Treatment of EW effects in PDF fits and in experimental data arXiv:2008.12789

Christopher Schwan

with: Stefano Carrazza, Emanuele R. Nocera, Marco Zaro

LHC EW WG General Meeting, 8 October 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

QCD-only PDF fits

- $\bullet\,$ all global PDF fits use mainly QCD corrections as input for their PDF fits and
- EW corrections are neglected,
- except for FSR corrections which are subtracted from data (where needed)

but...

- Data/PDFs are becoming more precise, and theory has to become more precise as well!
- Look at the effects of NLO EW corrections in PDF fits
- \rightarrow EW corrections become large in large-mass regions of phase space, not described by FSR

What exactly is neglected?

Steps in this direction; inclusion of the photon PDF:

- [NNPDF Collaboration] NNPDF 3.1 + LUXQED [A. Manohar, P. Nason, G. P. Salam, G. Zanderighi], [A. Manohar, et al.]
- [MMHT Collaboration] MMHT2015qed

But fully EW corrections in the processes are missing:

- Drell-Yan: $\mathcal{O}(\alpha^3)$ at NLO, mixed QCD-EW $\mathcal{O}(\alpha_s \alpha^3)$
- Transverse momentum of the Z: $\mathcal{O}(\alpha_{\rm s}\alpha^3)$ at NLO
- $\bullet\,$ Top-pair production: ${\cal O}(\alpha_s^2\alpha)$ and two more LO/two more NLO

Drell–Yan @ NLO $\mathcal{O}(\alpha^3)$

Towards a global QCD-EW PDF fit: Problems to be solved

ssues

- OPDF-independent QCD-EW predictions (done, see next slides)
- **②** Understand double-counting problems; use the right data (WIP, this talk: DY)
- Perform a (consistent¹) fit!

 $^{^{1}\}text{Consistent fit:}$ All processes with NLO EW + NNLO QCD treated equally

Theoretical predictions	
•0	

Issue #1: PDF-independent predictions with PINEAPPL

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{a,b} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 f_a(x_1) f_b(x_2) \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\mathcal{O}}(x_1, x_2, \mathcal{O})$$

- PDF-independent predictions $\sigma_{ab}(x_1, x_2, \mathcal{O})$ are needed for PDF fits
- typically used for QCD corrections: APPLgrid [T. Carli et al.], fastNLO [T. Kluge, K. Rabbertz, M. Wobisch]
- \bullet both do not support EW corrections, therefore: $\operatorname{PINEAPPL}$
- much faster than APPLgrid, integrated with mg5_aMC@NLO v3 [R. Frederix et al.]
- possible: integration with SHERPA [E. Bothmann et al.]/MCgrid, resummation, photon-shower, . . .
- all grids that we will generate will be published shortly: https://n3pdf.github.io/pineappl

PineAPPL example: transverse momentum of the Z boson

Significantly large EW corrections:

- second plot: large EW corrections, larger than data uncertainty
- coloured bands are PDF uncertainty
- first plot: grid interpolation error
- third plot: 9-point scale uncertainty
- fourth plot: MC integration uncertainty

Issue #2: Experimental data and double-counting problems

- We consider the Drell–Yan datasets for NNPDF 4.0^2 for this exercise
- 23 datasets from CDF (1), D0 (3), ATLAS (7), CMS (5), and LHCb (7)
- 9 out of the 23 (39%) seem unusable:

Experiment	\sqrt{s}	Description	Reference
CDF	1.96 TeV	Z rapidity distribution	arXiv:0908.3914
D0	1.96 TeV	Z rapidity distribution	hep-ex/0702025
D0	1.96 TeV	W electron asymmetry	arXiv:1412.2862
D0	1.96 TeV	W muon asymmetry	arXiv:1309.2591
ATLAS	7 TeV	2010 rapidity distribution	arXiv:1109.5141
ATLAS	7 TeV	high-mass DY	arXiv:1305.4192
ATLAS	7 TeV	low-mass DY	arXiv:1404.1212
ATLAS	8 TeV	W,Z 2011 rapidity distribution central region	arXiv:1612.03016
ATLAS	8 TeV	W,Z 2011 rapidity distribution forward region	arXiv:1612.03016
ATLAS	8 TeV	high-mass DY 2D differential distributions	arXiv:1606.01736
ATLAS	8 TeV	DY 3D differential cross sections	arXiv:1710.05167
CMS	7 TeV	W electron asymmetry	arXiv:1206.2598
CMS	7 TeV	W muon asymmetry	arXiv:1312.6283
CMS	7 TeV	double-differential NC DY cross sections	arXiv:1310.7291
CMS	8 TeV	double-differential NC DY cross sections	arXiv:1412.1115
CMS	8 TeV	differential distributions W muon distribution and asymmetry	arXiv:1603.01803
LHCb	7 TeV	muon W and Z rapidity distribution	arXiv:1505.07024
LHCb	7 TeV	dielectron Z rapidity distribution	arXiv:1212.4620
LHCb	8 TeV	dielectron Z rapidity distribution	arXiv:1503.00963
LHCb	8 TeV	muon W and Z rapidity distribution	arXiv:1511.08039
LHCb	8 TeV	electron W rapidity distribution	arXiv:1608.01484
LHCb	13 TeV	dimuon Z rapidity distribution	arXiv:1607.06495
LHCb	13 TeV	dielectron Z rapidity distribution	arXiv:1607.06495

²See also http://nnpdf.mi.infn.it/wp-content/uploads/2020/03/SForte_CERN_022020.pdf

Problem 1: No post-FSR/dressed-lepton data

- pre-FSR data/Born leptons: observables of leptons "before they radiate", calculated using photon-shower inversion (PHOTOS), from
- post-FSR data/dressed leptons: observables using leptons with photon recombined around $\Delta R_{f\gamma}$, typically $\Delta R_{f\gamma} = 0.1$
- pre-FSR data for comparisons with QCD-only theory predictions
- post-FSR data for comparisons with EW corrections

 \rightarrow absence of post-FSR data big problem for our exercise: otherwise significant double-counting problem

 all datasets previously marked with 'red' suffer from this: no post-FSR dataset or dressing factors:

$$\mathcal{C}_{\mathsf{dress}} = rac{\mathrm{d}\sigma_{\mathsf{post-FSR}}/\mathrm{d}\mathcal{O}}{\mathrm{d}\sigma_{\mathsf{pre-FSR}}/\mathrm{d}\mathcal{O}}$$

 $\rightarrow\,$ can we get them somewhere nevertheless?

	Experimental data	
	0000	

Problem 2: Subtraction of photon-photon contribution

- For ATLAS and CMS (LHCb?) it seems to be standard procedure to subtract double-photon induced contributions
- Why?
- How can this be undone?
- This is a problem: proton contains photons, should be counted towards signal!
- Size of the LO contribution can become significant in large-invariant-mass bins (3%) depending on the used PDF—up to twice as large for pre-LUXQED photon PDFs

		Experimental data	
000	00	0000	0

Problem 3: Miscellaneous

- Photon recombination radius $\Delta R_{f\gamma}$ unknown (LHCb)
- No error for dressing factors Cdress
- not covered/unknown: DIS and fixed target datasets, jets, single-tops, ...

Conclusion and wish list for data

- New tool for storage of PDF-independent arbitrary FO calculations: PINEAPPL, https://github.com/N3PDF/pineappl, arXiv:2008.12789
- Useful for very quick calculations of PDF-uncertainties

Please . . .

- publish your data with post-FSR data/dressed leptons (and pre-FSR data/Born leptons)
- do not subtract photon-photon initial states (or publish procedure to undo it)
- state explicitly the photon recombination procedure

Gluon–Gluon-Grid: $\mathcal{O}(\alpha_s^2 \alpha)$ for $gg \to t\bar{t}$ @ 8 TeV

• correction for ixs roughly -0.5%

• color:
$$\delta = \mathcal{O}(\alpha_{\rm s}^2 \alpha) / \mathcal{O}(\alpha_{\rm s}^2)$$

•
$$y_{a/b}(x) = -\ln x_{a/b} + 5(1 - x_{a/b}),$$

 $y(1) = 0$

- no interpolation in y_a , y_b , or Q^2
- lower left corner \rightarrow production threshold
- at threshold: Coulomb singularity
- $y_a \leftrightarrow y_b$ symmetry: initial-state symmetry of $gg \rightarrow t\bar{t}$
- negative correction for larger

CMS DY 2D (I)

CMS DY 2D (II)

CMS DY 2D (III)

