Accelerating HEP theory with ML models

Stefano Carrazza 22-26 June 2020, MCnet Machine Learning School

Università degli Studi di Milano (UNIMI and INFN Milan)

Acknowledgement: This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement no. 740006.

Why talk about machine learning?

Why talk about machine learning?

because

- it is an essential set of algorithms for building models in science,
- fast development of new tools and algorithms in the past years,
- nowadays it is a requirement in experimental and theoretical physics,
- large interest from the HEP community: IML, conferences, grants.

When apply machine learning in theoretical physics?

When apply machine learning in theoretical physics?

when:

- Ambiguous choices.
- Lack of information.

- Interpolation, sampling.
- Performance acceleration.

Machine learning algorithms

Machine learning algorithms:

• Supervised learning: regression, classification, ...

Machine learning algorithms

Machine learning algorithms:

- Supervised learning: regression, classification, ...
- Unsupervised learning: clustering, dim-reduction, ...

Unsupervised learning

Machine learning algorithms

Machine learning algorithms:

- Supervised learning: regression, classification, ...
- Unsupervised learning: clustering, dim-reduction, ...
- Reinforcement learning: real-time decisions, ...

Reinforcement learning

ML in HEP

Some remarkable examples are:

- Signal-background detection: Decision trees, artificial neural networks, support vector machines.
- Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.

• HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.

Some examples of ML in HEP theory

Supervised learning:

- The structure of the proton at the LHC*
- Theoretical prediction and combination
- Monte Carlo reweighting techniques*
- BSM searches and exclusion limits
- Generative models (GANs)*

Unsupervised learning:

- Clustering and compression
- Density estimation and anomaly detection
- Monte Carlo integration*

Reinforcement learning:

Jet grooming*

ML and Parton Density functions

Parton density functions

The **parton** model was introduced by Feynman in 1969 in order to characterize **hadrons** (*e.g.* protons and neutrons) in QCD processes and interactions in high energy particle collisions.

Partons are quarks and gluons characterized by a probability density functions of its nucleon momentum.

Perturbative calculations

The Feynman Parton Model

- Photon probes the proton by striking a free massless "parton" (quark, gluon) that carries a fraction x of its parent proton.
- Value of x is fixed by final-state kinematics.
- Cross-section proportional to probability $q_i(x)$ of finding parton of species i with momentum-fraction x in target proton.

Perturbative QCD

- The Parton Model is the first order of a perturbative expansion
- PDFs are not calculable: reflect non-perturbative physics of confinement.
- **PDFs** are **essential** for a **realistic computation** of any particle physics **observable**, *σ*, thanks to the factorization theorem

$$\sigma = \hat{\sigma} \otimes f,$$

where the elementary hard cross-section $\hat{\sigma}$ is convoluted with f the PDF.

• Can be proven rigorously using the OPE (Wilson expansion).

Factorization theorem is applied to several processes:

PDFs are extracted by comparing theoretical predictions to real data.

Parton density functions

- PDFs are **necessary** to determine theoretical predictions for **signal/background** of experimental **measurements**.
 - e.g. the Higgs discovery at the LHC:

PDF uncertainties

PDF determination requires a sensible estimate of the **uncertainty**, and not only the central value, so not a well researched topic in ML.

CERN Yellow Report 4 (2016)

PDF uncertainties are a **limiting** factor in the accuracy of theoretical predictions for several processes at LHC.

 \Rightarrow Need of **precise** PDF determination and **uncertainty** estimate.

Parton density functions

Historical examples of the first PDF models:

where

- PDFs are very simple functional forms (polynomials).
- PDFs are constrained by few data points and low order theory.
- No uncertainties are provided.
- No cross-validation methods are implemented.

Parton density functions

Possible improvement: use ML in PDF determination. **NNPDF** (Neural Network PDFs) created **10 years ago**.

Why ML in PDFs determination?

 PDFs are essential for a realistic computation of hadronic particle physics observable, σ, thanks to the factorization theorem, e.g. in pp collider:

$$\underbrace{\sigma_X(s, M_X^2)}_{Y} = \sum_{a, b} \int_{x_{\min}}^1 dx_1 dx_2 \underbrace{\hat{\sigma}_{a, b}(x_1, x_2, s, M_X^2)}_{X} f_a(x_1, M_X^2) f_b(x_2, M_X^2),$$

where the elementary hard cross-section $\hat{\sigma}$ is convoluted with f the PDF.

• $f_i(x_1, M_X^2)$ is the PDF of parton *i* carrying a fraction of momentum *x* at scale $M \Rightarrow$ needs to be learned from data.

Why ML in PDFs determination?

 PDFs are essential for a realistic computation of hadronic particle physics observable, σ, thanks to the factorization theorem, e.g. in pp collider:

$$\underbrace{\sigma_X(s, M_X^2)}_{Y} = \sum_{a, b} \int_{x_{\min}}^1 dx_1 dx_2 \underbrace{\hat{\sigma}_{a, b}(x_1, x_2, s, M_X^2)}_{X} f_a(x_1, M_X^2) f_b(x_2, M_X^2),$$

where the elementary hard cross-section $\hat{\sigma}$ is convoluted with f the PDF.

- $f_i(x_1, M_X^2)$ is the PDF of parton *i* carrying a fraction of momentum *x* at scale $M \Rightarrow$ needs to be learned from data.
- Constraints come in the form of convolutions:

$$X \otimes f \to Y$$

- Experimental data points is ~5000 \rightarrow not a big data problem
- Data from several process and experiments over the past decades
 ⇒ deal with data inconsistencies

The NNPDF (Neural Networks PDF) implements the Monte Carlo approach to the determination of a global PDF fit. We propose to:

- 1. reduce all sources of theoretical bias:
 - no fixed functional form
 - possibility to reproduce non-Gaussian behavior
 - \Rightarrow use Neural Networks instead of polynomials
- 2. provide a sensible estimate of the uncertainty:
 - uncertainties from input experimental data
 - minimization inefficiencies and degenerate minima
 - theoretical uncertainties

 \Rightarrow use MC artificial replicas from data, training with a GA minimizer

3. Test the setup through closure tests

The total number of data points for the default PDF determination is

- 4175 at LO, 4295 at NLO and 4285 at NNLO.
- 7 physical processes from 14 experiments over ~30 years (deal with data inconsistencies)
- few data points at high and low x (deal with extrapolation)
- range of 5 and 7 orders of magnitude per PDF evaluation arguments (x,Q^2)

Can we reduce the PDF input size? Yes, thanks to DGLAP:

$$f_i(x_\alpha, Q^2) = \Gamma(Q, Q_0)_{ij\alpha\beta} f_j(x_\beta, Q_0^2)$$

We remove the Q^2 dependence from PDF determination thanks to the DGLAP evolution operator $\Gamma.$

$$f(x,Q^2) \rightarrow f(x,Q_0^2) := f(x)$$

- Precompute the DGLAP operator for all data points
- Apply the operator to the partonic cross section
- Store the results and perform fast convolutions

In NNPDF theoretical predictions are stored in **APFELgrid** tables:

$$\sigma = \sum_{i,j}^{n_f} \sum_{\alpha,\beta}^{n_x} W_{ij\alpha\beta} f_i(x_\alpha, Q_0^2) f_j(x_\beta, Q_0^2)$$

In comparison to a typical ML problem, a PDF fit

- requires a statistically sound uncertainty estimate
- is a regression problem but complex dependence on PDFs
- must satisfy physical constrains:
 - $f(x) \rightarrow 0$ for $x \rightarrow 1$ (continuity)
 - sum rules:

$$\sum_{i=1}^{n_f} \int_0^1 dx \, x f_i(x) = 1, \qquad \int_0^1 dx \, (u(x) - \bar{u}(x)) = 2$$

$$\int_0^1 dx \left(d(x) - \bar{d}(x) \right) = 1, \quad \int dx \left(q(x) - \bar{q}(x) \right) = 0, \ q = s, b, t$$

PDF parametrizations

• Early models:

$$f_i(x) = A \cdot x^{\alpha} (1-x)^{\beta}$$

- parameters are chosen based on Hessian minimization approach
- Can a simple model provide a reliable uncertainty estimate?
- Can it deal with data inconsistencies?

PDF parametrizations

• Early models:

$$f_i(x) = A \cdot x^{\alpha} (1-x)^{\beta}$$

- parameters are chosen based on Hessian minimization approach
- Can a simple model provide a reliable uncertainty estimate?
- Can it deal with data inconsistencies?
- NNPDF approach:

$$f_i(x, Q_0) = A \cdot x^{\alpha} (1 - x)^{\beta} N N(x)$$

- fully connected MLP (2-5-3-1)
- two sigmoid hidden layers and linear output layer
- x8 independent PDFs \Rightarrow 296 free parameters

• We minimize the cost function:

$$\chi^{2} = \sum_{ij} (D_{i} - O_{i})\sigma_{i,j}^{-1}(D_{j} - O_{j})$$

- D_i is the experimental measurement for point i
- O_i the theoretical prediction for point $i \ (= \bar{\sigma} \otimes f)$
- σ_{ij} is the covariance matrix between points i and j with corrections for normalization uncertainties
- · supplemented by additional penalty terms for positivity observables

Generate artificial **Monte Carlo** data replicas from experimental data. We perform N_{rep} O(1000) fits, sampling pseudodata replicas:

$$D_i^{(r)} \to D_i^{(r)} + \text{chol}(\Sigma)_{i,j} \mathcal{N}(0,1), \quad i, j = 1...N_{\text{dat}}, r = 1...N_{\text{rep}}$$

We obtain $N_{\rm rep}$ PDF replicas. No assumptions at all about the Gaussianity of the errors.

PDF fit example

The procedure delivers a Monte Carlo representation of results:

The central value of observables based on PDFs are obtained with:

$$\langle \mathcal{O}[f] \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{O}[f_k]$$

Optimization algorithm

The current approach is genetic optimization, based on nodal mutation probabilities and more recently the covariance matrix evolution strategy

$$w \to w + \eta \frac{r_{\delta}}{N_{\text{ite}}^{r_{\text{ite}}}}, \quad \eta = 15, \, r_{\delta} \sim U(-1, 1), \, r_{\text{ite}} \sim U(1, 0)$$

At each iteration, generate 80 mutants and select best mutant.

Advantages

- Simple to implement and understand.
- Good dealing with complex analytic behavior.
- Doesn't require evaluating the gradient.

Disadvantages

- May not be close to a global minimum.
- Requires many functions evaluations.
- Needs tuning.

Stopping

We have cross-validation implemented:

- We split data in a training and validation set.
- Training fraction is 50%, different for each replica.
- We perform the GA on the training set for a fixed number of iterations O(30000).
- Stop at the minimum of the validation set, storing the parameters from the replica at that iteration.

Closure tests

- Assume that the underlying PDF is known, generate data, fluctuations around the prediction of the true PDF.
- Perform a fit and compare to underlying PDF.
- Check that the results are consistent.

W and Z production cross-sections at LHC 13 TeV

NNPDF3.1 have smaller PDF uncertainties than NNPDF3.0.

Higgs production cross-sections

Higgs production: WH associate production

Higgs production: ZH associate production

27

Towards deep learning PDFs
Challenges:

- How to increase fit performance speed?
 - faster fits \Rightarrow more fits
- How can we tune/learn the methodology?
 - select the best model for our data/theory

Challenges:

- How to increase fit performance speed?
 - faster fits \Rightarrow more fits
- How can we tune/learn the methodology?
 - select the best model for our data/theory

Solution \Rightarrow move towards deep learning

- in terms software/technology
- in terms of **methodology**

PDF determination is a supervised learning problem thus we need to provide review for the following sectors:

PDF determination is a supervised learning problem thus we need to provide review for the following sectors:

The n3fit model

New features:

- Python/C++ implementation using TensorFlow
- Modular approach \Rightarrow easier and faster development
- Can vary all aspects of the methodology

Performance benefits - time per replica

Benefits

- · Gain on speed and efficiency, less CPU hours for a fit
- Usage of new technologies \rightarrow hardware, libraries
- Usage of gradient descent optimization methods

 \Rightarrow Possibility to learn and tune the methodology

Learning the methodology

How to determine the best methodology?

Perform hyperoptimization scans:

Neural Network	Fit options	
Number of layers (*)	Optimizer (*)	
Size of each layer	Initial learning rate (*)	
Dropout	Maximum number of epochs (*)	
Activation functions (*)	Stopping Patience (*)	
Initialization functions (*)	Positivity multiplier (*)	

- Optimize figure of merit: validation χ^2
- Use bayesian updating (hyperopt)

The overfitting problem

Using validation set χ^2 :

The choice of the right figure of merit is important:

- **NNPDF** wiggles \rightarrow finite size , goes away as $N_{\rm rep}$ grows
- N3PDF wiggles → overfitting, correlations training-validation data!

The overfitting problem

Using validation set χ^2 :

The choice of the right figure of merit is important:

- **NNPDF** wiggles \rightarrow finite size , goes away as $N_{\rm rep}$ grows
- N3PDF wiggles → overfitting, correlations training-validation data!

 \Rightarrow define a proper quality control criterion

Cross-Validation vs hyperoptimization

Define a completely uncorrelated **Test Set**

Optimize on weighted average of validation and test.

Removing overfitting

Using test-validation set χ^2 :

- No overfitting
- Greater stability
- Reduced uncertainties

	DIS only	Global
n3fit (new)	1.10	1.15
nnfit (old)	1.13	1.16

Quality control

Chronological fits

Idea:

- Take a pre-HERA dataset
- **2** Perform hyperoptimization
- ❸ Compare predictions to "future" data

Chronological fits

Idea:

- Take a pre-HERA dataset
- Perform hyperoptimization
- 3 Compare predictions to "future" data

Examples:

⇒ Results within PDF uncertainty!

Defining a proper Test set

How to define a proper Test Set?

- we have a limited dataset with lots of features, $N_{\rm data}\approx 5000$

Defining a proper Test set

How to define a proper Test Set?

- we have a limited dataset with lots of features, $N_{\rm data}\approx 5000$
- \Rightarrow **Potential solution:** use *k*-fold cross-validation.
 - Use k partitions in a rotation estimation for the Test Set
 - hyperoptimize the mean value of the Test Set χ^2

Defining a proper Test set

How to define a proper Test Set?

- we have a limited dataset with lots of features, $N_{\rm data}\approx 5000$
- \Rightarrow **Potential solution:** use *k*-fold cross-validation.
 - Use k partitions in a rotation estimation for the Test Set
 - hyperoptimize the mean value of the Test Set χ^2

 \Rightarrow Compatible with our previous Test Set definition.

Questions?

ML and jet substructure

Boosted jets at the LHC

High energy collisions at the LHC \Rightarrow **boosted objects**:

- particles such as W, Z, H, t, \ldots are produced with $p_T^{\text{jet}} \gg m_{\text{jet}}$,
- hadronic collimated decays often reconstructed into single jets.

Boosted jets at the LHC

 $p_T^{\rm jet} \gg m_{\rm jet}$

High energy collisions at the LHC \Rightarrow **boosted objects**:

- particles such as W, Z, H, t, \ldots are produced with $p_T^{\text{jet}} \gg m_{\text{jet}}$,
- hadronic collimated decays often reconstructed into single jets.

Problem: identify hard structure of a jet from radiation patterns. (Jet from W, Z, H, t or QCD?)

Jet grooming techniques

How to identify hard structure of a jet?

- Look at the mass of the jet.
- Remove distortion due to QCD radiation and pileup.

 $\textbf{Grooming goal} \Rightarrow \text{remove unassociated soft wide-angle radiation}.$

Jet grooming techniques

How to identify hard structure of a jet?

- Look at the mass of the jet.
- Remove distortion due to QCD radiation and pileup.

Grooming goal \Rightarrow remove unassociated soft wide-angle radiation.

Jet grooming algorithms: modified MassDrop Tagger Dasgupta *et al.*, arXiv:1307.0007 Soft Drop (SD) Larkoski *et al.*, arXiv:1402.2657 Recursive Soft Drop (RSD) Dreyer *et al.*, arXiv:1804.03657

① Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b.

$$z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2$$

• Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b. • Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where

$$z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2$$

③ Evaluate policy (β , z_{cut} and R_0 are free parameters):

$$\pi_{\text{RSD}}(s_t) = \begin{cases} 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0}\right)^{\beta} \\ 1 & \text{else} \end{cases}$$

• Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b. • Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where

$$z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2$$

③ Evaluate policy (β , z_{cut} and R_0 are free parameters):

$$\pi_{\text{RSD}}(s_t) = \begin{cases} 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0}\right)^{\beta} \\ 1 & \text{else} \end{cases}$$

() If $\pi_{\rm RSD}(s_t) = 1 \rightarrow$ remove softer branch and update jet tree,

• Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b. • Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where

$$z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2$$

③ Evaluate policy (β , z_{cut} and R_0 are free parameters):

$$\pi_{\text{RSD}}(s_t) = \begin{cases} 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0}\right)^{\beta} \\ 1 & \text{else} \end{cases}$$

④ If $\pi_{RSD}(s_t) = 1 \rightarrow$ remove softer branch and update jet tree, ⑤ If $\pi_{RSD}(s_t) = 0 \rightarrow$ stop recursion.

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

- improve $m_{\rm jet}$ resolution,
- verify model generalization and performance on different processes,
- provide a fast inference model.

Goal of this project?

• Extend RSD jet grooming using Deep Learning techniques.

Why?

- improve m_{jet} resolution,
- verify model generalization and performance on different processes,
- provide a fast inference model.

How?

• using Deep Reinforcement Learning (DRL) techniques.

A deep learning approach

Input data:

Generate jet events with Monte Carlo. Define a set of possible **states** in a five dimensional box:

$$s_t = \{z, \Delta_{ab}, \phi, m, k_t\}$$

Methodology:

Jet grooming is characterized by a policy and a sequential set of actions/cuts, so:

- Train a reinforcement learning agent which learns how to decide which action to take.
- Define an environment reward which motivates the agent to groom efficiently.

Reinforcement learning

Choosing an DRL agent

Which agent?

 $\mathsf{Deep}\ Q\operatorname{\mathsf{-Network}}\to \mathsf{off}\operatorname{\mathsf{-policy}} \text{ and discrete action space}.$

A deep neural network maximizes the action-value quality function:

$$Q^{*}(s,a) = \max_{\pi} \mathbb{E} \left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots | s_{t} = s, a_{t} = a, \pi \right]$$

Choosing an DRL agent

Which agent?

 $\mathsf{Deep}\ Q\operatorname{-Network}\to \mathsf{off}\operatorname{-policy}\ \mathsf{and}\ \mathsf{discrete}\ \mathsf{action}\ \mathsf{space}.$

A deep neural network maximizes the action-value quality function:

$$Q^{*}(s,a) = \max_{\pi} \mathbb{E} \left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots | s_{t} = s, a_{t} = a, \pi \right]$$

A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature'15:

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the $m_{\rm jet}$ resolution into a game score

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the $m_{\rm jet}$ resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

• Environment definition?

build a simulation setup where the DQN is trained and validated

• Reward definition?

translate the $m_{\rm jet}$ resolution into a game score

• Hyperparameter tune?

obtain the best model for our specific problem

In practice we implement the DRL framework using:

- Python \in (Keras-RL, TensorFlow, OpenAI Gym, hyperopt)
- Public code available at https://github.com/JetsGame

Environment

Defining a jet grooming game:

Game score \Rightarrow reward function (next slides)

Environment

Defining a jet grooming game:

Game score \Rightarrow reward function (next slides)

Game environment:

- 1 Initialize list of all trees for training.
- **2** Each episode starts by randomly selecting a tree and adding its root to a priority queue (ordered in Δ_{ab}).
- Each step removes first node from priority queue, then takes action on removal of soft branch based on s_t.
- After action, update kinematics of parent nodes, add current children to priority queue, and evaluate reward.
- Episode terminates once priority queue is empty.

We construct a reward function based on two components:

$$R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{\mathrm{SD}}} R_{\mathrm{SD}}(a_t, \Delta, z)$$

so the DQN agent is motivated to:

- improve jet mass resolution \Rightarrow increase R_M ,
- replicate Soft-Drop behavior \Rightarrow increase R_{SD} .

We construct a reward function based on two components:

$$R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{\text{SD}}} R_{\text{SD}}(a_t, \Delta, z)$$

so the DQN agent is motivated to:

- improve jet mass resolution \Rightarrow increase R_M ,
- replicate Soft-Drop behavior \Rightarrow increase R_{SD} .

The mass reward is defined using
a Cauchy distribution:
$$R_M(m) = \frac{\Gamma^2}{\pi \left(|m - m_{\text{target}}|^2 + \Gamma^2\right)}$$

Reward function

The Soft-Drop reward is defined as

$$\begin{aligned} R_{\rm SD}(a_t, \Delta, z) &= a_t \min\left(1, e^{-\alpha_1 \ln(1/\Delta) + \beta_1 \ln(z_1/z)}\right) \\ &+ (1+a_t) \max\left(0, 1 - e^{-\alpha_2 \ln(1/\Delta) + \beta_2 \ln(z_2/z)}\right), \end{aligned}$$

so the DQN agent is motivated to:

- remove wide-angle soft radiation
- keep hard-collinear emissions

What about background events?

Potential mass bias for background events \Rightarrow use multi-level training:

• add to the training set signal and background samples \Rightarrow 500k W/QCD jets simulated with Pythia 8

What about background events?

Potential mass bias for background events \Rightarrow use multi-level training:

- add to the training set signal and background samples \Rightarrow 500k W/QCD jets simulated with Pythia 8
- (2) at each episode randomly select a signal or background jet. \Rightarrow adjust $R_M(m)$ accordingly to signal/background

What about background events?

Potential mass bias for background events \Rightarrow use multi-level training:

• add to the training set signal and background samples \Rightarrow 500k W/QCD jets simulated with Pythia 8

(2) at each episode randomly select a signal or background jet. \Rightarrow adjust $R_M(m)$ accordingly to signal/background

In the background case, the mass reward term is changed to:

$$R_M^{\rm bkg}(m) = \frac{m}{\Gamma_{\rm bkg}} \exp\left(-\frac{m}{\Gamma_{\rm bkg}}\right)$$

Free parameters to be determined:

- DQN architecture \Rightarrow
- Reward parameters \Rightarrow
- Learning parameters \Rightarrow

(layers, nodes, activations, ...) $(\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)$ (optimizer, learning rate, ...)

Free parameters to be determined:

- DQN architecture ⇒ (layers, nodes, activations, ...)
- Reward parameters \Rightarrow
- Learning parameters \Rightarrow

($\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma$) (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization \Rightarrow hyperopt.

① Create a validation set with 50k signal (W) and background (QCD) jets.

Free parameters to be determined:

- DQN architecture ⇒ (layers, nodes, activations, ...)
- Reward parameters \Rightarrow
- Learning parameters ⇒

(layers, nodes, activations, ...) $(\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)$ (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization \Rightarrow hyperopt.

- \bullet Create a validation set with 50k signal (W) and background (QCD) jets.
- 2 Derive groomed jet mass distribution from validation set and determine:

Free parameters to be determined:

- DQN architecture ⇒ (layers, nodes, activations, ...)
- Reward parameters \Rightarrow
- Learning parameters ⇒

($\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma$) (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization \Rightarrow hyperopt.

- \bullet Create a validation set with 50k signal (W) and background (QCD) jets.
- 2 Derive groomed jet mass distribution from validation set and determine:
 - window (w_{\min}, w_{\max}) containing 60% of signal distribution,

Free parameters to be determined:

- DQN architecture ⇒ (layers, nodes, activations, ...)
- Reward parameters \Rightarrow
- Learning parameters \Rightarrow

($\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma$) (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization \Rightarrow hyperopt.

- **①** Create a validation set with 50k signal (W) and background (QCD) jets.
- 2 Derive groomed jet mass distribution from validation set and determine:
 - window (w_{\min}, w_{\max}) containing 60% of signal distribution,
 - the median w_{med} in that interval.

Free parameters to be determined:

- DQN architecture ⇒ (layers, nodes, activations, ...)
- Reward parameters \Rightarrow
- Learning parameters \Rightarrow

($\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma$) (optimizer, learning rate, ...)

How?

Use distributed asynchronous hyperparameter optimization \Rightarrow hyperopt.

- **①** Create a validation set with 50k signal (W) and background (QCD) jets.
- 2 Derive groomed jet mass distribution from validation set and determine:
 - window (w_{\min}, w_{\max}) containing 60% of signal distribution,
 - the median w_{med} in that interval.

③ Define f_{bkg} the fraction of groomed background sample (w_{\min}, w_{\max}) :

$$\mathcal{L} = \frac{1}{5}|w_{\text{max}} - w_{\text{min}}| + |m_{\text{target}} - w_{\text{med}}| + 20f_{\text{fkg}}$$

Results

Reward evolution during the training of the GroomRL for W bosons and top quarks:

- improvement during the first 300k epochs,
- stability after 300k epochs.

Parameters	Value
m _{target}	$80.385~{\rm GeV}$ or $173.2~{\rm GeV}$
s_t dimension	5
reward	Cauchy
Г	2 GeV
$(lpha_1,eta_1,\ln z_1)$	(0.59, 0.18, -0.92)
$(lpha_2,eta_2,\ln z_2)$	(0.65, 0.33, -3.53)
$1/N_{\rm SD}$	0.15
multi-level training	Yes
$\Gamma_{\rm bkg}$	$8 { m GeV}$
$1/N_{\rm bkg}$	1.8 or 1.0
$p_{ m bkg}$	0.48 or 0.2
learning rate	10^{-4}
Dueling NN	Yes
Double DQN	No
Policy	Boltzmann
$N_{\rm epochs}^{\rm max}$	500K
Architecture	Dense
Dropout	0.05
Layers	10
Nodes	100
Optimizer	Adam

TABLE I: Final parameters for GroomRL, with the two values of $m_{\rm target}$ corresponding to the W and top mass.

Optimal GroomRL model for W jets

GroomRL-W tested on QCD, W and Top jet data

TABLE II: Size of the window containing 60% of the W mass spectrum, and median value on that interval.

Optimal GroomRL model for W jets

GroomRL-Top tested on QCD, W and Top jet data

TABLE II: Size of the window containing 60% of the W mass spectrum, and median value on that interval.

Lund jet plane density

Lund jet plane before and after applying GroomRL

Inspecting $(\ln 1/\Delta_{ab}, \ln k_t) \Rightarrow$ soft and wide-angle radiation removed.

Towards transfer learning in HEP

Some ideas towards the "transfer learning" concept:

① Generalize models trained on specific data to new datasets.

Some ideas towards the "transfer learning" concept:

① Generalize models trained on specific data to new datasets.

• e.g. jet grooming

Some ideas towards the "transfer learning" concept:

• Generalize models trained on specific data to new datasets.

- e.g. jet grooming
- **2** Build models specialized on the conversion between datasets.
Some ideas towards the "transfer learning" concept:

() Generalize models trained on specific data to new datasets.

- e.g. jet grooming
- **2** Build models specialized on the conversion between datasets.
 - e.g. CycleGANs

Some ideas towards the "transfer learning" concept:

• Generalize models trained on specific data to new datasets.

- e.g. jet grooming
- **2** Build models specialized on the conversion between datasets.
 - e.g. CycleGANs
- Models that propagate higher-order correction to lower order.

Some ideas towards the "transfer learning" concept:

• Generalize models trained on specific data to new datasets.

- e.g. jet grooming
- **2** Build models specialized on the conversion between datasets.
 - e.g. CycleGANs
- S Models that propagate higher-order correction to lower order.
 - e.g. reweighting

[arXiv:1909.01359]

CycleGAN learns unpaired image-to-image mapping functions.

Reinterpreting events with CycleGANs

Use CycleGAN to transform between two different jet datasets, e.g.

- parton-level simulation \leftrightarrow detector-level simulation
- $\bullet \ W \text{ jet } \leftrightarrow \mathsf{QCD} \text{ jet }$

Transformed events in good agreement with true sample.

Reinterpreting events with CycleGANs

Use CycleGAN to transform between two different jet datasets, e.g.

- $\bullet\,$ parton-level simulation $\leftrightarrow\,$ detector-level simulation
- $\bullet \ W \text{ jet } \leftrightarrow \mathsf{QCD} \text{ jet }$

Transformed events in good agreement with true sample.

Use neural nets to adjust unknown higher-order resummation terms.

Use NLO-matched single-top + jet (STJ) from the POWHEG-MINLO formalism:

$$d\sigma_{\mathcal{M}} = \Delta(y_{12}) \left[d\sigma_{\rm NLO}^{\rm STJ} - \Delta(y_{12}) |_{\bar{\alpha}_S} d\sigma_{\rm LO}^{\rm STJ} \right]$$

Use neural nets to adjust unknown higher-order resummation terms.

Use NLO-matched single-top + jet (STJ) from the POWHEG-MINLO formalism:

$$d\sigma_{\mathcal{M}} = \Delta(y_{12}) \left[d\sigma_{\rm NLO}^{\rm STJ} - \Delta(y_{12}) |_{\bar{\alpha}_S} d\sigma_{\rm LO}^{\rm STJ} \right]$$

Advantage: enhance fixed-order calculation with matched NLL Sudakov form factor.

Use neural nets to adjust unknown higher-order resummation terms.

Use NLO-matched single-top + jet (STJ) from the POWHEG-MINLO formalism:

$$d\sigma_{\mathcal{M}} = \Delta(y_{12}) \left[d\sigma_{\rm NLO}^{\rm STJ} - \Delta(y_{12}) |_{\bar{\alpha}_S} d\sigma_{\rm LO}^{\rm STJ} \right]$$

Advantage: enhance fixed-order calculation with matched NLL Sudakov form factor.

Issue: this spoils the NLO accuracy of ST (single-top observables).

Use neural nets to adjust unknown higher-order resummation terms.

Use NLO-matched single-top + jet (STJ) from the POWHEG-MINLO formalism:

$$d\sigma_{\mathcal{M}} = \Delta(y_{12}) \left[d\sigma_{\rm NLO}^{\rm STJ} - \Delta(y_{12}) |_{\bar{\alpha}_S} d\sigma_{\rm LO}^{\rm STJ} \right]$$

Advantage: enhance fixed-order calculation with matched NLL Sudakov form factor.

Issue: this spoils the NLO accuracy of ST (single-top observables).

Solution: fix at NNLL, fit A_2 with a Neural Network-based tuning of degrees of freedom, and test universality at 8 TeV.

$$\ln \delta \Delta(y_{12}) = -2 \int_{y_{12}}^{Q_{bt}^2} \frac{dq^2}{q^2} \bar{\alpha}_S^2 \mathcal{A}_2(\Phi) \ln \frac{Q_{bt}^2}{q^2}$$

MINLO *t*-channel single-top plus jet

Accelerating MC with ML tools

VEGAS integration algorithm and tensorflow

ML frameworks such as TensorFlow can help theoretical computations.

- Automatic parallelization and code optimization.
- Distributed computation across multiple hardware accelerators.

VEGAS integration algorithm and tensorflow

ML frameworks such as **TensorFlow** can help theoretical computations.

- Automatic parallelization and code optimization.
- Distributed computation across multiple hardware accelerators.

Example: VegasFlow [arXiv:1909.01359]

Monte Carlo integration using Vegas algorithm and TensorFlow code.

Thanks for your attention!