

MACHINE LEARNING THE UNKNOWN

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

NOVEMBER 20, 2020

CRACOW SCHOOL OF TH. PHYSICS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

PRECISION PHYSICS AND UNCERTAINTIES AN EXAMPLE: HIGGS IN GLUON FUSION 2015 VS. NOW

(APPR) N³LO+N³LL QCD (EFT); NLO PURE EW; NLO EXACT HQ; NNLO APPROX TOP; NNLO PDFS

 $\sigma(\text{LHC13}, m_H = 125 \text{ GeV}) = 48.58 \text{ pb} \pm 2.2^{\text{TH}} (4.5\%) \pm 1.6^{\text{PDF}+\alpha_s} (3.2\%)$ $\sigma(\text{LHC13}, m_H = 125 \text{ GeV}) = \text{pb} \pm 1.6^{\text{TH}} (3.3\%) \pm 1.4^{\text{PDF}+\alpha_s} (2.8\%)$

PDF+ α_s UNCERTAINTY

PDF: $\pm 0.9 \text{ pb}$ (1.9%) $\pm 0.5 \text{ pb}$ (1%)

 α_s : ±1.3 pb (2.6%)

- UNCERTAINTY RAPIDLY DECREASING
- TOWARD 1% UNCERTAINTIES!

UNCERTAINTY ESTIMATION:

- WHAT IS THE UNCERTAINTY WHERE THERE IS NO DATA?
- WHAT IS THE **UNCERTAINTY** WHERE THERE IS **NO THEORY**?

DATA OUTSIDE THE DATA REGION

1995: THE RISE OF STRUCTURE FUNCTIONS AT HERA FIRST HERA DATA VS OLDER DATA

W.K.Tung, DIS 2004

A. de Roeck, Cracow epiphany conf. 1996

- RISE OF F_2 AT HERA CAME \Rightarrow SURPRIZE
- UNCERTAINTY \Leftrightarrow BIAS

"THEORY UNCERTAINTIES" MISSING HIGHER ORDER CORRECTIONS

- TRADITIONALLY ESTIMATED BY "SEVEN POINT" SCALE VARIATION
- TRADITIONALLY, VARIATION BY FACTOR 2•

HOW WELL DOES IT WORK?

- NNLO WITHIN 7-POINT NLO BAND IN 3/17 CASES
- KNOWN ISSUES: SCALE VARIATION DOES NOT ACCOUNT FOR NEW CHANNELS. **STRUCTURES**

DOES IT MATTER? THE "DISCOVERY" OF QUARK COMPOSITENESS

- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS?
- RESULT STRONGLY DEPENDS ON GLUON AT $x \gtrsim 0.1$
- PDF MUST VANISH AT x = 0, BUT (THEN) NO DATA FOR $x \ge 0.05!$

DISCREPANCY REMOVED IF JET DATA USED FOR GLUON DETERMINATION

NEW CTEQ GLUON (1998)

UNCERTAINTIES AS AN AI PROBLEM: NNPDF

AI FOR PDFS: THE NNPDF APPROACH THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{rep}$

ARTIFICIAL INTELLIGENCE NEURAL NETWORKS

ARCHITECTURE

NNPDF: 2-5-3-1 NN FOR EACH PDF: $37 \times 8 = 296$ parameters

NEURAL LEARNING

- V FEATURES LEARNT GRADUALLY
- X UNTIL LEARNING NOISE

NEURAL LEARNING

- V FEATURES LEARNT GRADUALLY
- X UNTIL LEARNING NOISE

NEURAL LEARNING

- V FEATURES LEARNT GRADUALLY
- X UNTIL LEARNING NOISE

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)

GO!

• WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

STOP!

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

LEARNING THE METHODOLOGY

HOW DO WE KNOW THAT THE METHODOLOGY IS THE BEST? "ACCUMULATED WISDOM" INEFFICIENT AND SLOW

HYPEROPTIMIZATION N3FIT

- PYTHON-BASED KERAS + TENSORFLOW FRAMEWORK
- EACH BLOCK INDEPENDENT LAYER
- CAN VARY ALL ASPECTS OF METHODOLOGY

- SCAN PARAMETER SPACE
- OPTIMIZE FIGURE OF MERIT: VALIDATION χ^2
- BAYESIAN UPDATING

- NNPDF3.1: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{train} \ll \chi^2_{valid}$!!)

WHAT HAPPENED?

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM

WHAT HAPPENED?

HYPEROPTIMIZATION

- NNPDF3.1: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{train} \ll \chi^2_{valid}$!!)
- CORRELATIONS BETWEEN TRAINING AND VALIDATION DATA

THE SOLUTION

TUNED HYPEROPTIMIZATION

TESTS GENERALIZATION POWER

THE TEST SET METHOD

- COMPLETELY UNCORRELATED TEST SET
- OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST \Rightarrow NO OVERLEARNING

- NO OVERFITTING
- COMPARED TO NNPDF3.1
 - MUCH GREATER STABILITY \Rightarrow FEWER REPLICAS FOR EQUAL ACCURACY
 - UNCERTAINTIES SOMEWHAT REDUCED

- NO OVERFITTING
- COMPARED TO NNPDF3.1
 - MUCH GREATER STABILITY \Rightarrow FEWER REPLICAS FOR EQUAL ACCURACY
 - UNCERTAINTIES SOMEWHAT REDUCED

WHO PICKS THE TEST SET?

AUTOMATIC GENERALIZATION *K*-FOLDINGS THE BASIC IDEA:

- DIVIDE THE DATA INTO n REPRESENTATIVE SUBSETS EACH CONTAINING PROCESS TYPES, KINEMATIC RANGE OF FULL SET
- FIT n 1 SETS AND USE n-TH SET AS TEST $\Rightarrow n$ VALUES OF $\chi^2_{\text{test, i}}$
- HYPEROPTIMIZE ON MEAN AND STANDARD DEVIATION OF $\chi^2_{\rm test,\ i}$ \rightarrow GOOD & STABLE GENERALIZATION

DOES IT WORK?: THE "FUTURE TEST" COULD WE "PREDICT" THE RISE OF F_2 AT HERA?

FIT PDFs TO PRE-HERA DATA ONLY PREDICTION COMPARED TO DATA

50

-2

-1

Ó

yq

1

2

- PDFs are future-compatible
- THE DATA ARE WITHIN SHRINKING UNCERTAINTIES
- PREDICTED $\chi^2/dat=1.20$ (WITH PDF UNCERTAINTIES), COMPARE TO FITTED $\chi^2/dat=1.16$ (WITHOUT UNCERTAINTIES)

DOES IT WORK?: THE "FUTURE TEST"

SEQUENTIAL FUTURE TEST DATASETS:

- PRE-HERA
- POST-HERA, PRE-LHC
- LHC RUN I (NNPDF3.1)

- PDFs are future-compatible
- GENERALIZATION FAITHFUL

WHAT ABOUT MISSING HIGHER ORDERS? MISSING HIGHER ORDERS FROM ASYMPTOTICS THE GLUON FUSION HIGGS CROSS SECTION: APPROXIMATE N³LO (LHC 13) HXSWG 2015

APPROXIMATE N³LO+N³LL (Bonvini, Marzani, Muselli, Rottoli, 2016): $48.5^{+1.5}_{-1.9}$ PB EXACT N³LO+N³LL+LLx: 48.9 ± 1.9 PB (HL-LC AND HL-LHC YR, 2019)

MISSING HIGHER ORDERS FROM ASYMPTOTICS HOW DOES IT WORK?

- TOTAL XSECT: HIGHER ORDERS KNOWN IN VARIOUS KINEMATIC LIMITS FROM RESUMMATION
- CAN IT BE EXTENDED TO DIFFERENTIAL OBSERVABLES?
- CAN WEMACHINE LEARN MHO?

 (au, p_T) RESUMMATION REGIONS

ML EXTRAPOLATION THE GAUSSIAN PROCESS

- ASSUME $\sigma(x)$ MULTIGAUSSIAN IN FUNCTION SPACE
- DETERMINE THE CORRELATION IN KNOWN REGION ASSUMING KERNEL
- DETERMINE CONDITIONAL DISTRIBUTION IN EXTRAPOLATION
- HYPEROPTIMIZE KERNEL CHOICE AND PARAMETERS BASED ON KNOWN CASES

NNLO N-SPACE GGHIGGS: GAUSSIAN KERNEL INTERPOLATIONS

• TOO FEW DATA \Rightarrow RESULTS UNSTABLE, DEPEND ON CHOICE OF KERNEL

TRANSFER LEARNING?

THE BASIC IDEA:

- PERTURBATIVE DEPENDENCE KNOWN UP TO NNLO FOR MANY PROCESSES
- LEARN PERTURBATIVE DEPENDENCE FROM KNOWN CASES
- ADD FINAL LAYER WHICH EXTRAPOLATES FROM ASYMPTOTICSSTAY TUNED!

"Estrema temerità mi è parsa sempre quella di coloro che voglion far la capacità umana misura di quanto possa e sappia operar la natura"

"I always found reckless the attitude of those who think that the human capabilities are a measure of what could and might be accomplished by Nature"

Galileo Galilei, "Dialogo sopra i due massimi sistemi del mondo"