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PROLOGUE



PAST (NOT SO LONG AGO)
HIGGS PRODUCTION

(J. Campbell, 2012)

PDF UNCERTAINTY EITHER DOMINANT, OR VERY LARGE, OR BOTH
TYPICAL PDF UNCERTAINTY ∼ 5− 10%



PRESENT: THE PDF4LHC SET
LUMINOSITY UNCERTAINTIES VS RAPIDTY & MASS

G.P. Salam, 2016

TYPICAL PDF UNCERTAINTY DOWN TO ∼ 2− 5%
TOWARDS 1% PDF UNCERTAINTIES?



FUTURE: NNPDF3.1
LUMINOSITY UNCERTAINTIES VS RAPIDTY & MASS

GLUON-GLUON QUARK-GLUON

QUARK-QUARK QUARK-ANTIQUARK

TYPICAL PDF UNCERTAINTY IN DATA REGION OF ORDER 1% !!
CAN WE BELIEVE IN 1% PDF UNCERTAINTIES? WHAT ARE THE
CONSEQUENCES?
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THE IMPACT OF LHC DATA



CONTEMPORARY PDF TIMELINE (ONLY PUBLISHED GLOBAL)
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THEORY PROGRESS:
• MSTW, ABKM: all NNLO; NNPDF NNLO since 07/11 (2.1), CT since 02/13 (CT10);

NNPDF THRESHOLD RESUMMATION (3.0RESUM, 07/15), SMALL x RESUMMATION (3.1SX, 10/17)

• MSTW, CT, NNPDF all GM-VFN; NNPDF since 01/11 (2.1);
ABM FFN+ZM-VFN since 01/17 ( ABMP16)

• NNPDF FITTED CHARM since 05/16 ( NNPDF3IC)

• PHOTON PDF: (mrst2004qed), NNPDF2.3QED (08/13), NNPDF3.0QED (06/16), NNPDF3.1LUXQED (12/17)



DATASET WIDENING
NNPDF3.0 VS NNPDF3.1

NEW DATA: (BLACK EDGE)

• HERA COMBINED F b2

• D0 W LEPTON ASYMMETRY

• ATLAS W,Z 2011, HIGH

& LOW MASS DY 2011;
CMS W± RAPIDITY 8TEV
LHCB W,Z 7TEV & 8TEV

• ATLAS 7TEV JETS 2011,
CMS 2.76TEV JETS

• ATLAS & CMS TOP

DIFFERENTIAL RAPIDITY

• ATLAS Z pT DIFFERENTIAL

RAPIDITY & INVARIANT MASS

8TEV,
CMS Z pT DIFFERENTIAL

RAPIDITY 8TEV



THE IMPACT OF LHC DATA
PDF UNCERTAINTIES IN DETAIL: NNPDF3.0 (NNLO)

GLUON SINGLET FLAVORS

• GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN

• TYPICAL UNCERTAINTIES IN DATA REGION ∼ 3− 5%

• SWEET SPOT: VALENCE Q - G; DOWN TO 1%

• UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS



THE IMPACT OF LHC DATA
PDF UNCERTAINTIES IN DETAIL: NNPDF3.1 (NNLO)

GLUON SINGLET FLAVORS

• GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN

• TYPICAL UNCERTAINTIES IN DATA REGION ∼ 1− 3%

• SWEET SPOT: VALENCE Q - G; 1% OR BELOW

• UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

• NEW LHC DATA ⇒ SIZABLE REDUCTION IN UNCERTAINTIES



THE IMPACT OF LHC DATA

BEFORE LHC: PDFS MOSTLY DETERMINED BY DIS DATA

NNPDF2.1 VS NNPDF2.1 DIS ONLY
DISTANCES (difference in units of st. dev.)

d = 10⇔ one sigma difference

PDF COMPARISON
UP DOWN GLUON

• ALL DIFFERENCES BELOW ONE SIGMA

• ONLY UP-DOWN SEPARATION SIGNIFICANTLY AFFECTED



THE IMPACT OF LHC DATA

NOW: PDFS LARGELY DETERMINED BY LHC DATA

NNPDF3.1 VS NNPDF3.1 NO LHC
DISTANCES (difference in units of st. dev.)
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d = 10⇔ one sigma difference
PDF COMPARISON
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• MANY PDFS CHANGE BY MORE THAN ONE SIGMA

• BOTH FLAVOR SEPARATION & GLUON SIGNIFICANTLY AFFECTED



THE IMPACT OF LHC DATA
THE GLUON

• BEFORE LHC ⇒ DIS SCALING VIOLATIONS, TEV JETS AT LARGE X

• AFTER LHC ⇒ JETS; Z pt , TOP

DISTANCES (difference in units of st. dev.)

 0

 2

 4

 6

 8

 10

10
-5

10
-4

10
-3

10
-2

10
-1

D
is

ta
n

c
e

 f
ro

m
 b

a
s
e

lin
e

x

Central value

Baseline+ZpT
Baseline+top
Baseline+jets

10
-5

10
-4

10
-3

10
-2

10
-1

10
0
 0

 2

 4

 6

 8

 10

x

Uncertainty

gluon PDF at Q=100 GeV

(Nocera, Ubiali, 2017)

PDF COMPARISON: GLUON
CENTRAL VALUE
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• TOP HAS LARGEST IMPACT, FOLLOWED BY JETS

• ALL LHC DATA PULL CENTRAL VALUE IN SAME DIRECTION!



THE IMPACT OF LHC DATA
FLAVOR SEPARATION

• BEFORE LHC ⇒ CC DIS, TEV FIXED-TARGET DY, W ASYM.

• AFTER LHC ⇒ WIDE RANGE OF W , Z PRODUCTION DATA

IMPACT OF LHCB
DISTANCES (difference in units of st. dev.)
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PDF COMPARISON: DOWN
CENTRAL VALUE
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• SIZABLE SHIFT OF CENTRAL VALUE BY ALMOST ONE SIGMA

• LARGE x UNCERTAINTY DOWN BY LARGE FACTOR!



NEW DATA: SUMMARY

• LHC DATA NOW HAVE THE DOMINANT IMPACT ON PDFS

• METHODOLOGY AND THEORY MUST ACCORDINGLY ADAPT



THE LIMITS OF METHODOLOGY



PDF PARAMETRIZATION & DELIVERY

• TRADITIONALLY, TWO DELIVERY METHODS FOR PDFS

• HESSIAN A CENTRAL PDF SET, & ERROR SETS CORRESPONDING TO

EIGENVECTORS OF THE COVARIANCE MATRIX IN PARAMETER SPACE

ADVANTAGE: EFFICIENT REPRESENTATION OF UNCERTAITY

DISADVANTAGES: ASSUMES GAUSSIANITY

• MONTECARLO A SET OF PDF REPLICAS WHICH REPRESENTS THE PROBABILITY IN

PDF SPACE (SO THE MEAN UNBIASEDLY ESTIMATES THE CENTRAL VALUE &C )

ADVANTAGE: FAITHFUL REPRESENTATION OF PROBABILITY

DISADVANTAGES: MAY NEED LARGE NUMBER OF REPLICAS

• TRADITIONALLY, DELIVERY ⇔ PARAMETRIZATION/MINIMIZATION

HESSIAN USED WITH RELATIVELY SIMPLE FUNCTIONAL FORMS (SMALL NUMBERS OF

PARAMETERS) ⇔ HESSIAN MINIMIZATION



PROGRESS I
MC ⇔ HESSIAN

• TO CONVERT HESSIAN INTO MONTECARLO
GENERATE MULTIGAUSSIAN REPLICAS
IN PARAMETER SPACE

• ACCURATE WHEN NUMBER OF REPLICAS
SIMILAR TO THAT WHICH REPRODUCES DATA

(Thorne, Watt, 2012)
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(Carrazza, SF, Kassabov, Rojo, 2015)

• TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE
THE REPLICAS fi(x) AT A DISCRETE SET OF POINTS &
CONSTRUCT THE ENSUING COVARIANCE MATRIX

• EIGENVECTORS OF THE COVARIANCE MATRIX AS A
BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-
CAS BY SINGULAR-VALUE DECOMPOSITION

• NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO
NUMBER OF REPLICAS ⇒ ACCURATE REPRESENTATION



PROGRESS II
MONTECARLO COMPRESSION

(Carrazza, Latorre, Kassabov, Rojo, 2015)

• CONSTRUCT A VERY LARGE REPLICA SAMPLE

• SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL
FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR

• ⇒ FOR ALL PDFS ON A GRID OF POINTS// MINIMIZE DIFFERENCE OF: FIRST FOUR
MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF
REPLICAS BETWEEN MEAN AND σ, 2σ, INFINITY)

• 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY



NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN
CMS W + c production

• DEVIATION FROM GAUSSIANITY E.G. AT
LARGE x DUE TO LARGE UNCERTAINTY +
POSITIVITY BOUNDS
⇒ RELEVANT FOR SEARCHES

• CANNOT BE REPRODUCED IN HESSIAN
FRAMEWORK

• WELL REPRODUCED BY COMPRESSED MC

• DEFINE KULLBACK-LEIBLER DIVERGENCE
DKL =

∫∞
−∞ P (x)

lnP (x)
lnQ(x)

dx

BETWEEN A PRIOR P AND ITS REPRESEN-
TATION Q

• DKL BETWEEN PRIOR AND HESSIAN
DEPENDS ON DEGREE OF GAUSSIANITY

• DKL BETWEEN PRIOR AND COMPRESSED
MC DOES NOT

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN;
(B) ASSESS THE ACCURACY OF COMPRESSION



PDF PARAMETRIZATION ISSUES
• Q: WHY ARE PDF UNCERTAINTIES ON GLOBAL FITS OF SIMLAR SIZE?

– SIMILAR DATASETS
– BUT DIFFERENT PROCEDURES

• A: UNCERTAINTY TUNING

TOLERANCE (MMHT-CT)

MSTW TOLERANCE PLOT FOR 13TH EIGENVEC.

GLOBAL MSTW TOLERANCE

• (MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE
LIMIT FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT

• RESCALE ∆χ2 = T INTERVAL SUCH THAT CORRECT CONFIDENCE INTERVALS ARE
REPRODUCED

• WHY DO WE NEED TOLERANCE?
• DO WE UNDERSTAND PDF UNCERTAINTIES?



PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?
• COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT

• COMPARE GLOBAL FITS

PERCENTAGE PDF UNCERTAINTY ON PREDICTIONS
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• MEDIAN SIMILAR

• DISTRIBUTION VERY DIFFERENT!

• NNPDF: SMALLER MODE, BUT FAT TAIL ⇔ GREATER FLEXIBILITY



CLOSURE TESTING
BASIC IDEA

• ASSUME PDFS KNOWN: GENERATE FAKE EXPERIMENTAL DATA

• CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR . . . )

• FIT PDFS TO FAKE DATA:
– LEVEL 0: ZERO UNCERTAINTY
∗ CHECK WHETHER MINIMZATION EFFICIENT
∗ CHECK FOR INTERPOLATION UNCERTAINTY

– LEVEL 1: DATA UNCERTAINTY, BUT NO REPLICAS
∗ CHECK FOR UNIQUENESS OF BEST FIT ⇒ “FUNCTIONAL” UNCERTAINTY

(Pumplin, 2010)

– LEVEL 2: AS IN STANDARD PROCEDURE
∗ CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT
∗ CHECK WHETHER UNCERTAINTIES FAITHFUL



CLOSURE-TESTING:
THE PARAMETRIZATION DEPENDENCE

GLUON PDF UNCERTAINTY NORMALIZED TO MSTW08

(C. Mascaretti, 2016)

• CLOSURE TEST PERFORMED WITH
DATA GENERATED BASED ON MST08
FUNCTIONAL FORM

• REFITTED EITHER WITH NNPDF OR
MSTW FUNCTIONAL FORM

• LEVEL 0: VANISHING DATA UNCER-
TAINTY
– MSTW-CT: FIT HAS ZERO UN-

CERTAINTY
– NNPDF: ABOUT HALF OF TOTAL

UNCERTAINTY

• LEVEL 1: NOMINAL DATA UNCER-
TAINTY, BUT REPLICAS FITTED W/O
PSEUDODATA
– MSTW-CT: FIT HAS SMALL UN-

CERTAINTY
– NNPDF: ABOUT 2/3 OF FINAL

UNCERTAINTY

• LEVEL 2
– NNPDF UNCERTAINTY LARGER

THAN MSTW-CT
– NNPDF UNCERTAINTY SIMILAR

TO TRUE MSTW

“STANDARD” PARAMETRIZATION
MISSES INTERPOLATION & FUNC-
TIONAL UNCERTAINTY?



THE ∆χ2 PROBLEM
• TOLERANCE MIGHT COMPENSATE FOR MISSING FUNCTIONAL UNCERTAINTY

• BUT WHAT IS ∆χ2 FOR AN NNPDF FIT?

• CAN ANSWER USING HESSIAN CONVERSION! ∆χ2 = 16± 15

– NON-PARABOLIC BEHAVIOUR NEAR MINIMUM ON SCALE OF UNCERTAINTIES?
– INEFFICIENCY OF THE MINIMIZATION PROCEDURE?



CLOSURE-TESTING THE PDF UNCERTAINTIES
RESULTS

UNCERTAINTIES: DISTRIBUTION OF DEVIATIONS BETWEEN FITTED AND “TRUE” PDFS, SAMPLED AT
20 POINTS BETWEEN 10−5 AND 1

FIND 0.699% FOR ONE-SIGMA, 0.948% FOR TWO-SIGMA C.L.
• PDF UNCERTAINTIES ARE FAITHFUL

• BUT ARE THEY THE SMALLEST FROM GIVEN DATA?



MORE EFFICIENT MINIMIZATION?
• LOOK AT αs DEPENDENCE (CORRELATED REPLICAS)

• SIGNIFICANT FLUCTUATIONS ABOUT PARABOLIC SHAPE
NOT DUE TO FINITE-SIZE MONTE CARLO SAMPLE

BATCH MINIMIZATION

• MINIMIZE EACH REPLICA MORE THEN ONCE & KEEP BEST RESULTS

• SIGNIFICANT STABILIZATION



CORRELATIONS & THE COVARIANCE MATRIX
THE CMS DOUBLE-DIFFERENTIAL DRELL-YAN 2011

DATA/THEORY VS. DATA BIN
χ2/dof HIST. OVER REPLICAS χ2 AS COVMAT EIGVECS ADDED

2012

• FROM 2011 TO 2012, UNCORRELATED UNCERTAINTIES DOWN TO SUB-PERMILLE

• 2011: χ2/dof ∼ 1; 2012: IMPOSSIBLE TO FIT BETTER THAN χ2/dof ∼ 3

• PATHOLOGICAL BEHAVIOUR OF COVARIANCE MATRIX ⇒ WHAT IS THE UNCERTAINTY ON IT?



CORRELATIONS & THE COVARIANCE MATRIX
THE ATLAS 7TEV JETS

• EACH RAPIDITY BIN CAN BE FITTED WITH χ2/dof ∼ 1

• EACH LEADS TO INDISTIGUISHABLE BEST-FIT PDFS

• IF ALL BINS FITTED SIMULTANEOUSLY, χ2/dof ∼ 3

• Fit to data improves dramatically - little sign of systematic offset.
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(Harland-Lang, Martin, Thorne, 1016)

• MISESTIMATED CORRELATIONS?

• CAN SINGLE OUT WHICH CORRELATION OUGHT TO BE REMOVED



SMPDF
A POWERFUL TOOL

• OLD ASPIRATION: PDFS OPTIMIZED TO PROCESSES (Pumplin 2009)

• SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES

• PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR,
PROJECT OUT ORTHOGONAL SUBSPACE

• ITERATE UNTIL DESIRED ACCURACY REACHED

• CAN ADD PROCESSES TO GIVEN SET; CAN COMBINE DIFFERENT OPTIMIZED SETS

• WEB INTERFACE AVAILABLE

(Carrazza, SF, Kassabov, Rojo, 2016)

• EG ggH, Hbb̄, W Emiss
T ⇒ 11 EIGENVECTORS

• STUDY CORRELATIONS OF PDFS TO DATA AND AMONG THEMSELVES!



AN OLD PROBLEM
THE D’AGOSTINI BIAS

R = e+e−→hadrons
e+e−→µ+µ−

(CELLO collab., 1987)

• MULTIPLICATIVE UNCERTAINTIES IN COVARIANCE MATRIX
⇒ FIT BIASED DOWNWARDS IF DATA INCONSISTENT (d’Agostini, 1994)
EQUIVALENT TO RESCALING DATA BUT NOT UNCERTAINTIES

• MUST USE ITERATIVE PROCEDURE
COVARIANCE MATRIX COMPUTED FROM PREVIOUS FIT (NNPDF, 2010)



THE D’AGOSTINI BIAS
A SUBTLE EXAMPLE: αs IN A PDF FIT

GLOBAL ADDITIVE (NMC, FT) MULTIPLICATIVE (HERA, COLL)

CONSISTENT (ITERATIVE)

• χ2 COMPUTED FROM COVARIANCE MATRIX ⇒ BIASED LOW FIT FAVORED

• LESS EVOLUTION ⇔ LOW αs

• ONLY WHEN MULTIPLICATIVE UNCERTAINTIES DOMINATE
COLLIDER ONLY, NOT FIXED TARGET



METHODOLOGY: SUMMARY

• STATISTICAL ANALYSIS TOOLS NECESSARY TO COPE WITH DATA ACCURACY

• PDF UNCERTAINTIES ARE FAITHFUL, BUT NOT OPTIMAL



THE FRONTIER OF THEORY



THE NNLO FRONTIER

(G. Heinrich, LHCP, May 2017)

• NNLO CORRECTIONS NOW KNOWN AT INCREASINGLY EXCLUSIVE LEVEL (INCLUDING DECAYS)

• TYPICALLY LARGER THAN NAIVE SCALE VARIATION ⇒ NEEDED FOR PRECISION PHENO

• NNLO PDF STANDARD SINCE ∼ 2010 INCLUDE DIS, DRELL-YAN

• NEW GENERATION PDFS ALSO TOP, JETS, Z pt

• FUTURE GENERATIONS: PROMPT PHOTON, DIBOSON...



THEORY CHALLENGES
THE UNCERTAINTY IN THEORY CALCULATIONS

AN EXAMPLE: ATLAS 7 TEV pT DISTRIBUTION
THE NNLO/NLO K-FACTOR

(Boughezal, Liu, Petriello, 2016-2017)

• UNCORRELATED STATISTICAL UNCERTAINTIES AT PERMILLE LEVEL

• LARGE NNLO CORRECTIONS ∼ 10%

• NOMINAL K-FACTOR UNCERTAINTIES VERY SMALL: UNDERESTIMATED?
• FIT ONLY POSSIBLE WITH RELIABLE ESTIMATE OF UNCERTAINTY ON THEORY

PREDICTION

• NNPDF3.1: EXTRA 1% THEORY UNCERTAINTY ESTIMATED BASED ON FLUCTUATIONS W.R. TO
INTERPOLATION (SHADED IN PLOT)



RESUMMED PDFS
• RESUMMATION NOT INCLUDED IN DEFAULT PDF SETS

• RESUMMED CALCULATIONS MUST USE RESUMMED PDFS! (M. Spira)

• KEPT UNDER CONTROL IN FITS BY CHOICE OF CUTS

PDFS WITH THRESHOLD (LARGE x) RESUMMATION
GLUON: NLO VS NLL
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• RESUMMATION INCLUDED IN FIT (DIS, DY, TOP DATA),
EFFECTS NOT NEGLIGIGLE AT NLLO, LARGE x,
MORE MODERATE AT NNLO

• EFFECT ON PDFS COMPARABLE TO EFFECT ON MATRIX ELE-
MENT, ANTICORRELATED TO IT

• RELEVANT FOR NEW PHYSICS SEARCHES

(Bonvini et al., 2015)

GLUON: NNLO VS NNLL
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HIGGS IN GLUON FUSION VS mH
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PDFS WITH HIGH ENERGY (SMALL x) RESUMMATION

GLUON LUMINOSITY
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NNPDF31sx, LHC 13 TeV

NNLO

NNLO+NLLx

• FIRST SET: NNPDF3.0sx

• HIGH ENERGY RESUMMATION INCLUDED IN GLAP EVOLU-
TION& FOR DIS, EFFECTS

• STABILIZES PERTURBATIVE EXPANSION

• LARGE EFFECTS FOR FUTURE COLLIDERS, OR LIGHT FINAL
STATES (b PRODUCTION AT LHC)

(Ball et al., 2017)

KINEMATIC CUTS

10 5 10 4 10 3 10 2 10 1 100

x

100

101

102

103

104

105

Q2 [
Ge

V2 ]

Kinematic coverage
Dcut = 2.5
Dcut = 2
Dcut = 1.5
Collider DIS

INCLUSIVE F2 FIT QUALITY

1.6 1.8 2 2.2 2.4 2.6 2.8 3

cutD

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

da
t

/N2 χ

 datac

2
NNPDF3.1sx, HERA F

NNLO

NNLO+NLLx

NLO

NLO+NLLx

 datac

2
NNPDF3.1sx, HERA F

CHARM F c2 FIT QUALITY

1.6 1.8 2 2.2 2.4 2.6 2.8 3

cutD

1.04

1.06

1.08

1.1

1.12

1.14

1.16

da
t

/N2 χ

NNPDF3.1sx, HERA NC inclusive data

NNLO

NNLO+NLLx

NLO

NLO+NLLx

NNPDF3.1sx, HERA NC inclusive data



THE PHOTON PDF
CORRELATION BETWEEN DATA AND γ PDF

• PHOTON-INDUCED CONTRIBUTIONS CAN BE SIZABLE

• PHOTON PDF MODELED (MRST2004) OR DETERMINED FROM DRELL-YAN
WITH SIZABLE UNCERTAINTY (NNPDF2.3-NNPDF3.0QED)

• SIGNIFICANT UNCERTAINTY EG ON SEARCHES

NNPDF2.3QED PHOTON



THE PHOTON PDF BREAKTHROUGH
(Manohar, Nason, Salam, Zanderighi, 2016)

• QED IS PERTURBATIVE DOWN TO LOW SCALES ⇒ THE PHOTON PDF MUST BE
COMPUTABLE IF THE INPUT QUARK SUBSTRUCTURE IS KNOWN

• WRITE THE CROSS-SECTION FOR A CHOSEN PROCESS:
SUSY PRODUCTION IN EP COLLISION (Drees, Zeppenfeld, 1989)

• COMPUTE IT DIRECTLY, OR USING THE PHOTON PDF

• ⇒ PDF EXPRESSED IN TERMS OF THE STRUCTURE FUNCTION INTEGRATED OVER
ALL SCALES

• Fs AT HIGH Q2 FROM PDFS, IN RESONANCE REGION FROM DATA, IN ELASTIC LIMIT
FROM FORM FACTORS

xfγ/p(x, µ2) = 1
2πα(µ2)

∫ 1
x
dz
z

{∫ µ2

1−z
x2m2

p
1−z

dQ2

Q2 α
2(Q2)

[(
zpγq(z) +

2x2m2
p

Q2

)
F2(x/z,Q2)−

z2FL
(
x
z , Q

2
) ]
− α2(µ2)z2F2

(
x
z , µ

2
)}

,



THE LUXQED PHOTON PDF
(Carrazza et al., 2017)

• LUX16/LUX17 SETS CONSTRUCTED FROM PDF4LHC15 ⇒ AGREE WELL WITH
NNPDF3.0 QED, MUCH SMALLER UNCERTAINTY

• FIRST PDF SET BASED ON CONSISTENT FIT WITH LUX CONSTRAINT:
NNPDF3.0LUXQED

• NNPDF3.1LUXQED VS LUX17: GOOD AGREEMENT BUT SMALLER UNCERTAINTIES

• SIZABLE IMPACT ON PRECISION PHYSICS: EG ASSOCIATE HIGGS PROD. WITH W

γγ LUMI: NNPDF3.0QED, LUX17,
NNPDF3.1LUXQED
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HEAVY QUARKS
DECOUPLING SCHEMES

• ALL GLOBAL PDF SETS USE MATCHED VARIABLE-FLAVOR HQ SCHEMES
ACOT, FONLL, THORNE-ROBERTS EXTENSIVELY BENCHMARKED 2010-2014

• ABM USE MASSIVE FFN SCHEME
⇒ SERIOUS DISCREPANCY, BEST FIT αs = 0.113

• ABMP16 n3f = 3 FOR DIS, nf = 5 FOR LHC ⇒ EFFECTIVELY, ZM-VFN
⇒ DISCREPANCY REDUCED, BEST FIT αs = 0.115

W+ TOTAL XSECT
GLUON: ABM12 VS

NNPDF3.0 (αs = 0.114)
GLUON: ABMP16 VS.
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HEAVY QUARKS
DETERMINING CHARM FROM THE DATA

WHY SHOULD THE CHARM PDF BE DETERMINED FROM THE DATA?
• BECAUSE ITS SIZE SHOULD NOT DEPEND STRONGLY ON THE CHARM MASS

• BECAUSE IT MIGHT HAVE A NONPERTURBATIVE COMPONENT

FITTED CHARM VS mc
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PERTURBATIVE CHARM VS mc
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NNPDF3.1 NNLO perturbative charm, Q = 100 GeV

FITTED VS. PERTURBATIVE CHARM
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• BECAUSE ITS SHAPE SHOULD NOT BE DETERMINED BY FIRST-ORDER MATCHING
(NO HIGHER NONTRIVIAL ORDERS KNOWN)

• ⇒ SUPPRESSED AT MEDIUM-SMALL x, ENGANCED AT VERY SMALL, VERY LARGE x



HEAVY QUARKS
IMPACT ON LIGHT QUARK PDFS

FITTED VS. PERTURBATIVE CHARM
QQBAR LUMI
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THE CHARM PDF FROM DATA...
• QUARK (ESPECIALLY QUARK-ANTIQUARK) LUMI AFFECTED BECAUSE OF CHARM

SUPPRESSION AT MEDIUM-x
• FLAVOR DECOMPOSITION ALTERED

• UNCERTAINTIES ON LIGHT QUARKS NOT SIGNIFICANTLY INCREASED



HEAVY QUARKS
THE CHARM PDF & PRECISION LHC PHYSICS

DRELL-YAN XESCTS
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• W , Z CROSS-SECTIONS AT 13 TEV IN PERFECT AGREEMENT WITH DATA
DIFFICULT TO FIT WITH PERTURBATIVE CHARM

• ELECTROWEAK CORRECTIONS IMPORTANT

• NOTE ALSO SMALL-x RESUMMATION OF F c2 REQUIRES FITTED CHARM



THEORY: SUMMARY

• WITH SUB-PERCENT DATA UNCERTAINTIES, THEORY UNCERTAINTIES

DOMINANT

• RESUMMATION ADVANTAGEOUS

• ELECTROWEAK CORRECTIONS MANDATORY
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