
VegasFlow and PDFFlow: accelerating Monte Carlo
simulation across platforms

Juan M Cruz-Martinez
in collaboration with: S. Carrazza, M. Rossi

PDFFlow: hep-ph/2009.06635 VegasFlow: 10.1016/j.cpc.2020.107376

PDFN 3
Machine Learning • PDFs • QCD

ATLAS Physics Modelling Group subgroup for Generator Infrastructure and Tools
October 2020

This project has received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 740006.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 1 / 11

https://arxiv.org/abs/2009.06635
https://www.sciencedirect.com/science/article/pii/S0010465520301624

Outline

1 Motivation
Introduction, hep-ph
How can we do better

2 VegasFlow
What is VegasFlow?
Where to find the code

3 Conclusions

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 2 / 11

Motivation Introduction, hep-ph

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to m.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 3 / 11

Motivation Introduction, hep-ph

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The integrals are usually computed
numerically using CPU-expensive Monte
Carlo generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 4 / 11

Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Monte Carlo integration of a
n-dimensional gaussian function

I =

∫
dx1 . . . dxn e

x2
1 +···+x2

n

GPU computation can increase the performance of the integrator by more
than an order of magnitude.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 5 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 6 / 11

Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 7 / 11

Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

Cuba

RAMBO

fastjet

matrix element

LHAPDF

Root

result!

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 7 / 11

Motivation How can we do better

Lack of Tools

Running on a GPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

There is still no such complete
toolset for GPU computation which
means one has to write code from
scratch

?????

?????

?????

matrix element

?????

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 7 / 11

VegasFlow What is VegasFlow?

A new toolset: VegasFlow and PDFflow

The pdf and vegas-flow libraries
focus on speed and efficiency for
both the computer and the developer

- Python and TF based engine

- Compatible with other
languages: cuda, c++

- Seamless CPU and GPU
computation out of the box

- Easily interfaceable with
NN-based integrators

Source code available at:
github.com/N3PDF/VegasFlow

github.com/N3PDF/PDFFlow

VegasFlow

?????

?????

matrix element

PDFFlow

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 8 / 11

https://github.com/N3PDF/vegasflow
https://github.com/N3PDF/pdfflow

VegasFlow Where to find the code

Open source for HEP

Where to obtain the code

Both VegasFlow and PDFFlow are open source and can be found at the
N3PDF organization repository github.com:N3PDF

How to install

Can be installed from the repository or directly with pip:

~$ pip install vegasflow pdfflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io

PDFFlow: pdfflow.rtfd.io

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 9 / 11

https://github.com/N3PDF
https://VegasFlow.readthedocs.io
https://pdfflow.readthedocs.io

Conclusions The end

Summary

GPU computation is increasingly gaining traction in many areas of
science but it’s not heavily used in particle physics phenomenology.

→ Despite being competitive with CPU for MC simulations.

X VegasFlow and PDFFlow provide a framework to run in any device.

X Easy implementation of new-generation or NN-based integration
algorithms (already working on that!)

Where to obtain the code

VegasFlow and PDFFlow are opensource and available at
github.com:N3PDF/pdfflow and github.com:N3PDF/VegasFlow

Next:

X And now Marco Rossi will tell us about PDFFlow and will show some
specific examples.

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 10 / 11

https://github.com/N3PDF/PDFFlow
https://github.com/N3PDF/VegasFlow

Conclusions The end

Thanks!

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 11 / 11

Backup

Benchmark on different GPUs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ratio to time of RTX 2080

Titan V
RTX 2080 Ti

Titan V and RTX 2080 Ti
V100 PCIe 32GB-1
V100 PCIe 32GB-2

two of V100 PCIe 32GB
P100

RTX 2080
Tesla V100 16GB

2x Tesla V100 16GB
3x Tesla V100 16GB
4x Tesla V100 16GB
5x Tesla V100 16GB
6x Tesla V100 16GB
7x Tesla V100 16GB
8x Tesla V100 16GB

Radeon VII

GPU performance

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 12 / 11

Backup

Benchmark on different CPUs

0 5 10 15 20 25 30 35
Active CPU cores

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
18 cores, 125GB RAM

2 4 6 8 10 12
Active CPU cores

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
6 cores, 19GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
4 cores, 15GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
4 cores, 15GB RAM

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Active CPU cores

0

2

4

6
Ti

m
e

(s
ec

on
ds

)

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz
2 cores, 7.5GB RAM

0 10 20 30 40 50 60
Active CPU cores

0

2

4

6

Ti
m

e
(s

ec
on

ds
)

Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
64 cores, 480GB RAM

0 10 20 30 40 50 60
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

AMD Ryzen Threadripper 2990WX 32-Core
32 cores, 125GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
4 cores, 15.4GB RAM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
18 cores, 125GB RAM

Juan Cruz-Martinez (University of Milan) VegasFlow Atlas Meeting 13 / 11

	Motivation
	Introduction, hep-ph
	How can we do better

	VegasFlow
	What is VegasFlow?
	Where to find the code

	Conclusions
	The end

	Backup

