAL $(q + \bar{q})$ & VALENCE $(q - \bar{q})$

STATISTICAL EQUIVALENCE!

(Carrazza, Latorre, Kassabov, Rojo, 2015)

- CONSTRUCT A VERY LARGE REPLICA SAMPLE
- SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR
- \Rightarrow FOR ALL PDFS ON A GRID OF POINTS MINIMIZE DIFFERENCE OF: FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ , 2σ , INFINITY)
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

OPTIMIZATION II SMPDF COMPRESSION

- SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES
- PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR, PROJECT OUT ORTHOGONAL SUBSPACE
- ITERATE UNTIL DESIRED ACCURACY REACHED
- COMPRESSED HESSIAN REPRESENTATION OF PROBABILITY DISTN.
- CAN ADD PROCESSES TO GIVEN SET; CAN COMBINE DIFFERENT OPTIMIZED SETS
- WEB INTERFACE AVAILABLE

(Carrazza, SF, Kassabov, Rojo, 2016)

- EG ggH, $Hb\bar{b}$, $W E_T^{\text{miss}} \Rightarrow 11$ Eigenvectors
- STUDY CORRELATIONS OF PDFS TO DATA AND AMONG THEMSELVES!

ALL IS WELL? CAN WE DO BETTER?

- ARCHITECTURE: DO WE NEED SEVEN NNS?
- **PREPROCESSING:** ARE RESULTS TRULY INDEPENDENT OF IT?
- MINIMIZATION: IS THE GA OPTIMIZED?
- **STOPPING:** OVER/UNDERLEARNING?

UNCERTAINTIES ARE FAITHFUL, BUT

ARE THEY THE **SMALLEST** WITH GIVEN DATA?

IS THERE NO INFORMATION LOSS?

MORE EFFICIENT MINIMIZATION?

- LOOK AT α_s DEPENDENCE (CORRELATED REPLICAS)
- SIGNIFICANT FLUCTUATIONS ABOUT PARABOLIC SHAPE NOT DUE TO FINITE-SIZE MONTE CARLO SAMPLE

- MINIMIZE EACH REPLICA MORE THEN ONCE & KEEP BEST RESULTS
- SIGNIFICANT STABILIZATION

PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?

- COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT
- COMPARE GLOBAL FITS

- MEDIAN SIMILAR
- DISTRIBUTION VERY DIFFERENT!
- NNPDF: SMALLER MODE, BUT FAT TAIL \Leftrightarrow GREATER FLEXIBILITY

THE $\Delta \chi^2$ PROBLEM

- TOLERANCE MIGHT COMPENSATE FOR MISSING FUNCTIONAL UNCERTAINTY
- BUT WHAT IS $\Delta\chi^2$ for an NNPDF Fit?
- CAN ANSWER USING HESSIAN CONVERSION! $\Delta \chi^2 = 16 \pm 15$
 - NON-PARABOLIC BEHAVIOUR NEAR MINIMUM ON SCALE OF UNCERTAINTIES?
 - INEFFICIENCY OF THE MINIMIZATION PROCEDURE?

CLOSURE-TESTING: THE PARAMETRIZATION DEPENDENCE

(C. Mascaretti, 2016)

- CLOSURE TEST PERFORMED WITH DATA GENERATED BASED ON MST08 FUNCTIONAL FORM
- **REFITTED** EITHER WITH **NNPDF** OR MSTW-CT FUNCTIONAL FORM
- LEVEL 0: VANISHING DATA UNCER-TAINTY
 - MSTW-CT: FIT HAS ZERO UN-CERTAINTY
 - NNPDF: ABOUT HALF OF TOTAL UNCERTAINTY
- LEVEL 1: NOMINAL DATA UNCER-TAINTY, BUT REPLICAS FITTED W/O PSEUDODATA
 - MSTW-CT: FIT HAS SMALL UN-CERTAINTY
 - NNPDF: ABOUT 2/3 OF FINAL UNCERTAINTY
- LEVEL 2
 - NNPDF UNCERTAINTY LARGER THAN MSTW-CT
 - NNPDF UNCERTAINTY SIMILAR TO MSTW WITH TOLERANCE

"STANDARD" PARAMETRIZATION MISSES INTERPOLATION & FUNCTIONAL UNCERTAINTY?

$MC \Leftrightarrow HESSIAN$

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-CAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN CMS W + c production

- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\text{KL}} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- $D_{\rm KL}$ between prior and hessian depends on degree of gaussianity
- *D*_{KL} BETWEEN PRIOR AND COMPRESSED MC DOES NOT

- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUE TO LARGE UNCERTAINTY + POSITIVITY BOUNDS \Rightarrow RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- Well reproduced by compressed MC

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN; (B) ASSESS THE ACCURACY OF COMPRESSION