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Università degli Studi di Milano and INFN Sezione di Milano

Acknowledgement: This project has received funding from the European Unions Horizon
2020 research and innovation programme under grant agreement number 740006.

PDFN 3
Machine Learning • PDFs • QCD

https://arxiv.org/abs/1903.09644


Introduction



Boosted jets at the LHC

High energy collisions at the LHC ⇒ boosted objects:

• particles such as W, Z, H, t, . . . are produced with pjet
T � mjet,

• hadronic collimated decays often reconstructed into single jets.

Problem: identify hard structure of a jet from radiation patterns.

(Jet from W, Z, H, t or QCD?)

Jet drawings by G. Soyez
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Jet grooming techniques

How to identify hard structure of a jet?

• Look at the mass of the jet.

• Remove distortion due to QCD radiation and pileup.

Grooming goal ⇒ remove unassociated soft wide-angle radiation.

Jet grooming algorithms:

• modified MassDrop Tagger

Dasgupta et al., arXiv:1307.0007

• Soft Drop (SD)

Larkoski et al., arXiv:1402.2657

• Recursive Soft Drop (RSD)

Dreyer et al., arXiv:1804.03657
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(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3



(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3



(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3



(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3



(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion. 3



Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.
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A deep learning approach



Grooming a jet tree with DRL

Input data:

Generate jet events with Monte Carlo. Define a

set of possible states in a five dimensional box:

st = {z,∆ab, φ,m, kt}

Methodology:

Jet grooming is characterized by a policy and a

sequential set of actions/cuts, so:

• Train a reinforcement learning agent which

learns how to decide which action to take.

• Define an environment reward which

motivates the agent to groom efficiently.

5



Choosing an DRL agent

Which agent?

Deep Q-Network → off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]

A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature’15:

6
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Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

7
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Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

In practice we implement the DRL framework using:

• Python ∈ (Keras-RL, TensorFlow, OpenAI Gym, hyperopt)

• Public code available at https://github.com/JetsGame
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Environment

Defining a jet grooming game:

Game score ⇒ reward function (next slides)

Game environment:

1 Initialize list of all trees for training.

2 Each episode starts by randomly

selecting a tree and adding its root to

a priority queue (ordered in ∆ab).

3 Each step removes first node from

priority queue, then takes action on

removal of soft branch based on st.

4 After action, update kinematics of

parent nodes, add current children to

priority queue, and evaluate reward.

5 Episode terminates once priority queue

is empty.

1

2

3

4

a

b c
d ef

a
b
c
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Reward function

We construct a reward function based on two components:

R(m, at,∆, z) = RM (m) +
1

NSD
RSD(at,∆, z)

so the DQN agent is motivated to:

• improve jet mass resolution ⇒ increase RM ,

• replicate Soft-Drop behavior ⇒ increase RSD.

The mass reward is defined using

a Cauchy distribution:

RM (m) =
Γ2

π (|m−mtarget|2 + Γ2)

70 75 80 85 90
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM(m)
Cauchy
mtarget
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Reward function

The Soft-Drop reward is defined as

RSD(at,∆, z) = at min
(

1, e−α1 ln(1/∆)+β1 ln(z1/z)
)

+ (1 + at) max
(

0, 1− e−α2 ln(1/∆)+β2 ln(z2/z)
)
,

so the DQN agent is motivated to:

• remove wide-angle soft radiation

• keep hard-collinear emissions
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RSD  for  at = 0
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Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1 add to the training set signal and background samples

⇒ 500k W/QCD jets simulated with Pythia 8

2 at each episode randomly select a signal or background jet.

⇒ adjust RM (m) accordingly to signal/background

In the background case, the mass

reward term is changed to:

Rbkg
M (m) =

m

Γbkg
exp

(
− m

Γbkg

)
20 40 60 80 100

m

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Rbkg
M (m)
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Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12



Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W ) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12



Hyperparameter tune

Validation loss for 2000 models

13



Results



Optimal GroomRL model for W and top jets

Reward evolution during the training

of the GroomRL for W bosons and

top quarks:

• improvement during the first

300k epochs,

• stability after 300k epochs.

R(m, at,∆, z)

14



DRL training animation

GroomRL-W predictions vs nepochs
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Optimal GroomRL model for W jets

GroomRL-W tested on QCD, W and Top jet data
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Optimal GroomRL model for W jets

GroomRL-Top tested on QCD, W and Top jet data
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Lund jet plane density

Lund jet plane before and after applying GroomRL

Inspecting (ln 1/∆ab, ln kt) ⇒ soft and wide-angle radiation removed.
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Deliverables and conclusion



Deliverables and conclusions

Deliverables

• GroomRL complete python framework available at:

https://github.com/JetsGame/GroomRL

(contains pre-trained W and top jet DQN models)

• libGroomRL a C++ library for jet grooming models inference:

https://github.com/JetsGame/libGroomRL

• Datasets for top, W and QCD jets at:

https://github.com/JetsGame/data

Conclusions

• Reinforcement learning can be applied to jet grooming successfully.

• Results are quantitatively similar to RSD with moderate

improvement in mass resolution.

• Remarkable model generalization when changing underlying process

without retraining.

18
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Thank you!
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