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Introduction



Boosted jets at the LHC

High energy collisions at the LHC = boosted objects:
e particles such as W, Z, H, t,... are produced with pj{ft > Mjey,
e hadronic collimated decays often reconstructed into single jets.
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High energy collisions at the LHC = boosted objects:
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e particles such as W, Z, H, t,... are produced with p‘Tt > Mjey,
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Problem: identify hard structure of a jet from radiation patterns.
(Jet from W, Z, H, t or QCD?)

jet W/Z/H ? quark
T > mJet ------ % o (or gluon) ﬁ;g

Jet drawings by G. Soyez 1




Jet grooming techniques

How to identify hard structure of a jet?

e Look at the mass of the jet.

e Remove distortion due to QCD radiation and pileup.

Grooming goal =- remove unassociated soft wide-angle radiation.


https://arxiv.org/abs/1307.0007
https://arxiv.org/abs/1402.2657
https://arxiv.org/abs/1804.03657
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0@ If Trsp(s:) = 1 — remove softer branch and update jet tree,
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@ Cast jet as clustering tree with nodes 79 and children nodes a, b.
@® Define state of each node as s; = {z, A, } where

min(pt a7pt.b) % % 9
2= —— AL = — )"+ — O
Pta + Pt ab = (a = 9) ($a = d0)

@® Evaluate policy (3, zeut and Ry are free parameters):

B
0 if 2> 2w (G22)

1 else

7TRSD(St) =

0@ If Trsp(s:) = 1 — remove softer branch and update jet tree,
@ If Trsp(st) = 0 — stop recursion. 3



Our goal for this project

Goal of this project?

e Extend RSD jet grooming using Deep Learning techniques.
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Our goal for this project

Goal of this project?

e Extend RSD jet grooming using Deep Learning techniques.

Why?
e improve mje; resolution,
e verify model generalization and performance on different processes,

e provide a fast inference model.

How?

e using Deep Reinforcement Learning (DRL) techniques.



A deep learning approach



Grooming a jet tree with DRL

Input data: Reinforcement learning
Generate jet events with Monte Carlo. Define a | Input Data |

set of possible states in a five dimensional box:

St = {Zv Aab; ¢7ma kt}

Best Action

Methodology:

Jet grooming is characterized by a policy and a

sequential set of actions/cuts, so: Algorithm

e Train a reinforcement learning agent which
learns how to decide which action to take.

e Define an environment reward which |:|
a .. O
motivates the agent to groom efficiently. =




Choosing an DRL agent

Which agent?
Deep @Q-Network — off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

Q" (s,a) = maxE [7't + g1 + Vg + oo |8 = 8,0 = a77r]
s


https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Choosing an DRL agent

Which agent?
Deep @Q-Network — off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

Q" (s,a) = maxE [7't + g1 + Vg + oo |8 = 8,0 = a,w]
s
A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature'15:
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Grooming a jet tree with DRL

DRL requirements:

e Environment definition?
build a simulation setup where the DQN is trained and validated
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Grooming a jet tree with DRL

DRL requirements:

e Environment definition?
build a simulation setup where the DQN is trained and validated

e Reward definition?
translate the mje; resolution into a game score

e Hyperparameter tune?
obtain the best model for our specific problem

In practice we implement the DRL framework using:

e Python € (Keras-RL, TensorFlow, OpenAl Gym, hyperopt)
e Public code available at https://github.com/JetsGame


https://github.com/JetsGame

Environment

Defining a jet grooming game:

Game score = reward function (next slides)



Environment

Defining a jet grooming game:
Game score = reward function (next slides)

Game environment:

@ Initialize list of all trees for training. 1
@® Each episode starts by randomly /\/ﬁk /ik\
S A
b
Nk

selecting a tree and adding its root to
a priority queue (ordered in Agyp). b

© Each step removes first node from

priority queue, then takes action on

3
removal of soft branch based on s;. a; _>>/<\\ =
A

@ After action, update kinematics of

parent nodes, add current children to

4
priority queue, and evaluate reward. Wﬁ /ﬁk =R

@ Episode terminates once priority queue
is empty.



Reward function

We construct a reward function based on two components:

1
R(m, ag, A, Z) = R]u(m) + 7RSD((L,5, A, Z)
Nsp

so the DQN agent is motivated to:

e improve jet mass resolution = increase Ry,

e replicate Soft-Drop behavior = increase Rgp.



Reward function

We construct a reward function based on two components:

1
R(m, ag, A, Z) = R]u(m) + 7RSD((L,5, A, Z)
Nsp

so the DQN agent is motivated to:

e improve jet mass resolution = increase Ry,

e replicate Soft-Drop behavior = increase Rgp.

Ru(m)

The mass reward is defined using 030

a Cauchy distribution: 0231

0.20

1"2 0.15
R m) = 0.104
M( ) Tr(‘m_mtarget‘Q +F2) 0.054

0.004




Reward function

The Soft-Drop reward is defined as
Rsp(ag, A, z) = a; min (1, o LA hl(zl/z))
+ (1 4 a¢) max (0, 1 — e~ o2 In(1/A)+5: 1“(22/2)) ,
so the DQN agent is motivated to:

e remove wide-angle soft radiation
e keep hard-collinear emissions
Rgp for a;=1 Rgp for a,=0

,=0.16,B,=0.33,Inz, =-3.5
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Adding a multi-level approach

What about background events?

Potential mass bias for background events = use multi-level training:

@ add to the training set signal and background samples
= 500k W /QCD jets simulated with Pythia 8

11
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Adding a multi-level approach

What about background events?

Potential mass bias for background events = use multi-level training:
@ add to the training set signal and background samples
= 500k W /QCD jets simulated with Pythia 8

® at each episode randomly select a signal or background jet.
= adjust Ras(m) accordingly to signal/background

Ri9(m)
In the background case, the mass 035
. 0.30
reward term is changed to: 025
0.20
bkg . m m 0.15
I an) = T exp (_F 010
bkg bkg 0.05
0.00

20 40 60 80 100
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Hyperparameter tune

Free parameters to be determined:

e DQN architecture = (layers, nodes, activations, ...)
e Reward parameters = (a1,2, P12, 212, T)
e Learning parameters = (optimizer, learning rate, ...)
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Use distributed asynchronous hyperparameter optimization = hyperopt.

@ Create a validation set with 50k signal (W) and background (QCD) jets.
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How?

Use distributed asynchronous hyperparameter optimization = hyperopt.

@ Create a validation set with 50k signal (W) and background (QCD) jets.
@® Derive groomed jet mass distribution from validation set and determine:

e Window (Wmin, Wmax) containing 60% of signal distribution,
e the median wm.eq in that interval.
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Hyperparameter tune

Free parameters to be determined:

e DQN architecture = (layers, nodes, activations, ...)

e Reward parameters = (1,2, P12, 21,2, T)

e Learning parameters = (optimizer, learning rate, ...)
How?

Use distributed asynchronous hyperparameter optimization = hyperopt.

@ Create a validation set with 50k signal (W) and background (QCD) jets.
@® Derive groomed jet mass distribution from validation set and determine:

e Window (Wmin, Wmax) containing 60% of signal distribution,
e the median wm.eq in that interval.

© Define fui, the fraction of groomed background sample (Wmin, Wmax):

1
L= g‘wmax - wmin' U ‘mtarget - u/’med| r 2Offkg
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Hyperparameter tune

Validation loss for 2000 models
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Results




Optimal GroomRL model for 1/ and top jets

Reward evolution during the training

Parameters Value
of the GI‘OOIIIRL for W bosons a nd Miarget 80.385 GeV or 173.2 GeV
$¢ dimension 5
to p q ua I’kS: reward Cauchy
. r 2 GeV
e improvement during the first (@181, ln2) (059,0.18,-0.92)
(az,B2,Inz22) (0.65,0.33, —3.53)
300k epochs, 1/Nsp -
multi-level training Yes
e stability after 300k epochs. Lo 8 Gev
1/Npig 1.8 or 1.0
Pokg 0.48 or 0.2
R(m’ ag, A7 Z) learning rate 104
Dueling NN Yes
a2 Double DQN No
o /—/\—/\/_\ Policy Boltzmann
NI, 500K
- 38 Architecture Dense
g 36 - .‘:Lp Dropout 0.05
= Layers 10
34 Nodes 100
32 Optimizer Adam
8.0 TABLE I: Final parameters for GroomRL, with the two values
0 100k 200k 300k 400k 500k

Iterations

of Miarget corresponding to the W and top mass.
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DRL training animation
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DRL training animation
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DRL training animation

GroomRL-W predictions vs Nepochs
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DRL training animation

GroomRL-W predictions vs Nepochs
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DRL training animation

GroomRL-W predictions vs Nepochs
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DRL training animation

GroomRL-W predictions vs Nepochs
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DRL training animation
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DRL training animation
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Optimal GroomRL model for I jets

GroomRL-W tested on QCD, W and Top jet data
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Wmax — Wmin [GeV] Wmea [GeV]

plain 44.65 104.64
GroomRL-W 10.70 80.09
GroomRL-Top 13.88 80.46
RSD 16.96 80.46

TABLE II: Size of the window containing 60% of the W mass
spectrum, and median value on that interval. 16



Optimal GroomRL model for IV jets

GroomRL-Top tested on QCD, W and Top jet data

0.02 0.10 0.05
plain plain plain
RSD RSD RSD
GroomRL-Top GroomRL-Top GroomRL-Top
0.08 0.04
0.015
CD jet ; :
QCDj 0.06 W jets 003 Top jets
0.01
0.04 0.02
0.005
‘ 0: 0.01
H \HHHHHHHH |
o AL I il 0 il 0 st
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
m[GeV] m[GeV] m[GeV]

Winax — Wain [GeV] Winea [GeV]

plain 44.65 104.64
GroomRL-W 10.70 80.09
GroomRL-Top 13.88 80.46
RSD 16.96 80.46
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Lund jet plane density

Lund jet plane before and after applying GroomRL
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Inspecting (In1/A4, Ink;) = soft and wide-angle radiation removed.
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Deliverables and conclusions

Deliverables

e GroomRL complete python framework available at:
https://github.com/JetsGame/GroomRL
(contains pre-trained W and top jet DQN models)

e 1ibGroomRL a C++ library for jet grooming models inference:
https://github.com/JetsGame/1ibGroomRL

e Datasets for top, W and QCD jets at:
https://github.com/JetsGame/data

18
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Deliverables and conclusions

Deliverables

e GroomRL complete python framework available at:
https://github.com/JetsGame/GroomRL
(contains pre-trained W and top jet DQN models)

e 1ibGroomRL a C++ library for jet grooming models inference:
https://github.com/JetsGame/1ibGroomRL

e Datasets for top, W and QCD jets at:
https://github.com/JetsGame/data

Conclusions

e Reinforcement learning can be applied to jet grooming successfully.

e Results are quantitatively similar to RSD with moderate
improvement in mass resolution.

e Remarkable model generalization when changing underlying process

without retraining. "


https://github.com/JetsGame/GroomRL
https://github.com/JetsGame/libGroomRL
https://github.com/JetsGame/data

Thank youl!
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