
VegasFlow: accelerating Monte Carlo simulation across
platforms using TensorFlow

Juan M Cruz-Martinez
in collaboration with: S. Carrazza

comp-ph/2002.12921 10.1016/j.cpc.2020.107376

PDFN 3
Machine Learning • PDFs • QCD

40th International Conference on High Energy Physics
Prague - 2020

This project has received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 740006.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 1 / 16

https://arxiv.org/abs/2002.12921
https://www.sciencedirect.com/science/article/pii/S0010465520301624

Outline

1 Motivation
Introduction, hep-ph
High Energy (consuming) Physics (phenomenology)
How can we do better

2 VegasFlow
What is VegasFlow?
How to use the code
Example of results

3 Conclusions

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 2 / 16

Motivation Introduction, hep-ph

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to m.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 3 / 16

Motivation Introduction, hep-ph

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

proton-proton → jets

The integrals are usually be computed
numerically using CPU-expensive Monte
Carlo methods.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 4 / 16

Motivation High Energy (consuming) Physics (phenomenology)

ATLAS projected CPU usage

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
ar

s]
⋅

A
nn

ua
l C

P
U

 C
on

su
m

pt
io

n
 [M

H
S

06

0

10

20

30

40

50

60

70

80
=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - CPU

Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 5 / 16

Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Monte Carlo integration of a
n-dimensional gaussian function

I =

∫
dx1 . . . dxn e

x2
1+···+x2

n

GPU computation can increase the performance of the integrator by more
than an order of magnitude.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 6 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance phenomenological calculations still rely
exclusively on CPU. With only a few libraries providing GPU interfaces
such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 7 / 16

Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in, as
there is a complete toolset for
producing results.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 8 / 16

Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in, as
there is a complete toolset for
producing results.

Cuba

RAMBO

fastjet

matrix element

LHAPDF

Root

result!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 8 / 16

Motivation How can we do better

Lack of Tools

Running on a GPU:

For CPU computation you can focus
in the result you are interested in, as
there is a complete toolset for
producing results.

There is still no such complete
toolset for GPU computation which
means one has to write code from
scratch

?????

?????

?????

matrix element

?????

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 8 / 16

VegasFlow What is VegasFlow?

A new toolset: VegasFlow and PDFflow

We present a Monte Carlo integration library focused on speed, efficiency
for the computer and the developer.

X Python and TensorFlow
based engine

X Choose your language:
Python, Cuda, C++

X GPU and CPU compatible
out of the box

X Seamlessly compatible with
NN-based integrators

What about PDFFlow?

Together with VegasFlow we are also working on a implementation of PDF
interpolation to run on GPU also based on python+TensorFlow.
To know more, please see the talk tomorrow at 8 AM (CEST) by Marco
Rossi.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 9 / 16

VegasFlow What is VegasFlow?

A new toolset: VegasFlow and PDFflow

We present a Monte Carlo integration library focused on speed, efficiency
for the computer and the developer.

X Python and TensorFlow
based engine

X Choose your language:
Python, Cuda, C++

X GPU and CPU compatible
out of the box

X Seamlessly compatible with
NN-based integrators

What about PDFFlow?

Together with VegasFlow we are also working on a implementation of PDF
interpolation to run on GPU also based on python+TensorFlow.
To know more, please see the talk tomorrow at 8 AM (CEST) by Marco
Rossi.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 9 / 16

VegasFlow What is VegasFlow?

A new toolset: VegasFlow and PDFflow

We present a Monte Carlo integration library focused on speed, efficiency
for the computer and the developer.

X Python and TensorFlow
based engine

X Choose your language:
Python, Cuda, C++

X GPU and CPU compatible
out of the box

X Seamlessly compatible with
NN-based integrators

What about PDFFlow?

Together with VegasFlow we are also working on a implementation of PDF
interpolation to run on GPU also based on python+TensorFlow.
To know more, please see the talk tomorrow at 8 AM (CEST) by Marco
Rossi.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 9 / 16

VegasFlow What is VegasFlow?

A new toolset: VegasFlow and PDFflow

We present a Monte Carlo integration library focused on speed, efficiency
for the computer and the developer.

X Python and TensorFlow
based engine

X Choose your language:
Python, Cuda, C++

X GPU and CPU compatible
out of the box

X Seamlessly compatible with
NN-based integrators

What about PDFFlow?

Together with VegasFlow we are also working on a implementation of PDF
interpolation to run on GPU also based on python+TensorFlow.
To know more, please see the talk tomorrow at 8 AM (CEST) by Marco
Rossi.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 9 / 16

VegasFlow What is VegasFlow?

A new tool: VegasFlow

Framework for evaluation of high dimensional integrals based on MC algorithms.

Version 1.0 includes:

X Plain Monte Carlo: to be used
as a template for writing more
complicated algorithms.

X Vegas: importance sampling
algorithm by G. Peter Lepage.

Source code available at:
github.com/N3PDF/VegasFlow

VegasFlow

?????

?????

matrix element

PDFFlow

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 10 / 16

https://github.com/N3PDF/VegasFlow

VegasFlow How to use the code

VegasFlow: open source for HEP

Where to obtain the code

VegasFlow is opensource and available at github.com:N3PDF/VegasFlow

How to install

You can install it using either pip or conda:

~$ pip install VegasFlow

~$ conda install VegasFlow

Documentation

The documentation for VegasFlow is accessible at: VegasFlow.rtfd.io

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 11 / 16

https://github.com/N3PDF/VegasFlow
https://VegasFlow.readthedocs.io

VegasFlow How to use the code

Run a simple integrand

>>> @tf.function

>>> def complicated_integrand(xarr, **kwargs):

>>> return tf.reduce_sum(xarr, axis=1)

>>> from VegasFlow.vflow import VegasFlow

Instantiate the integrator

limit the number of events to be computed at once

(hardware dependent!)

>>> n_dim = 10

>>> n_events = int(1e6)

>>> integrator = VegasFlow(n_dim, n_events, events_limit = int(1e5))

Register the integrand

>>> integrator.compile(complicated_integrand)

Run a number of iterations

>>> res = integrator.run_integration(n_iter = 5, log_time = True)

Result for iteration 0: 5.0000 +/- 0.0009(took 0.47029 s)

Result for iteration 1: 5.0006 +/- 0.0003(took 0.32042 s)
.
.
.

Final results: 4.99995 +/- 8.95579e-05

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 12 / 16

VegasFlow Example of results

VegasFlow Vs Madgraph LO

For Leading Order calculations the advantages are immediately visible

Plain Madgraph Vs C++-like
implementation

0 10 20 30 40 50
Time (minutes)

MG5_aMC@NLO
36 active CPU cores

VegasFlow
Titan V

VegasFlow
RTX 2080 Ti

VegasFlow
Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.014 pb
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

- We have ported an old fortran
code, no GPU-specific
optimization.

- Phase Space, spinors, cuts... all
done ‘the old way”

i.e., there’s room for improvement by developing GPU-specific code!
What about NLO?

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 13 / 16

VegasFlow Example of results

VegasFlow for NLO calculations

Still can’t achieve an order of magnitude for NLO. But it is already better!

- Same caveats as before → no
GPU-specific optimization

- Proof-of-concept, not a full
parton-level MC simulator.

NNLOJET+LHAPDF vs
VegasFlow+PDFFlow

0 5 10 15 20
Time (minutes)

NNLOJET
36 active CPU cores

VegasFlow
RTX 2080 Ti

VegasFlow
Titan V

VegasFlow
Titan V + RTX 2080 Ti

Pre
lim

ina
ry

NLO VFH Higgs @ 13 TeV, target uncertainty < 1%
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 14 / 16

Conclusions The end

Summary

GPU computation is increasingly gaining traction in many areas of
science.

GPU is a technology not heavily used in particle physics
phenomenology.

→ Despite being competitive with CPU for MC simulations.

X VegasFlow provides a framework to run in both GPU and CPU.

X Can immediately apply existing expertise.

X Easily implementation of new-generation NN-based integrators.

Going forward:

X More GPU-ready tools in the works.

X Working with other groups to interface VegasFlow with existing tools.

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 15 / 16

Conclusions The end

Thanks!

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 16 / 16

Backup

Benchmark on different GPUs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ratio to time of RTX 2080

Titan V
RTX 2080 Ti

Titan V and RTX 2080 Ti
V100 PCIe 32GB-1
V100 PCIe 32GB-2

two of V100 PCIe 32GB
P100

RTX 2080
Tesla V100 16GB

2x Tesla V100 16GB
3x Tesla V100 16GB
4x Tesla V100 16GB
5x Tesla V100 16GB
6x Tesla V100 16GB
7x Tesla V100 16GB
8x Tesla V100 16GB

Radeon VII

GPU performance

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 17 / 16

Backup

Benchmark on different CPUs

0 5 10 15 20 25 30 35
Active CPU cores

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
18 cores, 125GB RAM

2 4 6 8 10 12
Active CPU cores

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
6 cores, 19GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
4 cores, 15GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
4 cores, 15GB RAM

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Active CPU cores

0

2

4

6
Ti

m
e

(s
ec

on
ds

)

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz
2 cores, 7.5GB RAM

0 10 20 30 40 50 60
Active CPU cores

0

2

4

6

Ti
m

e
(s

ec
on

ds
)

Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
64 cores, 480GB RAM

0 10 20 30 40 50 60
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

AMD Ryzen Threadripper 2990WX 32-Core
32 cores, 125GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
4 cores, 15.4GB RAM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
18 cores, 125GB RAM

Juan Cruz-Martinez (University of Milan) VegasFlow ICHEP 2020 18 / 16

	Motivation
	Introduction, hep-ph
	High Energy (consuming) Physics (phenomenology)
	How can we do better

	VegasFlow
	What is VegasFlow?
	How to use the code
	Example of results

	Conclusions
	The end

	Backup

