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Motivation Introduction, hep-ph

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to m.
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Motivation Introduction, hep-ph

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The integrals are usually computed
numerically using CPU-expensive Monte
Carlo generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!
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Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.
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Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Monte Carlo integration of a
n-dimensional gaussian function

I =

∫
dx1 . . . dxn e

x2
1 +···+x2

n

GPU computation can increase the performance of the integrator by more
than an order of magnitude.
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Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.
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Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!
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Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

Cuba

RAMBO

fastjet

matrix element

LHAPDF

Root

result!
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Motivation How can we do better

Lack of Tools

Running on a GPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

There is still no such complete
toolset for GPU computation which
means one has to write code from
scratch

?????

?????

?????

matrix element

?????

?????

result!
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VegasFlow What is VegasFlow?

A new toolset: VegasFlow and PDFflow

The pdf and vegas-flow libraries
focus on speed and efficiency for
both the computer and the developer

- Python and TF based engine

- Compatible with other
languages: cuda, c++

- Seamless CPU and GPU
computation out of the box

- Easily interfaceable with
NN-based integrators

Source code available at:
github.com/N3PDF/VegasFlow

github.com/N3PDF/PDFFlow

VegasFlow

?????

?????

matrix element

PDFFlow

?????

result!
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VegasFlow Where to find the code

Open source for HEP

Where to obtain the code

Both VegasFlow and PDFFlow are open source and can be found at the
N3PDF organization repository github.com:N3PDF

How to install

Can be installed from the repository or directly with pip:

~$ pip install vegasflow pdfflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io

PDFFlow: pdfflow.rtfd.io
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Conclusions The end

Summary

GPU computation is increasingly gaining traction in many areas of
science but it’s not heavily used in particle physics phenomenology.

→ Despite being competitive with CPU for MC simulations.

X VegasFlow and PDFFlow provide a framework to run in any device.

X Easy implementation of new-generation or NN-based integration
algorithms (already working on that!)

Where to obtain the code

VegasFlow and PDFFlow are opensource and available at
github.com:N3PDF/pdfflow and github.com:N3PDF/VegasFlow

Next:

X And now Marco Rossi will tell us about PDFFlow and will show some
specific examples.
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Conclusions The end

Thanks!
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Backup

Benchmark on different GPUs
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Radeon VII

GPU performance
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Backup

Benchmark on different CPUs
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