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“When you ask what are electrons and protons, I ought to answer that this question is not a profitable
one to ask and does not really have a meaning. The important thing about electrons and protons is
not what they are but how they behave, how they move. I can describe the situation by comparing
it to the game of chess. In chess, we have various chessmen, kings, knights, pawns and so on. If
you ask what chessman is, the answer would be that it is a piece of wood, or a piece of ivory, or
perhaps just a sign written on paper, or anything whatever. It does not matter. Each chessman has
a characteristic way of moving and this is all that matters about it. The whole game of chess follows
from this way of moving the various chessmen.”

Paul A.M. Dirac
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Chapter 1

QCD: an introduction

1.1 QCD Lagrangian
QCD is the theory of strong interactions between quarks and gluons, the elementary constituents of
hadrons. QCD is a non-abelian gauge field theory with gauge group SU(3) [15]. Gluons are massless
and quarks have fractional electric charge, either 2/3 or -1/3. QCD Lagrangian is a Yang-Mills
Lagrangian invariant under local SU(3) transformations:

L = −1

4
F aµνF

µν
a +

∑
f

ψ̄f
i
(iγµDµ,ij −mfδij)ψ

j
f (1.1)

where ψif are the quark Dirac fields with the indexes i and f running respectively over colors and
flavors and Dµ,ij = δij∂µ − igtaijAaµ is the covariant derivative, where in turn standard notation is
used to refer to the gluon field Aaµ, to the generators of the symmetry group taij and to the bare
coupling constant g. F aµν is the gluon field strength and can be written in terms of the gluon field
Aaµ and the structure constants of the group fabc as F aµν = ∂µA

a
ν−∂νAaµ+gfabcA

b
µA

c
ν . Color indexes

take respectively 3 or 8 values if they are attached to objects in the fundamental or in the adjoint
representation.

Some features of the theory can directly be witnessed from the Lagrangian. First, as already
mentioned, there is no gluon mass term which is forbidden by the gauge invariance of the theory.
Secondly, the theory is flavor blind, i.e. there is no coupling between different flavor of quark.
Finally, writing explicitly the interaction terms, one can easily see that the gluons self-interact and
thus carry color charge.

QCD has its roots in the quark model introduced in 1963 by Gell-Mann and Zweig [18, 33] to
explain the spectrum of strongly interacting particles in terms of elementary constituents: mesons
and baryons were expected to be respectively bound states of a quark anti-quark pair and of three
quarks. The existence of six different type (now called flavors) of quarks with fractional electric
charge must be conjectured to take into account all the known hadrons [26]. The existence of
color was also assumed in order to fulfill the requirements of Fermi-Dirac statistics with regards to
the baryonic wavefunctions. Quarks were assigned to the fundamental representation of a SU(3)
color global symmetry and hadrons were supposed to be singlets of color, in agreement with the
experimental evidence. Such property of hadrons is known as color confinement and has not yet
been proven analytically.

After studies on non-abelian gauge theories and the discovery of the property of asymptotic
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CHAPTER 1. QCD: AN INTRODUCTION

freedom, QCD was eventually constructed as a non-abelian gauge theory and the color group was
identified to be the gauge group of the theory.

1.2 The QCD coupling constant
The strong coupling, labeled as αs, is defined as:

αs =
g2

4π
(1.2)

g being the coupling of eq. (1.1).
As long as the classical theory is taken into account, αs is a constant, but when the quantum

theory is considered, a dependence on the renormalization energy scale is assigned to the coupling
to renormalize UV divergences in loop diagrams [26, 15]. The evolution of αs with the energy is
given by Callan-Symanzik equation:

µ2 d

dµ2
αs
(
µ2
)

= β
(
αs
(
µ2
))

(1.3)

where β (αs) is the so called β-function, which can be expanded in series of αs:

β (αs) = −α2
s(β0 + αsβ1 + α2

sβ2 + ...) (1.4)

In 1973 Gross and Wilczek and independently Politzer [20, 28] evaluated the beta-function at
leading order and found out that it was negative. More specifically, the expression of the first
coefficient is:

β0 =
33− 2nf

12π
(1.5)

where nf is the number of flavors light at the scale µ2. Since for QCD nf < 17 at any scale, the
β-function is negative, implying that the coupling of the theory becomes less stronger as the energy
(distance) scale of the interaction increases (decreases). This is the already mentioned property
known as asymptotic freedom.

The running of the coupling constant can be given in terms of the value of the coupling itself at
some arbitrary fixed scale Q2

0:

αs
(
µ2
)

= αs
(
Q2

0

)(
1− αs

(
Q2

0

)
β0 log

µ2

Q2
0

+ o
(
α2
s

))
. (1.6)

Measuring the value of the coupling constant at a certain scale is then enough to determine it at
any other scale, the two values being related by the renormalization equation.

At leading order, the solution to the Callan-Symanzik equation can be written also in term of
the fundamental QCD scale Λ ∼ 200 MeV, that is a rough approximation of the scale at which the
perturbative description of the theory breaks down1:

αs
(
µ2
)

=
1

β0 log µ2

Λ2

. (1.7)

The scaling of the strong coupling constant has been measured in the range of around 1 − 200
GeV and found to agree with the experimental data [25].

1More specifically, Λ is the scale at which the coupling diverges to infinity.
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CHAPTER 1. QCD: AN INTRODUCTION

Asymptotic freedom is what made QCD so hard to be understood during the earliest stages of its
discovery. Indeed, quark confinement implied that free quarks could not be observed directly but at
the same time experimental results of proton-proton scattering and deep inelastic scattering (DIS)
experiments suggested the idea that hadrons were made up of point-like non-interacting particles.
Such constituents, initially referred to as partons, were eventually identified with the quarks and
gluons of QCD.

The famous parton model proposed by Feynman and Bjorken [16, 7] will be discussed in the next
section.

1.3 The parton model

Historically, the first evidence that at high energy the strong force has an unexpected weak behavior
came from proton-proton scattering experiments carried out in the late 1950s [22, 26]. At high
energy of about 10 GeV, bunches of pions were produced in the collision, but mostly with momenta
collinear to the collision axis, whilst the production of pions with large transverse momenta was
exponentially suppressed in the value of the transverse momentum itself. To explain this “soft”
scattering and the phase space distribution of the final pions, hadrons were thought to be ensembles
of weakly bounded elementary constituents. In this theoretical framework, the two colliding protons
would be torn into small pieces with momenta roughly collinear with the momenta of the original
protons and would eventually build up into new hadrons moving along the same axis.

In the late 1960s, the SLAC-MIT collaboration performed deep inelastic scattering experiments
to challenge this hypotheses about the inner structure of the hadrons [22, 26]. A 20 GeV electron
beam was scattered from a hydrogen target and the scattering rate was measured for large deflection
angles. The available information suggested that hadrons would yield primarily distributions of scat-
tered electrons reflecting diffuse charge and magnetic moment distributions. The large momentum
transfer, delivered by electromagnetic interaction, could be computed measuring the momentum of
the scattered electron.

Against all the odds, a significant rate for hard scattering of electrons from protons was observed.
The same outcome would have been observed if the proton were a point-like particle behaving simply
according to QED. However, the major of the hard scattering had as final state not the proton but
a jet of hadrons.

To account for the experimental evidence, Bjorken and Feynman introduced the so called parton
model [16, 7]: hadrons were composed of almost free elementary constituents, including fermions
carrying electric charge, i.e. the quarks, and possibly other neutral particles that bind them together.
At high energy, the masses of the partons and the hadrons could be neglected compared to the scale
Q of the hard scattering process.

That was enough to explain the experimental outcomes. Indeed, even if the quarks could not
exchange large momentum interacting strongly, they could still do it by means of electromagnetic
interaction. The electrons were then able to hard scatter from quarks and kick them out from
the proton. The observed outgoing hadron jets were caused by subsequent hadronization processes
taking place after the collision.

The main physical concepts supporting the parton model may be summarized as follow. First
of all, the hadron consists of a set of partons in some virtual state with lifetime τ in the rest frame
of the hadron2 [9]. In the center-of-mass frame the hadron is contracted and the lifetime of its

2It is assumed that there is an effective lower bound, so that the hadron is made up primarily of virtual states of
nonzero lifetime in its own rest frame
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constituents are dilated according to Lorentz transformations. The more the center-of-mass energy
increases, the less time the electron takes to cross the hadron.

From the electron perspective then, during the collision the hadron looks like a sea of frozen
point-like particles. To exchange a large momentum qµ with a parton, according to the uncertainty
principle, the electron must come as close to it as o (1/Q) with Q2 = −q2 the scale of the hard
scattering. The probability for the scattering to occur is then suppressed by the geometrical factor
1/Q2

πR2
0
, with R0 “radius” of the hadron, assuming that the partons are randomly distributed inside

the hadron. A fundamental consequence of this argument is that the cross section for the DIS of a
lepton from an hadron can be written as the probability of finding a given parton inside the hadron
with a certain momentum fraction times the partonic cross section for the scattering of the lepton
from the parton itself. Writing it schematically, one has:

σl+h→l′+X (p, q) ∼
∑
i

∫ 1

0

dx σ̂l,i→l′+X(p, xq)fi (x) (1.8)

where p and q are respectively the momenta of the incoming lepton l and hadron h, the sum
runs over the partons i inside the hadron, fi (x) is the parton distribution function (PDF) giving
the probability of finding the parton i in the hadron h with fractional momentum xq and finally
σ̂l,i→l′+X (p, xq) is the partonic cross section where, as in the total cross section, l

′
and X are the

outgoing lepton and the final arbitrary hadronic state.
In the next paragraph, infinities arising in QCD are discussed along with the introduction of the

factorization scale and the famous DGLAP or Altarelli-Parisi equations.

1.4 Factorization scale and DGLAP equations
When it comes to divergences, higher order corrections QCD presents different type of infinities,
arising both in loop diagrams (virtual corrections) and when new partons are emitted (real correc-
tions).

Both UV and IR singularities affect loop diagrams. The first ones are dealt with renormalization
procedures, while the second ones cancel out when combined with real corrections. This result holds
for all the Standard Model and it is known as Kinoshita-Lee-Nauenberg theorem [23, 24].

Apart from these kinds of divergences, real emission diagrams are affected also by the so called
collinear singularities, namely emissions of partons with transverse momenta approaching zero.
These infinities are treated in a renormalization procedure fashion by reabsorbing them into a re-
definition of a bare quantity. In this case, the bare quantities are the PDFs that now depend also on
an energy scale (like αs in the renormalization procedure), called factorization scale and are finite
quantities. This result, known as collinear factorization theorem [15], is far from trivial since the
divergent part should factorize in a way that is process independent. In other words, writing the
renormalized (physical) parton density f in terms of the bare one f (o), one has:

f
(
z, µ2

F

)
= Γ

(
αs
(
Q2
)
, µ2
F /Q

2
)
f (o) (z) (1.9)

where Γ
(
αs
(
Q2
)
, Q2/µ2

F

)
must be a universal factor independent of the hard scattering process. In

the previous expression, z is the fraction of the hadron momentum, µF is the factorization energy
scale and Γ is the factor relating the bare with the physical PDF and depends on αs

(
Q2
)
and the

ratio between the two energy scales.
Before moving to the DGLAP equations, it is worth noticing that there are different ways in

which the divergences can be absorbed into the redefinition of the PDFs. To make things clear, let
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us consider again the expression of the DIS cross section:

σl+h→l′+X (p, q) ∼
∑
i

∫ 1

0

dx σ̂l,i→l′+X(p, xq, µ2
F )fi

(
x, µ2

F

)
(1.10)

where now both the partonic cross section and the PDFs show a dependence on the µF . Once the
factorization scale is introduced, there are both finite and infinite contributions depending on µ2

F .
The divergent terms must be reabsorbed in the PDFs, but the finite ones can be put arbitrarily in
the PDFs or in the partonic part of the computation. The different ways of dealing with finite terms
are called factorization schemes [9]. The most common is the modified minimal subtraction scheme,
referred to as MS, where the finite counterterms are kept in the partonic part.

Now, another feature of the expression above, is that the l.h.s. of the equation does not depend
on the factorization scale, even if the r.h.s. does as it is explicitly written. However, this is perfectly
reasonable since σl+h→l′+X is a physical observable and so it cannot depend on an arbitrary energy
scale introduced in order to cure divergences. This simple consideration is fundamental in the
derivation both of the Callan-Symanzik equations (for renormalization) and of the DGLAP or the
Altarelli-Parisi equations (for factorization).
Taking the logarithmic derivative of the hadron structure functions with respect to the factorization
scale, one obtains the DGLAP equations [2, 14, 19]:

µF
d

dµF
fi
(
x, µ2

F

)
=
∑
j

Pij
(
x, αs

(
µ2
F

))
⊗ fj

(
x, µ2

F

)
(1.11)

where Pij
(
x, αs

(
µ2
F

))
are the Altarelli-Parisi splitting functions and the ⊗ symbol is the convolution

operator, defined by:

f (x)⊗ g (x) ≡
∫ 1

x

dy

y
f

(
x

y

)
g (y) . (1.12)

The Altarelli-Parisi splitting functions are known up to NNLO.
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Chapter 2

Parton Distributions Fits

2.1 Introduction

A precise knowledge of Parton Distribution Functions is essential in order to make predictions for
the Standard Model and beyond the Standard Model processes at hadron colliders [27]. However, it
is not possible to determine analytically from first principles the functional form of PDFs since they
belong to the non-perturbative regime. For this reasons, the shapes of PDFs are determined by a fit
to data from experimental observables in various processes, using the DGLAP evolution equation to
evolve PDFs from the fitting scale to the scale at which data are available.

The determination of PDFs is carried out by several groups, namely:

• MSTW

• CT10

• NNPDF

• HERAPDF

• AB(K)M

• GJR

Roughly speaking, the main differences between the groups rely on the choice of PDFs parameter-
ization and on the method adopted to treat uncertainties, i.e. Monte Carlo method or the Hessian
approach. For more details on each research group, see [27, 1].

In the following, a brief history of the development and improvement of PDFs determination will
be given, along with an introduction to the methodology adopted by the Neural-Net Collaboration
(NNPDF).

2.2 Historical outlines

PDFs determination has developed during the years in conjunction with the improvements in the
phenomenological and theoretical understanding of the theory of strong interactions1. At a first

1This paragraph follows step by step the introduction to PDFs determination given in reference [3]
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CHAPTER 2. PARTON DISTRIBUTIONS FITS

stage, PDFs were determined to show the compatibility between the data and the partonic interpre-
tation of hard processes. They were determined on the basis of sum rules and of the first available
experimental data. Although PDFs were semi-quantitative, they could be used to compare the ob-
served scaling violations with those predicted by perturbative QCD, testing for the first time the
theory of strong interaction.

Over the years, the accuracy of the data and the confidence in perturbative QCD improved,
leading to the extraction of the gluon distribution function and to the performance of first parton
set based on global fits. Even if next-to-leading (NLO) order evolution tools were available, these
analysis were carried out at leading order.

When QCD started to be considered as precision physics and an integral part of the Standard
Model, thanks to new data coming from high-precision deep-inelastic scattering an hadron collider
experiments, a new approach to PDFs determination, able to account for next to leading order
theory, were required. Moreover, PDFs should be determined using a wide and varied set of data in
order to reduce at minimum the theoretical bias on PDFs functional form at initial scale.

Next-to-leading order parton sets evolved into standard analysis tools. Over time, the accuracy
of PDFs sets improved till becoming comparable to that of NLO QCD computations, making PDFs
suitable for the determination of most hard processes at collider energies. As already mentioned in
the previous paragraph (2.1), these PDFs sets were determined by a fit to data: a parametrization
of PDFs were assumed, based on the functional form f (x) ∼ xα (1− x)

β , and the parameters were
tuned so that computed observables fit the experimental data.

The employment of PDFs for high precision physics gave rise to the problem of the determi-
nation of reliable uncertainties for PDFs. Indeed, this task is far from trivial and presents subtle
difficulties, the most obvious of which is the appropriate treatment of the correlated uncertainties of
the data. At the beginning, when the problem was not completely understood, PDFs uncertainties
were determined comparing the results obtained with different PDFs sets. However, such approach
was unsatisfactory because PDFs sets determination were likely to share the same sources of sys-
tematic errors. Then, some first determinations of PDFs with uncertainties were obtained by only
fitting to restricted data sets, but retaining all the information on the correlated uncertainties in the
underlying data, and propagating it through the fitting procedure.

Despite PDFs with uncertainties are now available, benchmark comparisons performed between
different PDFs sets have shown how difficult it is to give a statistical interpretation to the uncer-
tainties, given that they are considerably linked to theoretical or phenomenological expectations.
Indeed, uncertainty bands for PDFs based on global fits are given on the basis of a tolerance eval-
uated studying the compatibility of the data and the underlying theory [29], which has an effect
comparable to multiplying experimental uncertainties by a factor ranging from four to six.

A completely new approach aimed at determining objectively both the value and the uncertainty
of a function from a discrete set of many independent experimental measurements, was proposed for
the first time in [17] and improved over the years by the NNPDF collaboration. Such approach will
be describe in the next paragraph.

2.3 NNPDF approach

The NNPDF collaboration approach to PDFs determination is based on two main features: the
generation of an ensemble of Monte Carlo replicas of the experimental data and the use of neural
networks as “unbiased” interpolating functions. The procedure can be summarized as follow: firstly
Nrep replicas of the Ndata data are generated distributed accordingly to a Ndata-dimensional multi-
gaussian distribution, then Nrep set of Npdf neural networks (i.e. the PDFs to be determined) are
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CHAPTER 2. PARTON DISTRIBUTIONS FITS

trained over the data [13]. The result of the process consist in a final ensemble of best fit PDFs
(Nrep best fit PDF for each flavor, i.e. for each one of the Npdf PDFs). In what follows, the main
steps of the procedure are treated in more details.

2.3.1 Monte Carlo generation of pseudodata

The central value of each Monte Carlo “pseudodata”, equals the experimental one, and the same
applies to uncertainty and covariance. Of course this result is perfectly achieved only in the limit
of infinite replicas. However it can be shown that it stands already for Nrep = 100 or Nrep = 1000
[4]. So, the statistics of the data can be reproduced to arbitrary accuracy by generating the proper
number of Monte Carlo replicas (and an a posteriori check can be performed evaluating averages,
variance and covariance of the pseudodata and comparing them with the data counterparts).

For each data point D(exp)
i , k = 1, ..., Nrep artificial points D(art)(k)

i are generated according to:

D
(art)(k)
i =

(
1 + r

(k)
N σN

)D(exp)
i +

Nsys∑
p=1

r(k)
p σi,p + r

(k)
i σi,s

 (2.1)

where σi,p are the Nsys correlated systematic errors, σN is the total normalization uncertainty, σi,s
is the statistical uncertainty and, for each independent error source, independent univariate gaussian
random numbers r(k) are used. The covariance matrix is given by:

cov
(k)
ij =

Nsys∑
p=1

σ
(k)
i,p σ

(k)
j,p

+ δijσ
(k)2
i,s (2.2)

where σ(k)
i,p and σ(k)

i,s are defined as:

σ
(k)
i,s =

(
1 + r

(k)
N σN

)
σi,s (2.3)

σ
(k)
i,p =

(
1 + r

(k)
N σN

)
σi,s p = 1, ..., Nsys . (2.4)

Normalization error are included in the covariance matrix by rescaling the statistical and systematic
errors as shown in the previous equation (2.3). Indeed, it has been shown in [12] that including
normalization error on the same footing of the other sources of uncertainties would bias the fit.

2.3.2 Neural network parametrization

In the second stage of the procedure, a set of PDFs is constructed from each replica of the data,
parametrizing each PDF at a given scale with a neural network. In short, neural networks are
non linear maps between input ξ(1)

i and output ξ(L)
i variables (see figure (2.1)). Like orthogonal

polynomials, in the limit of infinite size, they can reproduce any continuous function. However,
upon truncation, neural networks and polynomials behave in a different way. Indeed, while the
second ones introduce a specific bias on the form of the fitted function, this effect is avoided with
neural networks. In particular, it is possible to show that the fit is stable under changes in the size
of the neural network. This feature do not belong to standard fits, where eventually, increasing the
size of the fitting function, no stable fit can be achieved. This characteristic is what makes neural
networks a particularly convenient set of unbiased interpolating functions.
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Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1: a schematic representation of a neural network with one hidden layer. Reprinted from
TEXexample.net

The neural networks used in the fitting procedure are multi-layer feed-forward neural networks
with architecture 2-5-3-1, where neurons are organized in layers l = 1, ..., L with j = 1, ..., nl neurons
per layer. The first layer provides the input and the neurons in a layer feed forward to the next one
till the last one is reached. The last neuron contains the output variables. The output ξlj of each
neuron (j-th neuron of the l-th layer) is given by a non-linear activation function g (x):

ξ
(l)
i = g

(
h

(l)
i

)
, i = 1, ..., nl , l = 2, ..., L (2.5)

where h(l)
i is given by:

h
(l)
i =

nl−1∑
j

ω
(l)
ij ξ

(l−1)
j − θi (2.6)

where, in turn, ωij and θi are called weights and thresholds respectively and are the free parameters
that are determined by the fitting procedure. The activation function used for the inner layers is a
sigmoid, defined by:

g (x) =
1

1 + exp (−x)
(2.7)

while for the last layer, the linear function g (x) = x is adopted. Given the input and the output,
the training of the neural networks consists in the determination of the best fit values of the weights
and the thresholds.

Despite the fact that PDFs shapes are unknown, they are constrained by sum rules [10] and
Regge theory [30], which suggest respectively that for x→ 1 the PDFs vanish and instead blow up
for x → 0. So, it is convenient to factor out from the neural network this known behavior and fit
just the deviation from it. The result is the following functional form for PDFs parametrization at
a given scale Q0:

fi (x,Q0) = x−αi (1− x)
βi NNi (x) (2.8)

where the index i refers to the parton kind and NNi (x) refers to the neural network.
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2.3.3 Neural network training
The training of the neural networks, i.e. the fitting procedure, relies upon the minimization of an
appropriate figure of merit [13]. The fitting to each replica is performed by minimizing the error
function:

E(k) [ω] =
1

Ndata

Ndata∑
i,j=1

(
D

(art)(k)
i −D(net)(k)

i

) (
cov−1

)
ij

(
D

(art)(k)
j −D(net)(k)

j

)
(2.9)

where D(net)(k)
i are the prediction of the data evaluated by means of the neural-network PDFs. E(k)

defines the quality of the fit for each replica. The quality of the global fit is addressed by the χ2

computed comparing the experimental data and the values of the observables averaged over the
ensemble of best fit PDFs, i.e.:

χ2 =
1

Ndata

Ndata∑
i,j=1

(
D

(exp)
i − 〈D(net)

i 〉rep
) (

ˆcov−1
)
ij

(
D

(exp)
j − 〈D(net)

j 〉rep
)

(2.10)

where ˆcovij is the covariant matrix which includes normalization uncertainties (see [13] for more
details).

The minimization of the error function E(k) [ω] is carried out using a genetic algorithm. The
“state” of the neural network can be identified by a vector, called weight vector, whose components
are the weights ωij and thresholds θi of the neural networks and that can be written for simplicity
as: (

ω1, ω2, ..., ωNpar

)
(2.11)

where ωi refers to a weight or a threshold and Npar is the total number of weights plus thresholds.
A number Nmut of copies of the weight vector is produced and then the minimization is achieved in
steps (named generations), performing for each step two operations. Firstly, the vectors are modified
changing one of the components according to:

ωk → ωk + η

(
r − 1

2

)
(2.12)

where r is a random number between 0 and 1 and η is an hyperparameter called mutation rate.
This first stage is referred to as mutation. Then, the error function is computed for each copy and
the original weight vector is replaced by the one with the lowest value of the error function. This
second stage is known as selection. The procedure is iterated until a suitable convergence criterion
is satisfied.

The stopping criterion is related to a famous feature of neural networks fits, known as overlearn-
ing. The main idea is quite simple and can be summarized as follow: if the minimization procedure
is not stopped, the network will learn perfectly the data and the error function will tend to 0;
however in such a way, being the data characterized by uncertainties, what is going on is that the
network is learning also the noise, i.e. the data and their particular uncertainties. If the same neural
network is then used to fit, for instance, another set of measurements of the same data but with
different uncertainties (remember that the experimental uncertainites are gaussianly distributed),
it will completely fail. In order to avoid this result and maintain the flexibility of the network, an
appropriate stopping criterion should be adopted.

The problem is solved by splitting randomly2 the data in two subsets called training and valida-
tion set. The first set is used to perform the fit while the second one is used to check the ability of

2This is not always the case: if a subset of the data, for example, presents common features, it is clear that choosing
randomly the training and validation set is not the best solution. For more details see [21].
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Figure 2.2: the error function computed for the validation set (green line) and for the training set
(red line) as a function of the number of iterations in the fitting procedure. While the training
set error function decreases indefinitely, the validation set error function reaches a minimum and
then sees a rebound. The optimal stopping point corresponds to the minimum. Reprinted from the
NNPDF website (http://nnpdf.mi.infn.it/research/cross-validation/).

the neural networks to describe also this subset of data. In practice, the error function is calculated
for the two subsets. While the error function for the training set will always decrease, the one for
the validation set firstly will decrease, but then, after reaching a minimum, will start to increase as
shown in figure (2.2). The change in the slope of the validation set error function corresponds to the
moment in which the neural network starts to overlearn. So, the fitting procedure should be stop
when the minimum is reached.
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Chapter 3

PDFs covolution: a numerical
approach

3.1 Introduction

The minimization of the figure of merit E(k) [ω] during the fitting procedure requires, as shown in
eq. (2.9), the neural networks predictions of the observables at each step of the genetic algorithm
for each replica of the data. Now, consider, for example, that the data are pp → X cross section
measurements, whose analytic expression is given by a convolution between PDFs and the partonic
cross section like in eq. (1.8). The amount of experimental data made available for use in PDFs fits
by LHC collaboration is increasing over the years and a standard fit may already include thousands
of data points. Moreover, for all these data points, predictions have to be computed thousands of
time during the minimization procedure. It is clear that performing PDFs convolution with partonic
cross sections for so many times represents a real computational challenge [5]. Indeed, it can be
extremely time consuming. For this reason, this task should be optimized at best in order to reduce
at minimum such negative effect.

The strategy developed over the years to address this issue consists, generally speaking, in re-
ducing the effective number of calculations needed during the fit, precomputing the partonic hard
cross sections in such a way that the standard numerical convolution with any set of PDFs can be
reliably approximated by means of interpolation techniques [5]. Quantities of interest are stored in
precomputed look up table ready to be used when necessary. The main idea is that it is possible
to write the convolution in an especially convenient form, allowing to perform a huge amount of
calculations “offline” and not during the fit itself.

This approach has been implemented on one hand in packages such as APPLgrid [11] and FastNLO
[32], which carry out the precomputation of the partoninc hard cross sections, and, on the other
hand, in APFEL [6], HOPPET [31] and QCDNUM [8], which instead perform PDFs evolution by anal-
ogous interpolation techniques. Later on, APPLgrid and APFEL have been combined togheter in
APFELgrid [5], where the convolution has been reduced to the simplest possible form, i.e. a matrix
product between a so called fast kernel table (FK table) and the PDFs, enhancing considerably the
performances.

In what follows, an introduction to APPLgrid, APFEL and APFELgrid is given and a time bench-
mark of the performance achieved with different methods is presented.
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3.2 Fast Kernel method

3.2.1 APPLgrid interpolating technique
The expression of a general cross section pp→ X with a set of PDFs {f} is given by:

σpp→X =
∑
s

∑
p

∫
dx1dx2σ̂

(p)(s)αp+pLO
s

(
Q2
)
F (s)

(
x1, x2, Q

2
)

(3.1)

where Q2 is the typical hard scale of the process, the index s sums over the active partonic sub-
processes in the calculation, p sums over the perturbative orders used in the expansion, pLO is the
leading-order power of αs for the process and σ(p)(s) is the NpLO contribution to the cross section
for the partonic subprocess scattering (s)→ X. F (s) represents the subprocess parton density:

F (s)
(
x1, x2, Q

2
)

=
∑
i,j

C
(s)
ij fi

(
x1, Q

2
)
fj
(
x2, Q

2
)

(3.2)

where the C(s)
ij matrix enumerates the combinations of PDFs contributing to the s-th subprocess.

Using a set of interpolating functions, spanning Q2, x1 and x2, it is possible to factorize the PDFs
and αs dependence out of the convolution. This approach is implemented in the APPLgrid package
[5]. If a basis of Lagrange polynomials Iτ

(
Q2
)
, Iα (x1) and Iβ (x2) is considered, the subprocess

PDFs and αs can be written as:

αp+pLO
s

(
Q2
)
F (s)

(
x1, x2, Q

2
)

=
∑
α,β,τ

αp+pLO
s

(
Q2
τ

)
F

(s)
αβ,τIτ

(
Q2
)
Iα (x1) Iβ (x2) (3.3)

where the shorthand F (s)
αβ,τ = F (s)

(
xα, xβ , Q

2
τ

)
is used. Inserting these expressions in the convolu-

tion, the hadronic cross section is eventually written in terms of a simple product:

σpp→X =
∑
s

∑
p

∑
αβτ

αp+pLO
s

(
Q2
τ

)
W

(p)(s)
αβ,τ F

(s)
αβ,τ (3.4)

where
W

(p)(s)
αβ,τ = Iτ

(
Q2
) ∫

dx1dx2σ̂
(p)(s)Iα (x1) Iβ (x2) (3.5)

consists of the convolution of the hard cross section with the interpolating polynomials. W
(p)(s)
αβ,τ

may be stored in a precomputed look-up table, making the final expression for the cross section a
considerably simpler task to perform inside a fit than the direct evaluation of the double convolution
(3.1).

3.2.2 APFELgrid interpolating technique
An even better results can be achieved performing PDFs evolution via analogous interpolating tech-
niques and then combining the two results. In APFEL, for instance, PDFs at a general energy scale Qτ
are expressed as a product between PDFs at some initial fitting scale Q0 and an evolution operator
obtained solving the DGLAP equations [5]:

fi
(
xα, Q

2
τ

)
=
∑
k

∑
β

Aταβ,ikfk
(
xβ , Q

2
0

)
(3.6)
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where latin indices run over PDF flavour, greek indices run over points in an initial-scale interpolating
x-grid and the evolution operator A may be accessed directly in the APFEL package. Given this
operator, it is possible to substitute in eq. (3.2) the general-scale PDFs with the ones at the fitting
scale:

F
(s)
αβ,τ =

∑
i,j

∑
k,l

∑
δ,γ

C
(s)
ij

[
Aταδikfk

(
xδ, Q

2
0

)
Aτβγjlfl

(
xγ , Q

2
0

)]
(3.7)

=
∑
k,l

∑
δ,γ

C̃
(s),τ
kl,αβγδfk

(
xδ, Q

2
0

)
fl
(
xγ , Q

2
0

)
(3.8)

where
C̃

(s),τ
kl,αβγδ =

∑
i,j

C
(s)
ij A

τ
αδikA

τ
βγjl . (3.9)

Now, substituting in the total cross section, the expression for subprocess parton densities in eq.
(3.7), one gets:

σpp→X =
∑
k,l

∑
δ,γ

∑
p

∑
s

∑
α,β

∑
τ

αp+pLO
s

(
Q2
τ

)
W

(p)(s)
αβ,τ C̃

(s),τ
kl,αβγδfk

(
xδ, Q

2
0

)
fl
(
xγ , Q

2
0

)
(3.10)

and performing further contractions:

σpp→X =
∑
k,l

∑
δ,γ

W̃kl,δγfk
(
xδ, Q

2
0

)
fl
(
xγ , Q

2
0

)
, (3.11)

where W̃kl,δγ is defined as:

W̃kl,δγ =
∑
p

∑
s

∑
α,β

∑
τ

αp+pLO
s

(
Q2
τ

)
W

(p)(s)
αβ,τ C̃

(s),τ
kl,αβγδ (3.12)

and it is referred to as an FK table. Eq. (3.11) is an extremely compact expression for the cross
section, given in terms of a simple scalar product between the FK table and the PDFs at a given
initial scale, where the sums are carried out respectively over the initial scale interpolating x-grid
and the incoming partons.

3.2.3 A comparison of the two methods
The main difference between eq. (3.4) and eq. (3.11) relies upon the different treatment of PDFs
evolution [5]. In tools such as APPLgrid or FastNLO, PDFs evolution is performed at the fitting
stage, while in APFELgrid, PDFs evolution is pre-cached at the stage of FK table generation, and
so only PDFs at the given initial scale are required at the time of fitting. In addition, the number
of calculations required at the time of fitting is reduced, given that the sums over hard scale and
perturbative order are performed when the FK is generated. Moreover, the simple form (a dot
product) now assumed by the convolution, presents the advantageous possibility to apply standard
computational tools such as multi-threading through e.g. OpenMP or Single Instruction Multiple
Data (SIMD) operations such as SSE3 and AVX, to further improve time performances.

However, despite these convenient features, pre-caching the evolution of PDFs in the FK table
limits the possibility to perform fits where there is the need to change the theoretical parameters
inherently embedded in the FK, like the perturbative order, the strong coupling or the factoriza-
tion/renormalization scales. For this reason, the Fast Kernel method is not suitable as a complete
replacement for tools such as APPLgrid [5].
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Figure 3.1: performance comparisons between FK with AVX-OpenMP 2x, AVX, SSE3, double preci-
sion convolution and APPLgrid convolution time per point and process. Reprinted from APFELgrid:
a high performance tool for parton density determinations, by Bertone Valerio, Carrazza Stefano
and Hartland Nathan P., 2017, retrieved from http://cds.cern.ch/record/2151510/plots.
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3.3 Performance benchmarks
In figure (3.1), a comprehensive benchmark between the performance of APPLgrid and APFELgrid is
shown. A wide range of processes including LHC and Tevatron electroweak vector boson production
measurements , tt̄ total cross sections, double-differential Drell-Yan cross sections and inclusive jet
data, are taken into account. A total of 52 source APPLgrid is considered to perform predictions
over a wide range of kinematics. For the purpose of comparison, FK tables are generated with 30
points in x and an initial scale below the charm threshold, with seven active partonic species [5].

The average time taken for datapoint by the two methods is compared for all the 52 APPLgrid
table. FK calculations are performed with four different settings: AVX-OpenMP 2x (2 CPU cores),
AVX, SSE3 and the standard double precision product.

Figure (3.1) shows that the FK method is systematically faster than the APPLgrid one. Indeed,
comparing the fastest configuration of the FK calculations, i.e. the AVX-OpenMP 2x setting, it
can be seen that the improvement in time performances ranges from a minimum factor of 10 for
electroweak vector boson production to a maximum factor of 2000 for inclusive jet data. A significant
improvements in timings for the FK is observed even without the use of SIMD or multi-threading.

For more details about other important features to perform a significant comparison between
tools such as APPLgrid and the FK method, i.e. the table size in the filesystem and memory and the
computational cost of pre-computing the FK itself, the reader is referred to the exhaustive discussion
presented in [5].
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Chapter 4

PDFs covolution: going further

4.1 Overview of the present work

As explained in the previous chapter, over the years PDFs convolution has been reduced to the
simple form given by eq. (3.11) and a considerable enhancement in time performances has been
achieved. However, this may not be enough: in the future, an always increasing amount of data,
coming from experiments at colliders, will be available for PDFs fit and the performances of the
fitting procedure should be kept “updated” in order to deal with them. Boosting continuously the
time performances of PDFs convolution is thus necessary in order to make full usage of experimental
data points.

While it is hard to think of an even simpler form for PDFs convolution, compared to the expression
(3.11), it is natural to look at the problem from the IT side and investigate further what kind of
hardware and technology is best suited to perform this task. Indeed, till now PDFs fits have been
carried out on CPU devices but with the advent of GPUs and parallel computing (see paragraph
(4.2)), it is spontaneous to ask ourselves if such devices may be more performing.

The work presented in the thesis comes within this context and aims to answer such question.
Its main purpose is to improve further the time performances of PDFs convolution achieved in [5].
This is done by running and profiling PDFs convolutions on two different devices, i.e. an Intel(R)
Core(TM) i9-9980XE CPU 3.00GHz and a GPU Nvidia Titan V (detailed specs are given at the
end of the thesis), with different implementation of the convolution itself. The issue is addressed
exclusively from the numerical point of view, maintaining the expression of the convolution given
in eq. (3.11). The FK table used to perform the convolutions is generated by APFELgrid from the
file atlas-Z0-rapidity.root (downloadable at https://applgrid.hepforge.org/downloads/), while
PDFs are taken from NNPDF30_nlo_as_0118.LHgrid (for more details visit: http://nnpdf.mi.infn.it/
nnpdf3-0/).

The work has been organized as follow: firstly, the convolution between the FK table and a single
PDF has been implemented by means of external libraries such as Eigen and OpenBLAS (more details
in paragraph (4.3)) on CPU and an overall time benchmark of the performances on CPU has been
produced (see paragraph (4.5)). Subsequently, many parallel implementations of the convolution
using OpenCL (see paragraph (4.3)) have been put into practice and the convolution has been run
on GPU. The performances achieved with OpenCL has been compared to the previous ones and a
significant memory overhead has been observed, making OpenCL the slowest method (see paragraph
(4.5)).

This result showed that the convolution was not suited to be parallelized. This led to a change
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in the adopted strategy: the aim of the research became to find a convenient way to run PDFs
convolution on GPU, in order to take advantage from the computing power of such devices. Hence,
a toy-model representing the convolution has been realized and various setups have been tested. The
dimensions of the FK table and the PDF have been changed and the performances on CPU and
GPU recorded for various sizes (see paragraph (4.8)). Moreover, the convolution has been carried
out maintaining the FK table fixed and reloading at the end of each convolution the PDF to be
convoluted. This setup has been tested increasing the number of the PDFs to be convoluted and
changing the size of the FK table (see paragraph (4.9)). Finally, a last comparison has been made
between OpenCL and an implementation of the convolution with TensorFlow (see paragraph (4.10)),
a famous library for machine learning (see paragraph (4.3)).

In what follows, a brief introduction to parallel computing and to the adopted computational
tools is given. Next, the steps described above are presented in more details and results are shown.
At the end, a discussion of the results achieved is presented.

Figure 4.1: a schematic representation of a GPU. Reprinted from Accelerating Image Reconstruction
in Dual-Head PET System by GPU and Symmetry Properties, by Chou et al., 2012, retrieved from
http://www.researchgate.net .

4.2 GPUs and parallel computing1

Graphical Processing Units (GPUs) are specialized electronic circuits designed to rapidly manipulate
and alter memory to accelerate the creation of images. Even though they have been developed in
the context of game consoles2, they are now used in a wide range of fields. The most interesting

1This chapter and the next one are intended to be brief and not technical introductions to the subjects presented.
The purpose is to give just the main ideas and motivate the employment of such tools in the present work. References
are given to look for more details.

2The term was first used by Sony in 1994 with the launch of the PlayStation 1.
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feature of GPUs, at least for application in Physics, is their highly parallel structure that makes
them suitable for algorithms that process large blocks of data in parallel.

A schematic representation of a GPU is given in figure (4.1). As shown, the GPU is composed
of a series of multiprocessor, each of which contains a given number of processors along with their
registers and a memory shared between them. The shared memory is accessible only from the
processors inside a single multiprocessor. The global and constant memory, instead, are accessible
from all the processors in the device. While the global memory is used to read and write data,
constant memory is used to store read-only data. The light blue block represents the memory of
the host, i.e. typically the CPU connected to the GPU, that communicates with device memory by
means of buses. The texture memory and the instruction unit can be neglected for the scope of the
present work.

This representation of a GPU closely follows the one given in computational tools for parallel
computing such as CUDA and OpenCL where the processors are respectively referred to as Cuda Cores
and Compute Units. The main idea of parallel computing is to make full usage of the computational
power of GPU devices by dividing, when possible, the computational burden between the various
processors of the GPU.

To fix the ideas, consider the simple example of a dot product between two vectors ~a and ~b with
N components, that in pseudo-code can be written as:

for (int i = 0; i < N; i++)
result += a[i]*b[i];

The calculation of each product between the i-th components of ~a and ~b is independent from the
others and so they can all be performed at once by N distinct processors. The same argument does
not hold for the sum which, in turn, must be carried out sequentially.

This is the essence of parallel computing. When parts of a calculation can be performed inde-
pendently from the others, it may be convenient to execute them in parallel (i.e. simultaneously) to
boost the performances of an algorithm. This procedure is known as parallelization.

This process should not be confused with vectorization, implemented, for example, in SIMD
instructions. Vectorization takes place inside one core while parallelization interests many cores.

Returning to the dot product example, vectorization can be explained as follow: instead of storing
vector ~a and ~b in memory without a proper alignment, they can be stored in appropriate registers
that allows to perform operations on more components at a time, as shown in figure (4.2). The
procedure results in a speed up of the computation.

In summary, both parallelization and vectorization results in the simultaneous performance of
more operations, but by means of two completely different mechanisms.

4.3 APIs and libraries

The complete list of tools and libraries used in the present work is listed below.

1. SSE3, i.e. Streaming SIMD Extensions 3, is the third iteration of the SSE instruction set
for the IA-32 (x86) architecture. SSE originally added eight new 128-bit registers known as
XMM0 through XMM7, using only a single data type for XMM registers, i.e. four 32-bit
single-precision floating point numbers. With SSE2, the available data-types increase. With
SSE instructions it is possible to perform operations over 4 floats in an array at a time. For
more details see: https://www.intel.co.uk
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a[0] a[1] a[2] a[3]

+

b[0] b[1] b[2] b[3]

=

c[0] c[1] c[2] c[3]

Figure 4.2: a schematic representation of three 128-bit SIMD registers where the sum of the four
components is performed at once by means of SIMD instructions.

2. AVX, i.e. Advanced Vector Extension, are extensions to the x86 instruction set architecture
for microprocessors from Intel and AMD proposed by Intel in March 2008. AVX uses sixteen
YMM registers, each of which contains eight 32-bit single-precision floating point numbers.
Using AVX is then possible to perform vectorization over 8 components. For more details see:
https://www.intel.co.uk

3. Eigen is a high-level C++ library of template headers for linear algebra, matrix and vector
operations. By means of a cost model of floating point operations, Eigen performs vectorization
on its own. For more details see: http://eigen.tuxfamily.org

4. OpenBLAS is an open source implementation of the BLAS (Basic Linear Algebra Subpro-
grams) API with many optimizations for specific processor architectures, including Intel Sandy
Bridge. For more details see: https://www.openblas.net/

5. GSL, i.e. the GNU Scientific Library, is a numerical library, written in C, suited to perform
numerical computations in applied mathematics and science. It is free software under the GNU
General Public License. For more details see: https://www.gnu.org/software/gsl/

6. MKL, i.e. the Intel Math Kernel Library, is a library of optimized math routines for science
and engineering. The routines in MKL are optimized specifically for Intel processors. For more
details see: https://software.intel.com/en-us/mkl

7. OpenCL, i.e. Open Computing Language, is a framework for writing programs that execute
across heterogeneous platforms consisting both of CPUs and GPUs. It provides a standard
interface for parallel computing. For more details see: https://www.khronos.org/opencl/

8. TensorFlow is a free and open-source symbolic math library, used especially for machine
learning applications such as neural networks. TensorFlow was developed by the Google Brain
team and was released at the of 2015. For more details see: https://www.tensorflow.org/
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4.4 More on the FK table
Before moving to the first time benchmark on CPU, it is important to explain in more details how
the FK table exactly looks like at code level. In the APFELgrid code, the “standard” implementation
of the convolution of equation (3.11), i.e. the one written with simple for loops, reads:

for (int i = 0; i < Ndata; i++)
for (int n = 0; n < Npdf; i++){

C[i*Npdf + n] = 0;
for (int j = 0; j < N; i++)

C[i*Npdf + n] += (FK+N*i)[j]*(pdf+N*n)[j];
}

that, in mathematical formulas, reads:

Cin =

N∑
j=0

(FK)ij (pdf)jn , i = 0, ..., Ndata , n = 0, ..., Npdf . (4.1)

where the matrix (FK)ij is the FK table and (pdf)jn is a matrix containing the PDFs to be convo-
luted. Ndata, Npdf and N will be defined shortly.

Now, this can be quite confusing. How exactly eq. (3.11) reduces to eq. (4.1) is not trivial. It
is useful to rewrite here a slightly modified version of eq. (3.11) in order to make the opportune
assignments and identifications:

σ
(i)
pp→X =

∑
k,l

∑
δ,γ

W̃
(i)
kl,δγfk

(
xδ, Q

2
0

)
fl
(
xγ , Q

2
0

)
, (4.2)

where the index (i) runs over the available experimental measurements (data points) of the cross
section, e.g. at different energy scales Q2 of the process. Consider now the FK table alone:

W̃
(i)
kl,δγ , (4.3)

where the index (i) runs over the data points, k and l runs over active parton flavors in the process
and δ and γ runs over the APPLgrid x-grid points. This FK can be written as a matrix:

(FK)ij (4.4)

identifying the index i with the index (i) over the data points and the index j with the multi-index
(k, l, δ, γ). PDFs now should be reorganize in a matrix with a number of rows equal to the number of
column of the matrix (FK)ij to perform the convolution in the matrix per matrix product fashion.
The PDFs matrix should contain the values of the different flavor PDFs k and l, at certain point xγ
and xδ at a given energy scale Q2

0. Given this matrix, namely (pdf)jn, the convolution can finally
be written in the form of eq. (4.1), where the index n runs over the number of PDFs included in the
convolution3.

With this identification is now easy to understand the meaning of Ndata, Npdf and N: Ndata
is the number of available data points, Npdf is the number of PDFs convoluted with the FK table
and N is given by NkNlNδNγ where Nk is the number of possible values for k, Nl is the number of
possible values for l and so on.

3If n = 1, the FK is convoluted with one PDF, if n = 2 with two PDFs and so on.
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For the FK table used in the present work, the number of xγ and xδ grid points considered is
27, so Nδ = 27 and Nγ = 27; The number of active flavor is 7, so Nk = 7 and Nl = 7; finally, the
number of data points is 8. The matrix (FK)ij is then a matrix of size 8 x (27 · 27 · 7 · 7), i.e. a
matrix 8 x 35721. The matrix (pdf)jn is a matrix 35721 x Npdf, where Npdf is set each time to the
desired value.

4.5 First time benchmarks

4.5.1 Without OpenCL

In the first stage of the analysis, the convolution (4.1) has been rewritten with all the tools listed
in paragraph (4.3) except OpenCL and TensorFlow. The parameter Npdf has been set to 1, and the
convolution has been performed 2000 times for each method (i.e. AVX, SSE3 and so on), measuring
the elapsed time. Then, the average elapsed time has been evaluated for each method. Results
achieved are shown in figure (4.3).
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Figure 4.3: mean values of the elapsed time for each method. FLAT refers to the standard convolution
with simple for loops shown in the previous chapter. As shown, the AVX version of the convolution
is the fastest one.

As it is possible to see, AVX instructions allows to perform the convolution in approximately one
third of the time needed by the FLAT method, i.e. the standard convolution with simple for loops.

4.5.2 With OpenCL

After the time benchmark of figure (4.2) has been produced, the convolution has been implemented
also in OpenCL and has been run on CPU and GPU maintaining Npdf = 1. There are more ways in
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which eq. (4.1) can be parallelize and so more version of the OpenCL convolution. However, for this
first time benchmark, this is irrelevant since the different implementations took approximately the
same amount of time to perform the calculation. The various way of parallelizing eq. (4.1) will be
discussed in the next paragraph.

Results achieved with OpenCL are compared to the previous ones in figure (4.4), where results of
various OpenCL implementations are reported as a single value, being very close to each other.
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Figure 4.4: mean values of the elapsed time for each method, including OpenCL. As shown, OpenCL
presents a significant (of approximately 3 order of magnitude) worsening of the time performances.

The figure shows that OpenCL takes about 1 second to perform the convolution, both on CPU and
GPU. So, the time performances of OpenCL are approximately 3 order of magnitude worse than the
performances achieved with the other methods.

This result can be explained profiling with more accuracy the OpenCL implementation of the
convolution. Indeed, a typical OpenCL program is composed of six fundamental components, called
platform, device, context, program, kernel and queue. This elements are necessary in order to interface
the host with the device and execute the program on it. In particular, the code that will be executed
by the single compute units of the device is written in kernel.

Describing in details the feature of all these six components is out of the scope of the present
work. However, it should be pointed out that building such environment, necessary to subsequently
execute the program, requires a significant amount of time, that could not be neglected in a time
performance analysis.

Another “bottleneck” in time performances is related to the creation of OpenCL buffers, i.e.
functions aimed at interfacing the memory of the host with the device memory, making “visible” to
the device data stored in host memory.

After a better profiling of the OpenCL performances, it has been shown that the building of the
OpenCL environment requires more time than the calculation itself and, more specifically, it takes
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approximately 1 second. So, the bad results achieved can be addressed to such feature of OpenCL
programs, common also to other parallel programming tools (e.g. CUDA).

This result shows that, in order to benefit from the advantages of GPU and parallel computing,
the amount of calculations to be performed after the environment has been built, should be increased
considerably. This is the strategy adopted in the next steps of the analysis.

4.6 OpenCL kernels

Before moving to the next time benchmarks, consider again the matrix product of equation eq. (4.1)
or, even better, its C++ counterpart. As mentioned in the dot product example of paragraph (1.12),
the products between the j-th components of the FK and of the PDFs arrays are independent from
each other, and the same holds for the two for loops over indexes i and n. Indeed, these can be
performed in parallel, evaluating all the components of out[i*Npdf+n] simultaneously. The only
operation that cannot be performed in parallel is the sum4.

So, there are three operations that can be parallelized, i.e. the for loop over i, the for loop over
n and the component-wise multiplication between the FK and the PDFs arrays. This results in seven
possible ways in which the OpenCL kernel can be written, i.e. parallelizing just one of the operations
(3 possibilities), parallelizing two of them (3 possibilities) or even all of them (1 possibility).

In what follows, the different OpenCL implementations of the convolution will be referred to as:

• CL1: where the component-wise multiplication is performed in parallel,

• CL2: where the two for loops are performed in parallel,

• CL3: where the for loop over i is performed in parallel,

• CL4: where the for loop over i and the component-wise multiplication are performed in
parallel,

• CL5: where the for loop over n and the component-wise multiplication are performed in
parallel,

• CL6: where the for loop over n is performed in parallel.

The implementation with all the operations performed in parallel has been discarded for memory
and performance issues.

A feature common to the OpenCL versions of the convolution where the component-wise mul-
tiplication is performed in parallel, i.e. CL1, CL4 and CL5, is the need for an auxiliary array to
store the results of the multiplications. This involves more memory traffic and a slowdown of the
performances, as the results will show.

4.7 Testing different setup

The first results achieved with OpenCL showed that the convolution between the given FK table an
a single PDF was not suited to be parallelized and that a new strategy should be developed in order
to address the problem. So, a toy-model representing the convolution of eq. (4.1) was developed,

4However it is possible to split the sum of, say, N components in n sums of N/n components and perform the n
sums in parallel. At the end the partial results should be summed in order to obtain the result of the original sum.
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where the FK and the pdf matrices were represented by two dense matrices respectively with sizes
Ndata x N and N x Npdf.

Then, the convolution was performed, changing Ndata, N and Npdf, with all the OpenCL methods
and with AVX, in order to find a setup (combination of the three parameters) for which the parallel
implementation achieves better time performances than the fastest sequential implementation of the
convolution.

In doing so, one has to keep in mind what actually means to increase the sizes of the two matrices
from the perspective of a PDFs fit. Remember that Ndata is the number of experimental data points,
Npdf is the number of PDFs convoluted with the FK and N is given by the product of the points in
the xγ and xδ grids and the number of active flavors. So, when Ndata is increased, we are saying that
more data are available for the fit, which is perfectly reasonable given that the number of available
data from collider experiments is increasing. When Npdf is increased, more PDFs are convoluted
with the FK. While the number of physical PDFs (i.e. the number of active flavours) is fixed by the
process under study, the number of PDFs replicas can be arbitrarily increased, making again this
scenario feasible. Indeed, we can imagine to organise all the PDFs replicas in the PDFs matrix and,
for instance, compute the convolution for each replica at the same time in parallel (more details in
chapter 5). Finally, increasing N has a less straightforward meaning, being N the multi-index given
by (k, l, δ, γ) (see paragraph (4.4)). An increase in N may correspond to an improvement of our
knowledge of PDFs in a wider kinematic region, to an increase in the number of active flavors (i.e.
the number of physical PDFs) or to both of them. This last option is process-dependent and so the
results achieved with the toy-model can be reproduce in a real fit only for those processes with the
same physical conditions.

4.8 GPU vs CPU

In this paragraph, the results achieved running the toy-model convolution with AVX on CPU and with
OpenCL on GPU are presented. The graphs of figure (4.5), (4.6) and (4.7) show time performance
trends obtained changing one parameter between N, Ndata and Npdf while keeping the other fixed.
Graph (4.8) instead shows time performances obtained varying simultaneously Npdf and Ndata while
keeping N fixed. A comprehensive summary of all the case studies is given in table (4.1). Trend
obtained changing at the same time the values of N and Ndata or Npdf are shown only in table for
practical reasons.

As it is possible to see in figure (4.5), when only N is increased, the time needed to perform the
convolution with AVX remains significantly lower than the time needed by OpenCL. Moreover, the
different OpenCL implementations take approximately the same time apart from CL6 that suffers
from very bad performances because it parallelizes over Npdf, but Npdf = 1.

A similar trend is observed in figure (4.6), when only Ndata is increased. As might be expected,
better results are achieved with CL2 and CL3, that parallelizes over Ndata. The bad performances
of CL6 can be addressed to the same cause mentioned above.

Something new appears in figure (4.7). When Npdf is increased, time performances of AVX gets
worse and becomes comparable to the ones achieved with CL2 and CL6. However, even though this
result hints to the possibility that PDFs fits can take advantages of parallel computing, it does not
justify alone the employment of such devices to perform PDFs fits and convolutions.

A considerable improvement in time performances instead is observed when both Npdf and Ndata
are increased. Here, CL2, CL3 and CL6 respectively perform the convolution in approximately 1/4,
1/6 and 1/6 of the time needed by AVX. So, this setup is particularly suited to be parallelize. The bad
performances achieved with the other OpenCL implementations can be addressed to the additional
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N Npdf Ndata AVX [s] CL1 [s] CL2 [s] CL3 [s] CL4 [s] CL5 [s] CL6 [s]
35712 1 8 0.000157 0.9 0.9 0.9 0.9 0.9 0.9
106 1 8 0.005 1 0.9 0.9 0.9 0.9 1.2
107 1 8 0.057 1.47 1.49 1.51 1.38 1.47 3.97
108 1 8 0.575 7.13 7.1 7.17 6.31 6.71 32.07
35712 102 8 0.016 1.02 0.9 1.04 0.948 0.96 0.908
35712 103 8 0.169 2.384 0.928 2.342 1.868 1.786 0.996
35712 104 8 1.731 16.35 1.757 15.655 11.0271 10.18 1.8
35712 1 102 0.00243 0.873 0.866 0.874 0.865 0.88 1.033
35712 1 103 0.0214 1.081 0.94 0.96 1.085 1.114 2.209
35712 1 104 0.216 3.23 1.759 1.761 3.14 3.43 14.377
35712 102 102 0.186 2.815 0.895 1.234 1.922 1.908 1.252
35712 103 103 21.61 193.237 5.252 8.46 101.552 101.598 8.413
35712 2 · 103 2 · 103 86.13 � 25.004 16.052 � � 15.967
105 103 8 0.486 4.6 1.097 5 3.68 3.517 1.283
105 104 8 4.863 38.634 3.409 42.294 26.785 27.19 3.504
106 103 8 4.903 34.093 3.425 44.236 25.941 28.316 4.977
105 1 103 0.0611 1.49 1.114 1.172 1.488 1.488 4.646
105 1 104 0.606 6.917 3.331 3.332 7.287 7.243 38.725
106 1 103 0.615 6.108 3.529 3.536 7.425 6.622 39.557

Table 4.1: time performances achieved with AVX on CPU and OpenCL on GPU for the reported
setups. Time is given in seconds.

memory traffic coming from the parallelization of the component-wise multiplication.
With regards to setups in which N is increased along with one of the other two parameters, it is

possible to observe from table (4.1), that, when Ndata is increased, AVX performs the convolution
approximately one order of magnitude faster than every OpenCL implementation; when Npdf is
increased instead, results comparable to the AVX ones are achieved by CL2 and CL6.

In summary, the toy-model suggests that only when the number of operations grows considerably,
due to an increase in the number of iterations in the two for loops, parallelize over these loops can
be convenient and can result in a significant improvement in time performances.
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Figure 4.5: time performances achieved with AVX and OpenCL; Ndata = 8 and Npdf = 1.
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Figure 4.6: time performances achieved with AVX and OpenCL; fDSz = 35721 and Npdf = 1.
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Figure 4.7: time performances achieved with AVX and OpenCL; Ndata = 8 and fDSz = 35721.
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Figure 4.8: time performances achieved with AVX and OpenCL; fDSz = 35721.
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fDSz Npdf fNData NumPDFs Avx [s] fk3 [s]
35712 1 102 102 0.0018 ± 0.0001 0.0049 ± 0.0001
35712 1 102 103 0.00187 ± 0.00003 0.00350 ± 0.00003
35712 1 102 104 0.00186 ± 0.00003 0.00330 ± 0.00003
35712 1 103 102 0.0210 ± 0.0002 0.0101 ± 0.0002
35712 1 103 103 0.0210 ± 0.0002 0.0080 ± 0.0002
35712 1 103 104 0.0210 ± 0.0002 0.0076 ± 0.0002
35712 1 104 102 0.213 ± 0.001 0.0212 ± 0.0002
35712 1 104 103 0.213 ± 0.001 0.0090 ± 0.0002
35712 1 104 104 0.213 ± 0.001 0.00785 ± 0.0002

Table 4.2: time performances achieved with AVX on CPU and CL3 on GPU for the reported setups.
Time is given in seconds.

4.9 Reloading the PDF
Apart from the matrix per matrix product, there is another way to perform the convolution between
a fixed FK table and a given number of PDFs. Indeed, instead of storing the PDFs in a matrix N ×
Npdf, a single array PDF can be convoluted with the FK table and, at the end of the convolution, the
array can be loaded with a new PDF. The convolution with a given number of PDFs, say NumPDFs,
can then be carried out convoluting the FK table with a single PDF for NumPDFs times, reloading
the PDF values at the end of each convolution.

Such approach has been tested for different values of NumPDFs and Ndata. The convolution
has been implemented in parallel using the CL3 method, given that now it is no more possible to
parallize over Npdf, being it equal to 1, and that the methods CL1, CL4, CL5 have shown to be
slower than the CL3 implementation. Results obtained are shown in figures (4.9), (4.10) and (4.11)
and summarized in table (4.2).

Figure (4.9) shows the average time per PDF employed by AVX and CL3 to perform the convo-
lution. The number of data points Ndata is set equal to 102 while NumPDFs is varied between 102

and 104. As it is possible to see, AVX is more performing, even if the time difference is not so big.
Also, while AVX curve is a constant, average time per PDF decreases with NumPDFs for the OpenCL
implementation. This feature is common to all the three figures.

In figure (4.10) the situation is reversed: OpenCL is more performing than AVX but the difference
is little. Here Ndata is equal to 103 and the time is given in seconds, as in figure (4.11).

A considerable improvement in time performances is gained when Ndata is set to 104. The
average time per PDF taken by OpenCL reduces to about 0.01 [s], i.e. one order of magnitude lower
than the AVX counterpart.

This result is notable for two reasons: firstly because of the great saving of time achieved with
such configuration and secondly because a configuration with Ndata = 104 and NumPDFs = 102 is
absolutely “realistic” and no doubt can occur in real PDFs fits.
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Figure 4.9: comparison between time performances achieved with AVX and CL3; Ndata is set to 102.
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Figure 4.10: comparison between time performances achieved with AVX and CL3; Ndata is set to
103.
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Figure 4.11: comparison between time performances achieved with AVX and CL3; Ndata is set to
104.

4.10 Adding TensorFlow

Results illustrated in the previous paragraphs are encouraging. Indeed, they show that there are
some configurations and setups for which a parallel implementation of the convolution is considerably
more performing than the AVX one. Now, the analysis can be pushed forward investigating if there
is a more efficient way of running the convolution in parallel. For the previous benchmarks, OpenCL
has been used because it executes on heterogeneous platforms and so it is particularly suited for
applications that in principle can happen to be executed over different machines. Though, other
parallel programming framework, such as CUDA, can be employed and their performances can be
tested against the ones achieved with OpenCL.

In the present work, the toy-convolution has been rewritten using TensorFlow, a library com-
monly used in Neural Networks applications (see paragraph (4.3)). Compared to OpenCL, TensorFlow
automatically performs the matrix per matrix product in parallel (when a GPU is connected to the
host) and use all the memory of the GPU by default. Everything is done by calling just the single
high level function tf.matmul. On the other hand however, what happens at low level remains
hidden.

Results for the TensorFlow implementation of the convolution has been produced both for the
case in which the three parameters N, Ndata and Npdf are varied and for the case in which a fixed
FK is convoluted with a number NumPDFs of PDFs.

As it is the case for OpenCL, TensorFlow is significantly more performing than AVX when both
Ndata and Npdf are increased, as shown in figure (4.12). With regards to the other setups,
TensorFlow results are comparable to OpenCL ones and are not reported for the sake of simplic-
ity.
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fDSz Npdf fNData NumPDFs Avx [s] fk3 [s] TF [s]
35712 1 102 102 0.00188 0.0049 0.00457
35712 1 102 103 0.00187 0.0035 0.00166
35712 1 102 104 0.00186 0.0033 0.00143
35712 1 103 102 0.021 0.01 0.0133
35712 1 103 103 0.021 0.008 0.00278
35712 1 103 104 0.021 0.0076 0.00167
35712 1 104 102 0.213 0.0212 0.0925
35712 1 104 103 0.213 0.009 0.0125
35712 1 104 104 0.213 0.00785 0.00445

Table 4.3: time performances achieved with AVX on CPU, CL3 and TensorFlow on GPU for the
reported setups. Time is given in seconds.
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Figure 4.12: time performances achieved with AVX, OpenCL and TensorFlow; fDSz = 35721.

Moving to the single PDF analysis, again it is possible to observe in figures (4.13), (4.14) and
(4.15) that OpenCL and TensorFlow time performances are comparable to each other. Values are
given in table (4.3).

These results show that there are no significant differences between the two methods in terms of
time performances. Still, it is worth noticing that OpenCL implementations such as CL2, CL3 and
CL6 works in a totally different way with respect to TensorFlow. Indeed, while TensorFlow uses
by default all the memory of the GPU, such OpenCL implementations use just a certain amount of
it.
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Figure 4.13: comparison between time performances achieved with AVX, CL3 and TensorFlow; Ndata
is set to 102.
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Figure 4.14: comparison between time performances achieved with AVX, CL3 and TensorFlow; Ndata
is set to 103.
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Figure 4.15: comparison between time performances achieved with AVX, CL3 and TensorFlow; Ndata
is set to 104.
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Chapter 5

Conclusions and outlook

The amount of data coming from experiments at colliders is increasing over time and the standard
techniques to perform PDF fits are becoming inadequate to deal with them. Indeed, during the
fitting procedure, the convolution between the partonic cross sections and the PDFs is computed
thousands of time until the minimization algorithm converges. From a computational point of view,
these operations are extremely energy and time consuming.

A great result in term of time performances was first achieved with the introduction of tools
such as APPLgrid and APFEL, that make usage of interpolating techniques to precompute part of the
convolution in order to reduce the amount of operations that has to be performed during the fit. An
even greater improvement of the time performances was gained by joining together the two methods
into APFELgrid, where the FK table was introduced and the convolution reduced to a simple matrix
per matrix product.

After the introduction of the FK method, the further speed up of the convolution was addressed
in this thesis studying the time performances achievable on GPU with parallel computing. The
first attempt to simply move the convolution introduced in section (4.1) on GPU using OpenCL was
unsuccessful, so the search for a convenient way of performing PDF fits on GPU was carried out by
means of a toy-model, i.e. using fictitious FK, data-points and PDFs of chosen dimensions.

Results illustrated in the previous chapters suggest that there are ways to perform PDF fits in
parallel on GPU that are more performing, in terms of time saving, than the currently adopted
fitting procedure. Indeed, they show that when the number of calculations increases considerably,
i.e. the number of data points and the number of convoluted PDFs increase, AVX take more time than
OpenCL and TensorFlow to perform the toy-model convolution. More specifically, results show that
CL2, CL3 and CL6 kernels are significantly more performing than AVX when it comes to perform a
convolution with Ndata and Npdf of orders ranging from 102 to 104. CL3 is one order of magnitude
more performing than AVX also in the case of a single PDF reloaded at the end of each convolution,
the same result holding also for TensorFlow.

In summary, there are two convenient ways to perform PDF fits in parallel on GPU, given that
the number of data-points is of the order of 102 or more. The first one is to perform, at each step
of the genetic algorithm, the Nrep convolutions at the same time in parallel, organising the PDFs
matrix in order to contain the Nrep replicas of the PDFs. This situation corresponds to the case in
which both Ndata and Npdf are large. The second one instead take advantage of the parallelization
over the number of data-points. This is applicable both to the previous case in which the replicas
of the PDFs are organized in the PDFs matrix and to the case in which a single PDF at the time is
convoluted with the FK. This second scenario corresponds to NumPDFs ranging from 102 to 104.
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With regards to the parallelization over N instead, results show that there is no gain in time
performances with respect to AVX, that is considerably faster. Moreover, a solution based on N
would be unlikely applicable to general PDF fits, given that in N are embedded the characteristics
of the FK, strictly related to the process under study.

In the future, the analysis could be refined investigating more deeply which type of parallel
computing tool is best suited to perform the fit. Moreover, real PDF fits should be carried out
with the proposed solutions to test the actual time performances against the ones predicted by the
toy-model.
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