00	000	00	0

Towards EW Corrections for the Next Generation of PDF Sets

Christopher Schwan

with: Stefano Carrazza, Emanuele R. Nocera, Marco Zaro

QCD@LHC 2019, 15 July

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

Introduction			
•0	000	00	0

How are PDFs determined?

For hadron-hadron collider:

$$\sigma = \sum_{a,b} \int \mathrm{d}x_1 \int \mathrm{d}x_2 \int \mathrm{d}Q^2 f_a(x_1, Q^2) f_b(x_2, Q^2) \sigma_{ab}(x_1, x_2, Q^2)$$

Basic recipe:

- Data σ , measured in experiments: Drell–Yan, Jets, Top-pairs, ...
- Theory for partonic cross sections $\rightarrow \sigma_{ab}$: Up to NNLO QCD
- Ansatz for all $f_a(x)$: Analytic form with parameters/numerical representation
- \rightarrow Do a regression of data and theory to obtain $f_a(x, Q^2)$
 - To solve the dependence on Q^2 use DGLAP,

$$Q^2 \frac{\partial}{\partial Q^2} f_a(x, Q^2) = \frac{\alpha_{\rm s}(Q^2)}{2\pi} \sum_b \int_x^1 \frac{\mathrm{d}\xi}{\xi} P_{ab}\left(\frac{x}{\xi}, Q^2\right) f_b(\xi, Q^2),$$

to evolve all $f_a(x,Q^2)$ down to $f_a(x,Q_0^2)$, with the same starting scale Q_0^2

00	000	00	O
How	v do we improve the accuracy/pro	ecision of our PDFs?	usion
PDI obset \rightarrow I	F uncertainties will be/is bottleneck for ce ervables Use more information: Add more experiments + predictions	ertain	 + +
2 3	Take into account MHOU (talk by Z. Ka [NNPDF Collaboration]) Improve fitting procedure itself • for example using machine learning (talk	by J. Cruz,	nty nty N ² LO
4	(e.g. NNPDF3.0resum, NNPDF3.1sx)	mation 850 -	
9	Use more perturbative results: Electrowe corrections (?!)	ak/mixed ****	'
RHS	S plots from [NNPDF Collaboration]	650 - Bight soals under 650 - Bight soals under 650 - Bight soals under dark: POF uncert kft: C right: C+S	ainty inty NNLO

	Electroweak corrections		
00	•00	00	0

What is needed for EW corrections?

- ✓ Photon as a parton (can be very important, see e.g. RHS [Dittmaier, Huss, Knippen])
- LUXQED method [Manoha, Nason, Salam, Zanderighi] leads to precise γ-PDF
- $\checkmark\,$ QED evolution in the DGLAP equations

To be done

- → Electroweak/mixed corrections for all PDF processes binned in *a*, *b*, x_1 , x_2 , and Q^2 → "APPLgrid/fastNLO"
 - Include them in a global fit

	Electroweak corrections		
00	000	00	0

What do we expect from EW corrections?

Typical features of EW corrections:

- dominated by virtual corrections
- small corrections for the integrated cross section
- negative and larger in certain phase space regions (large $p_{\rm T}$, large masses, ...)
- \bullet caused by "mismatch" of real-/virtual: no Z/W^\pm radiation
- ightarrow often shape-changing distributions
- example on the RHS: diboson production [Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder]
- \rightarrow how do they affect a PDF fit?

ightarrow Large corrections: VBS, see talk tomorrow 5:20 PM in pQCD/MC

	Electroweak corrections		
00	000	00	0

What do we expect from EW corrections?

Typical features of EW corrections:

- dominated by virtual corrections
- small corrections for the integrated cross section
- negative and larger in certain phase space regions (large $p_{\rm T}$, large masses, ...)
- \bullet caused by "mismatch" of real-/virtual: no Z/W^\pm radiation
- ightarrow often shape-changing distributions
- example on the RHS: diboson production [Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder]
- \rightarrow how do they affect a PDF fit?

 \rightarrow Large corrections: VBS, see talk tomorrow 5:20 PM in pQCD/MC

	Electroweak corrections		
00	000	00	0

EW/mixed contributions in general

 \rightarrow Extended APPLgrid 1.4.70 [Carli et al.] for arbitrary (LO, NLO, NNLO, ...) predictions/corrections and photon:

$$\sigma_{ab}(\mathbf{x}_1, \mathbf{x}_2, Q^2) = \sum_{i,j,k,l} \alpha_{\mathrm{s}}^i \log^j(\xi_{\mathrm{R}}^2) \log^k(\xi_{\mathrm{F}}^2) \left[\alpha' \sigma_{ab}^{i,j,k,l}(\mathbf{x}_1, \mathbf{x}_2, Q^2) \right]$$

- Bin α' together with $\sigma^{i,j,k,l}$
- \rightarrow Toolchain: mg5_aMC 3.0.2 [Alwall et al.] $\stackrel{*}{\rightarrow}$ custom APPLgrid $\sigma_{ab}^{i,j,k,l}$
 - * replaced aMCfast [Bertone, Frederix, Frixione, Rojo, Sutton] interface

NLO Tower for $\sigma_{ab}(x_1,x_2,Q^2)$ processes with one quark line at LO

$$\mathcal{O}(\alpha_{s}^{m+2}\alpha^{n})$$
QCD
EW
$$\mathcal{O}(\alpha_{s}^{m+3}\alpha^{n}) \quad \mathcal{O}(\alpha_{s}^{m+2}\alpha^{n+1})$$

	Electroweak corrections		
00	000	00	0

EW/mixed contributions in general

 \rightarrow Extended APPLgrid 1.4.70 [Carli et al.] for arbitrary (LO, NLO, NNLO, ...) predictions/corrections and photon:

$$\sigma_{ab}(\mathbf{x}_1, \mathbf{x}_2, Q^2) = \sum_{i,j,k,l} \alpha_{\mathrm{s}}^i \log^j(\xi_{\mathrm{R}}^2) \log^k(\xi_{\mathrm{F}}^2) \left[\alpha' \sigma_{ab}^{i,j,k,l}(\mathbf{x}_1, \mathbf{x}_2, Q^2) \right]$$

- Bin α' together with $\sigma^{i,j,k,l}$
- \rightarrow Toolchain: mg5_aMC 3.0.2 [Alwall et al.] $\stackrel{*}{\rightarrow}$ custom APPLgrid $\sigma_{ab}^{i,j,k,l}$
 - * replaced aMCfast [Bertone, Frederix, Frixione, Rojo, Sutton] interface

NLO Tower for $\sigma_{ab}(x_1, x_2, Q^2)$ processes with one quark line at LO

$$\mathcal{O}(\alpha_{s}^{m+2}\alpha^{n})$$
QCD
EW
$$\mathcal{O}(\alpha_{s}^{m+3}\alpha^{n}) \quad \mathcal{O}(\alpha_{s}^{m+2}\alpha^{n+1})$$

	Electroweak corrections		
00	000	00	0

EW/mixed contributions in general

 \rightarrow Extended APPLgrid 1.4.70 [Carli et al.] for arbitrary (LO, NLO, NNLO, ...) predictions/corrections and photon:

$$\sigma_{ab}(\mathbf{x}_1, \mathbf{x}_2, Q^2) = \sum_{i,j,k,l} \alpha_{\mathrm{s}}^i \log^j(\xi_{\mathrm{R}}^2) \log^k(\xi_{\mathrm{F}}^2) \left[\alpha' \sigma_{ab}^{i,j,k,l}(\mathbf{x}_1, \mathbf{x}_2, Q^2) \right]$$

- Bin α' together with $\sigma^{i,j,k,l}$
- \rightarrow Toolchain: mg5_aMC 3.0.2 [Alwall et al.] $\stackrel{*}{\rightarrow}$ custom APPLgrid $\sigma_{ab}^{i,j,k,l}$
 - * replaced aMCfast [Bertone, Frederix, Frixione, Rojo, Sutton] interface

NLO Tower for $\sigma_{ab}(x_1, x_2, Q^2)$ processes with two quark lines at LO

$$\begin{array}{c|c} \mathcal{O}(\alpha_{\mathrm{s}}^{m+2}\alpha^{n}) & \mathcal{O}(\alpha_{\mathrm{s}}^{m+1}\alpha^{n+1}) & \mathcal{O}(\alpha_{\mathrm{s}}^{m}\alpha^{n+2}) \\ & & \\ & & \\ & & \\ \mathcal{O}(\alpha_{\mathrm{s}}^{m+3}\alpha^{n}) & \mathcal{O}(\alpha_{\mathrm{s}}^{m+2}\alpha^{n+1}) & \mathcal{O}(\alpha_{\mathrm{s}}^{m+1}\alpha^{n+2}) & \mathcal{O}(\alpha_{\mathrm{s}}^{m+1}\alpha^{n+3}) \end{array}$$

		Results	
00	000	0	0

Setup

- $pp \to t \overline{t}$
- 8 TeV
- Shown is the grid $\sigma_{ab}(x_1, x_2, Q^2)$,

$$\sigma = \sum_{a,b} \int \mathrm{d}x_1 \int \mathrm{d}x_2 \int \mathrm{d}Q^2 f_a(x_1,Q^2) f_b(x_2,Q^2) \sigma_{ab}(x_1,x_2,Q^2)$$

- Q = 172.5 (fixed ren./fac. scale)
- $\bullet~\mbox{for gg} \rightarrow t \overline{t}$
- for $\mathcal{O}(\alpha_{\rm s}^2\alpha)$ relative to $\mathcal{O}(\alpha_{\rm s}^2)$

• all results are preliminary!

		Results	
00	000	00	0

EW Gluon–Gluon-Grid: $\mathcal{O}(\alpha_s^2 \alpha)$ for gg $\rightarrow t\bar{t}$ @ 8 TeV

- $y_{a/b}(x) = -\ln x_{a/b} + 5(1 x_{a/b}),$ y(1) = 0
- color: $\delta = \mathcal{O}(\alpha_s^2 \alpha) / \mathcal{O}(\alpha_s^2)$

- lower left corner \rightarrow production threshold
- $x \leftrightarrow y$ symmetry: initial-state symmetry of pp $\rightarrow t\bar{t}$
- at threshold: coulomb singularity
 - negative correction for larger x_{a} ,
- x_b

-10.0

			Conclusion
00	000	00	•

Summary

- EW/Mixed corrections for PDF determinations
- Showed $\mathcal{O}(\alpha_s^2 \alpha)$ grid for 8 TeV t \bar{t} -prod. at the LHC
- \rightarrow Validation
- \rightarrow Include into PDF fit (WIP)
- $\rightarrow\,$ Study impact of EW/mixed contributions of all processes