
Jet grooming through reinforcement learning

based on PRD 100, 014014, arXiv:1903.09644

Stefano Carrazza and Frédéric Dreyer

BOOST 2019, MIT Boston, 23 July 2019.

Università degli Studi di Milano and INFN Sezione di Milano

Acknowledgement: This project has received funding from the European Unions Horizon
2020 research and innovation programme under grant agreement number 740006.

PDFN 3
Machine Learning • PDFs • QCD

https://arxiv.org/abs/1903.09644

Introduction

Boosted jets at the LHC

High energy collisions at the LHC ⇒ boosted objects:

• particles such as W, Z, H, t, . . . are produced with pjet
T � mjet,

• hadronic collimated decays often reconstructed into single jets.

Problem: identify hard structure of a jet from radiation patterns.

(Jet from W, Z, H, t or QCD?)

Jet drawings by G. Soyez

1

Boosted jets at the LHC

High energy collisions at the LHC ⇒ boosted objects:

• particles such as W, Z, H, t, . . . are produced with pjet
T � mjet,

• hadronic collimated decays often reconstructed into single jets.

Problem: identify hard structure of a jet from radiation patterns.

(Jet from W, Z, H, t or QCD?)

Jet drawings by G. Soyez 1

Jet grooming techniques

How to identify hard structure of a jet?

• Look at the mass of the jet.

• Remove distortion due to QCD radiation and pileup.

Grooming goal ⇒ remove unassociated soft wide-angle radiation.

Jet grooming algorithms:

• modified MassDrop Tagger

Dasgupta et al., arXiv:1307.0007

• Soft Drop (SD)

Larkoski et al., arXiv:1402.2657

• Recursive Soft Drop (RSD)

Dreyer et al., arXiv:1804.03657

2

https://arxiv.org/abs/1307.0007
https://arxiv.org/abs/1402.2657
https://arxiv.org/abs/1804.03657

Jet grooming techniques

How to identify hard structure of a jet?

• Look at the mass of the jet.

• Remove distortion due to QCD radiation and pileup.

Grooming goal ⇒ remove unassociated soft wide-angle radiation.

Jet grooming algorithms:

• modified MassDrop Tagger

Dasgupta et al., arXiv:1307.0007

• Soft Drop (SD)

Larkoski et al., arXiv:1402.2657

• Recursive Soft Drop (RSD)

Dreyer et al., arXiv:1804.03657

2

https://arxiv.org/abs/1307.0007
https://arxiv.org/abs/1402.2657
https://arxiv.org/abs/1804.03657

(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3

(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3

(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3

(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion.

3

(Recursive) Soft Drop algorithm

1 Cast jet as clustering tree with nodes T (i) and children nodes a, b.

2 Define state of each node as st = {z,∆ab} where

z =
min(pt,a, pt,b)

pt,a + pt,b
, ∆2

ab = (ya − yb)2 + (φa − φb)2

3 Evaluate policy (β, zcut and R0 are free parameters):

πRSD(st) =

0 if z > zcut

(
∆ab

R0

)β
1 else

4 If πRSD(st) = 1 → remove softer branch and update jet tree,

5 If πRSD(st) = 0 → stop recursion. 3

Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

4

Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

4

Our goal for this project

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

• improve mjet resolution,

• verify model generalization and performance on different processes,

• provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

4

A deep learning approach

Grooming a jet tree with DRL

Input data:

Generate jet events with Monte Carlo. Define a

set of possible states in a five dimensional box:

st = {z,∆ab, φ,m, kt}

Methodology:

Jet grooming is characterized by a policy and a

sequential set of actions/cuts, so:

• Train a reinforcement learning agent which

learns how to decide which action to take.

• Define an environment reward which

motivates the agent to groom efficiently.

5

Choosing an DRL agent

Which agent?

Deep Q-Network → off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]

A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature’15:

6

https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Choosing an DRL agent

Which agent?

Deep Q-Network → off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]
A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature’15:

6

https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

7

Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

7

Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

7

Grooming a jet tree with DRL

DRL requirements:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the mjet resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

In practice we implement the DRL framework using:

• Python ∈ (Keras-RL, TensorFlow, OpenAI Gym, hyperopt)

• Public code available at https://github.com/JetsGame

7

https://github.com/JetsGame

Environment

Defining a jet grooming game:

Game score ⇒ reward function (next slides)

Game environment:

1 Initialize list of all trees for training.

2 Each episode starts by randomly

selecting a tree and adding its root to

a priority queue (ordered in ∆ab).

3 Each step removes first node from

priority queue, then takes action on

removal of soft branch based on st.

4 After action, update kinematics of

parent nodes, add current children to

priority queue, and evaluate reward.

5 Episode terminates once priority queue

is empty.

1

2

3

4

a

b c
d ef

a
b
c

8

Environment

Defining a jet grooming game:

Game score ⇒ reward function (next slides)

Game environment:

1 Initialize list of all trees for training.

2 Each episode starts by randomly

selecting a tree and adding its root to

a priority queue (ordered in ∆ab).

3 Each step removes first node from

priority queue, then takes action on

removal of soft branch based on st.

4 After action, update kinematics of

parent nodes, add current children to

priority queue, and evaluate reward.

5 Episode terminates once priority queue

is empty.

1

2

3

4

a

b c
d ef

a
b
c

8

Reward function

We construct a reward function based on two components:

R(m, at,∆, z) = RM (m) +
1

NSD
RSD(at,∆, z)

so the DQN agent is motivated to:

• improve jet mass resolution ⇒ increase RM ,

• replicate Soft-Drop behavior ⇒ increase RSD.

The mass reward is defined using

a Cauchy distribution:

RM (m) =
Γ2

π (|m−mtarget|2 + Γ2)

70 75 80 85 90
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM(m)
Cauchy
mtarget

9

Reward function

We construct a reward function based on two components:

R(m, at,∆, z) = RM (m) +
1

NSD
RSD(at,∆, z)

so the DQN agent is motivated to:

• improve jet mass resolution ⇒ increase RM ,

• replicate Soft-Drop behavior ⇒ increase RSD.

The mass reward is defined using

a Cauchy distribution:

RM (m) =
Γ2

π (|m−mtarget|2 + Γ2)

70 75 80 85 90
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM(m)
Cauchy
mtarget

9

Reward function

The Soft-Drop reward is defined as

RSD(at,∆, z) = at min
(

1, e−α1 ln(1/∆)+β1 ln(z1/z)
)

+ (1 + at) max
(

0, 1− e−α2 ln(1/∆)+β2 ln(z2/z)
)
,

so the DQN agent is motivated to:

• remove wide-angle soft radiation

• keep hard-collinear emissions

RSD for at = 1

 0 1 2 3 4 5

ln 1/Δ

-12

-10

-8

-6

-4

-2

 0

ln
 z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

α1 = 0.59, β1 = 0.18, ln z1 = -0.92

RSD for at = 0

 0 1 2 3 4 5

ln 1/Δ

-12

-10

-8

-6

-4

-2

 0

ln
 z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

α2 = 0.16, β2 = 0.33, ln z2 = -3.5

10

Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1 add to the training set signal and background samples

⇒ 500k W/QCD jets simulated with Pythia 8

2 at each episode randomly select a signal or background jet.

⇒ adjust RM (m) accordingly to signal/background

In the background case, the mass

reward term is changed to:

Rbkg
M (m) =

m

Γbkg
exp

(
− m

Γbkg

)
20 40 60 80 100

m

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Rbkg
M (m)

11

Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1 add to the training set signal and background samples

⇒ 500k W/QCD jets simulated with Pythia 8

2 at each episode randomly select a signal or background jet.

⇒ adjust RM (m) accordingly to signal/background

In the background case, the mass

reward term is changed to:

Rbkg
M (m) =

m

Γbkg
exp

(
− m

Γbkg

)
20 40 60 80 100

m

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Rbkg
M (m)

11

Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1 add to the training set signal and background samples

⇒ 500k W/QCD jets simulated with Pythia 8

2 at each episode randomly select a signal or background jet.

⇒ adjust RM (m) accordingly to signal/background

In the background case, the mass

reward term is changed to:

Rbkg
M (m) =

m

Γbkg
exp

(
− m

Γbkg

)
20 40 60 80 100

m

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Rbkg
M (m)

11

Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12

Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12

Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12

Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12

Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12

Hyperparameter tune

Free parameters to be determined:

• DQN architecture ⇒ (layers, nodes, activations, ...)

• Reward parameters ⇒ (α1,2, β1,2, z1,2, Γ)

• Learning parameters ⇒ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1 Create a validation set with 50k signal (W) and background (QCD) jets.

2 Derive groomed jet mass distribution from validation set and determine:

• window (wmin, wmax) containing 60% of signal distribution,

• the median wmed in that interval.

3 Define fbkg the fraction of groomed background sample (wmin, wmax):

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20ffkg

12

Hyperparameter tune

Validation loss for 2000 models

13

Results

Optimal GroomRL model for W and top jets

Reward evolution during the training

of the GroomRL for W bosons and

top quarks:

• improvement during the first

300k epochs,

• stability after 300k epochs.

R(m, at,∆, z)

14

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 500

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 700

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 1k

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 2k

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 5k

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 10k

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 50k

QCD W Top

15

DRL training animation

GroomRL-W predictions vs nepochs

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

nepochs = 500k

QCD W Top

15

Optimal GroomRL model for W jets

GroomRL-W tested on QCD, W and Top jet data

16

Optimal GroomRL model for W jets

GroomRL-Top tested on QCD, W and Top jet data

16

Lund jet plane density

Lund jet plane before and after applying GroomRL

Inspecting (ln 1/∆ab, ln kt) ⇒ soft and wide-angle radiation removed.

17

Deliverables and conclusion

Deliverables and conclusions

Deliverables

• GroomRL complete python framework available at:

https://github.com/JetsGame/GroomRL

(contains pre-trained W and top jet DQN models)

• libGroomRL a C++ library for jet grooming models inference:

https://github.com/JetsGame/libGroomRL

• Datasets for top, W and QCD jets at:

https://github.com/JetsGame/data

Conclusions

• Reinforcement learning can be applied to jet grooming successfully.

• Results are quantitatively similar to RSD with moderate

improvement in mass resolution.

• Remarkable model generalization when changing underlying process

without retraining.

18

https://github.com/JetsGame/GroomRL
https://github.com/JetsGame/libGroomRL
https://github.com/JetsGame/data

Deliverables and conclusions

Deliverables

• GroomRL complete python framework available at:

https://github.com/JetsGame/GroomRL

(contains pre-trained W and top jet DQN models)

• libGroomRL a C++ library for jet grooming models inference:

https://github.com/JetsGame/libGroomRL

• Datasets for top, W and QCD jets at:

https://github.com/JetsGame/data

Conclusions

• Reinforcement learning can be applied to jet grooming successfully.

• Results are quantitatively similar to RSD with moderate

improvement in mass resolution.

• Remarkable model generalization when changing underlying process

without retraining.
18

https://github.com/JetsGame/GroomRL
https://github.com/JetsGame/libGroomRL
https://github.com/JetsGame/data

Thank you!

18

	Introduction
	A deep learning approach
	Results
	Deliverables and conclusion

