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Abstract

The aim of this work has been to study and analyse the breaststroke
swimming style of several swimmers with methods of machine learning,
a tool which has shown great potentials in the field of sports, but it has
not been tested yet in examples of breaststroke.
The main purpose has been to find a method for distinguishing different
types of swimmers and for classifying them. Furthermore, this work
has been focused to find the best way to compare performances of two
different swimmers or different performances of the same swimmer. This
method could be helpful to train the swimmer to achieve a particular
result and improve his swimming style.
To reach the goal, the swimmers’ speed time dataset provided by the
Dipartimento di Scienze Sportive, Università degli studi di Milano, has
been analysed, and the best swim of each athlete has been isolated. With
best swim it is meant the single succession of stroke and flutter kick
where the swimmer gains more acceleration. The best swim has been
used to compare different swimming performances of different swimmers
to find the main features of the breaststroke style. Then, the affinity
propagation algorithm has been applied to four different similarity matri-
ces, constructed from the best swim profiles with four different metrics:
the euclidean distance, the mean squared error, the mean absolute error
and the Kolmogorov-Smirnoff test.
This approach has verified that the affinity propagation algorithm is able
to recognise different performances of the same swimmer, clustering
them in the same class. Furthermore, the comparison of the different
performances of the same swimmer or of several swimmers, has con-
firmed the importance of the flutter kick in attaining high breaststroke
speed. Finally, based on the results of this work, three kinds of specific
trainings can be proposed which aim to improve the swimming style and



the performances of the athletes.
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Chapter 1

Introduction

1.1 Aim and forward of the work

Machine learning is currently being applied as an analytical and prob-
lem solving tool in a wide variety of fields from theoretical physics, to
autonomous driving, online suggestions, fraud interception, and to in-
stantaneous language translation. Machine learning analysis can be also
used in sport fields to improve athletes performance and help them to
determine the best way of training [1]. The advantage is that machine
learning is able to quickly analyse complex datasets and multiple data
sources.

There are very few studies that have tried to use machine learning
algorithms to determine training planning on high levels, especially in
swimming sports [2]. The overall goal of the present study is to illus-
trate the potential of machine learning in sports on poorly investigated
examples of breaststroke. In particular, this research focuses on the
classification of swimmers’ performance using the affinity propagation
algorithm for the improvement of their skills.

The dataset on which that machine learning algorithm has been
applied has been provided by Dipartimento di Scienze Sportive, Università
degli Studi di Milano and it consists of speed time data of 66 breaststroke
swimmers.
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1.2 Breaststroke

The breaststroke is one of the four main swimming styles with the front
stroke, the backstrokes and the butterfly stroke and it is the slowest one
among them [3]. In the breaststroke, the swimmer swims with the chest
down in the water, arms slightly breaking the surface of the water, legs
always underwater and the head underwater for the second half of the
stroke.

The kick is sometimes referred to as "frog kick", because of the re-
semblance to the movement of a frog’s hind legs. However, when done
correctly, it is more similar to a "whip kick". The body is often at a steep
angle to the forward movement, which slows down the swimmer more
than any other style.

A swimming event can be composed in four moments or phases: the
starting phase, the swimming phase, the turning phase and the finishing
phase [4]. Since the swimming phase, composed in turn by an active
and passive pahse, is the most important one, it will be deeply analysed
in the successive paragraphs. A scheme of the movements succession is
shown in 1.1.

The active phase of the stroke - that gives propulsion - is deep and
varied. Deep because the hands search the water in depth and varied
because the arms vary their position with respect to the trunk in relation
to the sensitivity of the swimmer on the water.The pushing phase does
not take place as the hands are never set back with respect to the head.

The retropulsion of the upper limbs coincides, in the technical swim,
with the adduction of the shoulder blades to the column that provides
greater force on the water. This gesture, in connection with the posterior
arch of the spine and the pressure of the underlying water, allows the
swimmer to break the surface from the head to the lumbar area. The
arms are then recovered outside or near the surface of the water, but in
any case the elbows must remain submerged and close to the body.

In the passive phase, the swimmer tries to exploit the height reached
with respect to the water to go as far forward as possible by placing the
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shoulder blades and flexing the column. Consequently, at the end of
stroke recovery, the gluteal surface emerges from the surface, reducing
friction with the fluid. In this swim, the recovery of the legs (abduction
and flexion) begins when the traction ends (end of the active stroke).
This movement is immediately followed by a simultaneous adduction
and extension of the legs (active phase). The action of the leg is often
characterized by a low excursion on the lateral plane of the legs. Moreover,
in this sort of scissor kick, the flexing foot gradually adjust itself following
the direction of the leg. It follows that the foot will return "hammer"
only at the end of the recovery, thus also reducing friction in the passive
phase.

The effectiveness of the leg also depends on the mobility of the swim-
mer’s joints, in fact greater mobility allows the swimmer to push more
water and therefore to go faster. In breaststroke, a breathing happens
at each stroke cycle, but the head should remain in line with the torso
[5]. The performance of the breaststroke style strongly depends on the
coordination between the upper and lower limp [6] [7] Breaststroke speed
depends 70% on the action of the legs, while the remaining 30% is due
to the action of the arms.

1.3 Machine learning

Machine learning can be considered a type of applied statistics which, as
defined by Goodfellow [8], increased emphasis on the use of computers to
statistically estimate complicated functions and a decreased emphasis on
proving confidence intervals around these functions. Using a machine
leaning algorithm implies that the algorithm is able to learn from data.
To understand what is meant by learning from data, it is possible to
quote Mitchell [9]: “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P

, if its performance at tasks in T , as measured by P , improves with
experience E .” . Machine learning can solve several tasks, as classification,
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Glide position Arms extend forward Legs prepare for frog kick

Face in water as kick starts Return to glide positionArms straighten as kick ends

Hands pulled sideways

Figure 1.1: Breaststroke style scheme

classification with missing inputs, regression, transcription, machine
translation, synthesis and sampling. To check how a machine learning
algorithm learns, it is useful to define a quantitative measure of its
performance. For each different task T , a specific measure P should be
defined. In case of classification, classification with missing inputs, and
transcription, the accuracy of the model should be measured. Accuracy
is the percentage of correct outputs produced for a certain number of
examples. Another way is to measure the percentage of incorrect outputs.

In the literature, machine learning algorithms are classified as un-
supervised or supervised based on the experience they are allowed to
have during the learning process. Briefly, unsupervised learning algo-
rithms are applied to dataset containing many unclassified data, and
learn information on the data only based on the structure of the dataset.
Instead, supervised learning algorithms elaborate information starting
from targeted or labelled data.

Machine learning is so important and popular nowadays in science
and industry because, it provides a fast way to gain information and build
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Figure 1.2: Graphical representation of the most popular machine learning
applications

models using the data only - and obviously the machine learning algo-
rithms. Those methods of big data analysis have spread fast in different
fields, as theoretical physics, autonomous driving, online suggestions,
fraud interception, and instantaneous language translation (a scheme of
that interdisciplinary applications can be observe in 1.2).

Machine learning ideas have developed enormously in the last 70 years,
following the development of artificial intelligence, and computer science.
The main statistical tools became available before the 1940 with the Bayes
theorem (1812), the Least Squares method for data fitting (1805) and the
Markov Chains (1913). These methods are very important to machine
learning. The first step of machine learning development could be dated
to the late years of 1940s with the invention of stored-program computers.
Those computers held their programs in the same memory used for data.
The most important ones were the Manchester Small-Scale Experimental
Machine in 1948, Cambridge’s EDSAC and the Manchester Mark 1 in
1949, and the University of Pennsylvania’s EDVAC in 1951. In 1950, Alan
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Figure 1.3: Machine learning history

Touring published Computing Machinery and Intelligence (REF) in which
he wonders if computers could be defined intelligent. In 1951, Marvin
Minsky and Dean Edmonds (REF) that simulated the work of organic
brains created the first neural network. After this fast evolution, artificial
intelligence suffered of a period characterized by many failures REF),
until the late 1980s, when new tools as informatics, machine learning
and computational intelligence made their appearance. The next step
was the invention of deep learning, a subsystem of machine learning,
which is based on the use of neural networks (REF). A scheme of machine
learning development can be observed in 1.3.

In the successive paragraph it is shown howmachine learning operates.
Machine learning takes as input a certain type of data (the form of this
data depends on the specific task) then the algorithm creates models or
clusters analysing the structure of the data which could be labeled or not.
Different types of machine learning applications have been developed
according to the enormous amount of uses, which that subject could
be applied. There are two principal branches of machine learning :
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Figure 1.4: An example of most common machine learning branches

the supervised learning and the unsupervised learning (as it has been
schemed in 1.4). The supervised learning algorithm takes as input
labelled data, for example, creating the model using the information
provided from the supervisor. Data are often grouped as the input and
output, training the algorithm to create a model, which can be applied to
new input data in order to forecast a new output. The main algorithm is
the k-nearest neighbour algorithm. The unsupervised learning takes as
input unlabelled data and creates a model analysing the data structure.
One of the most important application of unsupervised learning is cluster
analysis. The aim of this application is to classify and group unlabelled
data identifying similarities among the data. The main algorithms are
the affinity propagation and the k-means. Another important branch of
machine learning is the reinforcement learning. This technique consists
in the construction of a system of reward and punishment, which trains
the algorithm to learn a ‘decisional path’.
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Chapter 2

Analysing breaststroke signals

2.1 Filtering

The signal analysed is a periodic speed time function which represents
the variation of the swimmer’ s speed in the time (thet is named swimmer’
s profile). An example of the signal shape is shown in 2.1. One of the
most important tools used in the present work is the filtering of the entire
swimmers’ profiles obtained by plotting each dataset in speed time graph.
The aim of this tool is to filter and cut the best swim (the single repetition
of stroke and flutter kick).

For each profile, the best swim is considered the one characterized
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Figure 2.1: Example of an entire swimming profile, that is the shape of the
variation of the swimmer’ s (y-axis) in the time (x-axis).
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by the period where the swimmer gains more acceleration. To do so, the
speed gained between the start of the stroke and the peak of the flutter
kick (corresponding to the maximum extension of the flutter kick) has
been divided by the time spent on. The single movement which has the
maximum acceleration is the best period.

The first problem to deal with is how to isolate that period. In a
first attempt, a Fourier transform signal analysis has been performed to
isolate the periodic part cutting the irregular parts. Unfortunately, due
to fluctuations in the speed measuring, the algorithm was not able to
recognise the periodic shape. Another method to filter the swimmer’s
profile has been to apply the change of the sign of derivative as a counter
to isolate periods.

A program has been built with Python in order to take as input the
swimmer’s speed time dataset and return the part of the dataset which
represents the best period. The count of the sign of derivative changes has
been built taking into account several restraints to check for fluctuations
that could distort the count of sign changes. The algorithm takes as input
the csv file containing the speed time dataset and, using two different
functions, it returns the best period. The first function filters the profiles
excluding the non periodic part (i.e., cutting the fluctuations). Then, it
creates a vector which stores the maximum and minimum of the speed
of the profiles with their position in the original dataset (that allows to
reconstruct the best profile with its original speed and time). The second
function takes as input the output of the first function and it uses the
counter of changing derivative sign computed cutting the extremes of
the best period. To do this, the algorithm computes for each period the
acceleration as the difference between the first minimum and the second
maximum speed (gained from the start of the stroke to the maximum
extension of the flutter kick) divided by the time spent, and it chooses
as best period the one which has the largest acceleration. Then, the
algorithm, using those extremes, recreates the original best period and
returns it as the output.
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2.2 Metrics for the accessment of swim pro-
file

After the best period has been filtered, four metrics have been introduce
to compare the different swimmers’ profiles. The metrics selected are the
euclidean distance, the mean squared error[10], the mean absolute error
[11], the Kullback-Leibler divergence [12] the Kolmogorov-Smirnoff test
[13]. Those metrics have been also used to build the similarity matrix for
the affinity propagation algorithm. It has been decided to use different
types of metrics to study and compare the different results produced
by the affinity propagation algorithm and to understand which of those
metrics is the best one for that work. In those subsections all the metrics
used are briefly introduced.

2.2.1 Mean squared error

In statistics, the mean squared error (MSE) or mean squared deviation
(MSD) of a procedure for estimating an unobserved quantity measures the
average squared difference between the estimated value and the actual
value.

MSE = 1

n

n∑
i=1

(xi − yi )2 (2.1)

2.2.2 Mean absolute error

In statistics, mean absolute error (MAE) is the measure of the difference
between two continuous variables. Assuming that X and Y are variables
expressing the same phenomenon, it is possible to interpret the mean
absolute error as follows: considering a scatter plot of n points, where
point i has coordinates (xi, yi), the Mean Absolute Error (MAE) is the
average vertical distance between each point and the identity. MAE is
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also the average horizontal distance between each point and the identity
line. The mean absolute error is given by:

M AE = 1

n

n∑
i=1

∣∣xi − yi
∣∣ (2.2)

2.2.3 Kullback Leibler divergence

In mathematical statistics, the Kullback–Leibler divergence is a measure
of how one distribution is different from a second one. In the simplest case,
a Kullback–Leibler divergence of 0 indicates that the two distributions
considered are identical.

DK L(P ||Q) = ∑
x∈χ

P (x) log
P (x)

Q(x)
(2.3)

2.2.4 Kolmogorov Smirnoff test

In statistics, the Kolmogorov–Smirnov test is a nonparametric test of the
equality of continuous, one-dimensional probability distributions that
can be used to compare a sample with a reference probability distribution,
or to compare two samples. The Kolmogorov–Smirnov statistic quantifies
a distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution, or
between the empirical distribution functions of two samples.

2.3 Best period reconstruction

The profiles obtained by the best period filtering have different dimen-
sions. Indeed, they consist of a different number of time-speed couples.
Since the metrics used in the analysis take as input two vectors of the
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same dimensions (containing the speed of the best period profile), it
has been necessary to remake the best period profiles with all the same
dimensions. A way to achieve this, is to use an interpolate method with
Python language, in this case the spline method, to obtain all the pro-
files with the same dimensions(the function make_interp_spline from
scipy.interpolate has been used [14]).

Another method used has been to add zeros at the beginning of the
speed vector to obtain equal dimensions. In the present work, the results
of the analysis based on the spline method are reported in an exhaustive
manner, whereas the results of the second method are only briefly de-
scribed, due to the low quality of the obtained graphs.

2.4 Affinity Propagation

The machine learning tool used in the present work is the algorithm
named affinity propagation. Affinity propagation is a clustering machine
learning algorithm, that clusters data based on a measure of similar-
ity. It has been published by Frey et al. in 2007. It is a method that
simultaneously considers all data points as potential exemplars [15]. It is
possible to understand how it works by considering each data point as a
node in a network where real-valued messages are transmitted along its
edges until a good set of exemplars and corresponding clusters have been
founded. The exemplars are the data which represent the class. It is
possible to refer to them as class centres. Messages among the points are
updated according to minimize an appropriately chosen energy function.
The method is called “affinity propagation” because the value of each
message reflects the affinity of one data point with another point, that
can be chosen as its exemplar [15].

Affinity propagation takes as input an ensemble of real values which
are the similarities between data points. The similarity s(i ,k), where i

and k are two possible objects of the input collection, shows how well
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Figure 2.2: An example of responsibility and availability message passing [15]

the object k is an acceptable exemplar for object i . It is relevant to
observe that data points with larger values of s(k,k) are more suited to
be selected as exemplars. Those values are referred to as “preferences.”
The affinity propagation algorithm takes as input also a parameter called
preference, which represents the preferences described above. That
parameter influences the number of identified exemplars, which is also
the number of clusters. The number of clusters also depends on the
message-passing procedure.

Responsibility and availability are two kinds of messages exchanged
between data points which consider a different kind of competition, de-
ciding which points are exemplars and to which centre the other points
belong. According to Frey et al. [15] responsibility and availability are
defined as follows The “responsibility” r (i ,k), sent from data point i to
candidate exemplar point k, represents how acceptable point k is to be
the exemplar for point i , considering other potential exemplars for point
i . The “availability” a(i ,k), sent from candidate exemplar point k to point
i , represents how appropriate it would be for point i to choose point
k as its exemplar, taking into account the support from other points
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that point k should be an exemplar. The operation of availability and
responsibility massage passing is illustrated in 2.2 and shown in the
successive paragraphs. The availabilities are initialized to zero: a(i ,k) =
0. Then, the responsibilities are computed using the rule

r (i ,k) ← s(i ,k)− max
k ′s.t .k ′ 6=k

{a(i ,k ′)+ s(i ,k ′)}. (2.4)

In the first iteration, due to the fact the availabilities are set to zero, the
r (i ,k) value is the initial similarity between point i and point k, considered
its exemplar, minus the largest of the similarities between point i and
other potential exemplars. This initial computation does not consider how
many other points prefer each candidate exemplar. In later iterations,
when some points are assigned to other exemplars, their availabilities
value will become negative, decreasing the real values of some of the
input similarities s(i ,k ′) in (2.5), thus removing that candidate exemplars
from the competition.

For k = i , the responsibility r (k,k) is set to the input preference that
point k be chosen as an exemplar, s(k,k), minus the largest of the sim-
ilarities between point i and all other candidate exemplars [15]. This
“self-responsibility” reflects the evidence, accumulated in the previous
interactions, that point k could be an exemplar. That evidence is based
on its input preference which is modified by how it does not adapt to be
clustered with another exemplar. Even if the responsibility computed
above makes all the candidate exemplars compete for gaining a data point,
the following availability update considers how data points select each
candidate exemplar as a good one for themselves

a(i ,k) ← min{0,r (k,k)+ ∑
i ′s.t .i ′ 6∈{i ,k}

max{0,r (i ′,k)}}. (2.5)

The availability a(i ,k) is computed as the self-responsibility r (k,k) plus
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the sum of the (positive) responsibilities that the candidate exemplar k

receives from other points [15]. Only the positive portions of incoming
responsibilities are selected to be added in the previous update, because
it is only necessary for a good exemplar to explain some data points
well (positive responsibilities), regardless of how poorly it explains other
data points (negative responsibilities) [15]. The negative value of self-
responsibility r (k,k) indicates that point k prefers to belong to another
exemplar rather than becoming an exemplar itself. If that situation oc-
curs, the availability of point k to be an exemplar can be increased if there
are other points having positive responsibilities for point k being their
exemplar [15]. To limit the effect of incoming positive responsibilities, the
total sum is limited avoiding it to become negative. The “self-availability”
a(k,k) is computed differently

a(i ,k) ← ∑
i ′s.t .i ′ 6=k

max{0,r (i ′,k)}. (2.6)

This message reflects the evidence, accumulated in previous inter-
actions, that point k is an exemplar. That fact is based on the positive
responsibilities sent to candidate exemplar k from other points [15].

Affinity propagation algorithm presents many advantages then other
methods, as k −centr es clustering. The popular k-centres clustering al-
gorithm takes as input an initial set of randomly selected exemplars of
the dataset and iteratively refines this set decreasing the sum of squared
errors. K -centres clustering depends on the initial selection of exem-
plars implying lots of rerun with different initial inputs finding a suitable
solution. However, this approach works well only when the number of
clusters is small. Affinity propagation has various advantages over other
clustering techniques. Methods such as k-centres clustering, k-means
clustering, and the expectation maximization algorithm compute only
a small set of estimated cluster centres at each step, compare to the
affinity propagation. They also strongly depend on the initialization set.
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Figure 2.3: An example of affinity propagation creating classes in different
iterations [15]

In contrast, by simultaneously considering all data points as potential
centres and gradually identifying clusters, affinity propagation is able
to avoid many of the poor solutions caused by unlucky initializations
and hard decisions [15]. Other methods as Markov chain Monte Carlo
randomly search for good solutions, but they do not have the affinity
propagation’s advantage of considering many possible solutions simul-
taneously. Affinity propagation finds clusters with a much lower error
than the other methods, and it does so in less than one-hundredth the
amount of time.

An example of affinity propagation work is shown in 2.3 where affinity
propagation is illustrated for two-dimensional data points. The negative
Euclidean distance has been used to measure similarity. Each point
is colored according to the current evidence that it is a cluster center
(exemplar). The darkness of the arrow directed from point i to point
k corresponds to the strength of the transmitted message that point i

belongs to exemplar point k [15].
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Chapter 3

Analysis and results discussion

3.1 Dataset

The dataset consists of 66 different CSV sheets containing the data for 35
swimmers collected by the Dipartimento di Scienze Sportive, Università
degli Studi di Milano. Each of these sheets contains the instantaneous
speed and position for any instant of time of a performance of one swim-
mer. The interval of time at which the speed and position have been
recorded are irregular. Each of these Excel sheets represents the swim-
mer’s profile. Three swimmers have nine profiles each, recorded during
different performances. Two swimmers have three profiles each, recorded
while the athletes were carrying an extra weight. All the other swimmers
have one profile each.

3.2 Profiles

The first step of the analysis of the breaststroke has been to plot the
dataset available for each swimmer, using the matploitlib library of Python.
From these speed time graphs, it is possible to observe the periodic mo-
tion of stroke and flutter kick (3.1). The graphs show the characteristic
shape of the breaststroke style, which consists of a periodic repetition of
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Figure 3.1: Four examples of entire profiles of different swimmers. Notice the
periodic shape of the breaststroke style.

two peaks, representing the succession of stroke and flutter kick. Some
of the obtained swimmer’s profiles are reported in Fig. 3.1.
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Figure 3.2: Two examples of best period profiles

3.3 Filter

The results of the period filtering described in the tools section are shown
below. Analysing the shape of the best period, it is possible to understand
the style of the swimmer. For example, in the first plot (3.2, left) the
swimmer takes a fast stroke and an even faster flutter kick. However, the
second swimmer (3.2, right) takes a fast stroke, but a slower flutter kick.

3.4 Metrics and confront

Once all the swimmers’ best periods have been reconstructed, some
metrics have been selected to compare and analyse their swimming
profiles. Those metrics are the euclidean distance, the mean squared
error,the mean absolute error, the Kullback-Leibler divergence and the
Kolmogorov-Smirnoff test. The metrics have been collected form the
library statistics of sklearn module [16]. The metrics have been linearized
to create a linear comparison between two swimmers. The distance
between all swimmers has been computed and plotted to find a linear
behavior. Unfortunately, a linear behaviour has not been found, as the
3.3 shows.

Another method to calculate a quantitative difference between two
swimmers has been to compute the percentage ratio between the average
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speed of the two swimmers. This method allows to quantitatively calculate
the speed loss between two swimmers or between two different swims
of the same swimmer, providing also the opportunity to control the
swimmer’s style and thus to improve it. In section 3.8 it is possible to
see an application of this method.

3.5 Clusters analysis with spline

Once all the best period profiles with equal dimensions obtained by the
spline method have been collected, the successive step has been to cluster
them to find different classes of swimmers. To perform this, the algorithm
of Affinity Propagation has been used, due to the fact that it does not
require to know a priori the number of clusters. The algorithm was taken
from the library cluster of module sklearn [16]. The algorithm takes
as input the matrix of distances between all the best period profiles, so
there are different results for each metric used to compute the distance
matrix. In particular, only the speed has been selected, and not the time
of each swimmer. With this algorithm, it was not possible to use the
Kullbac-leibler divergence due to problems of divergence.

In the subsection below, the results of the swimmers’ clustering for
each metric are shown. First, a plot of the clusters has been produced
with the embedding algorithm (named MDS) of the manifold library from
the sklearn module [16]. Unfortunately, in that case, the MDS algorithm
has not been able to create a manifold where the points are clustered in
different groups. Indeed, although the affinity propagation algorithm has
been able to create different clusters, the MDS algorithm has not been
able to produce a plot that represents an ensemble of clusters. So it has
been decided not to include those plots in the present work. Then, it has
been supposed that most of the average speeds of the cluster’s elements
are normally distributed. So the median of the average speeds of the
cluster’s elements and the standard deviation (computed as the difference
between the extreme of the sorted average speed vector taken out the
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Figure 3.3: Shape of pairwise evaluation of metrics between all the swimmers.
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Figure 3.4: Euclidean distance. Left: median speed and std of each cluster.
Right: average speed distribution of the elements of each clusters.

15% from the head and the tail) of each cluster have been computed
and plotted as point and error bar in a number class speed graph (Red
color in 3.4, 3.7, 3.10, 3.13). The distribution of the average speed of
the elements of each cluster has been plotted in a speed class graph
(Transparent colors in 3.4, 3.7, 3.10, 3.13). The subsequent graphs show
the shape of each class in a speed time graph coupled with the ratio plot
between each member and the class center (3.5, 3.8, 3.11, 3.14, 3.15).
The shape of all the centers has been plotted in a speed time graph and
the average speed of each center in a speed number class graph (Last
box in 3.6, 3.9, 3.12, 3.16). All the graphs have been produced with the
matploitlib library of Python.

3.5.1 Cluster results and analysis with euclidean dis-
tance

Using the Euclidean distance to compute the distance matrix, eight
clusters have been produced. It is possible to observe the classes sape
in Fig. 3.5. Class 0 contains nine elements with similar shape. Class
1 contains 15 elements with different shape. Class 2 contains seven
elements with different shape. Class 3 contains seven elements with
similar shape. Class 4 contains five elements with similar shape. Class
5 contains only one elements. Indeed, it has an anomalous shape. Class
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6 contains eight elements with different shape. Class 7 contains 14
elements with different shape.

3.5.2 Cluster results and analysis with mean squared
error

Using the mean squared error to compute the distance matrix, seven
clusters have been obtained. It is possible to observe the classes shape in
3.8. Class 0 contains nine elements with similar shape. Class 1 contains
16 elements with non similar shape. Class 2 contains seven elements
with non similar shape. Class 3 contains only one elements. Indeed, it
has an anomalous shape. Class 4 contains 12 elements with non similar
shape. Class 5 contains 14 elements with non similar shape. Class 6
contains seven elements with similar shape.

3.5.3 Cluster results and analysis with mean absolute
error

Using the mean absolute error to compute the distance matrix, eight
clusters have been produced. It is possible to observe the classes shape
in 3.11. Class 0 contains seven elements with non similar shape. Class
1 contains seven elements with similar shape. Class 2 contains six
elements with non similar shape . Class 3 contains only one elements.
Indeed, it has an anomalous shape. Class 4 contains eight elements with
non similar shape. Class 5 contains 14 elements with non similar shape.
Class 6 contains nine elements with similar shape. Class 7 contains 14
elements with non similar shape.

3.5.4 Cluster results and analysis with kolmogorov-smirnoff
test

Using the Kolmogorov-Smirnoff test to compute the distance matrix, nine
clusters have been obtained. It is possible to observe the classes shape
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Figure 3.5: Euclidean distance. Plots of class shape (left) and ratio class shape
(right)
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Figure 3.6: Euclidean distance. Plot of centers shape(left) and centers average
speed(right).
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Figure 3.7: Mean squared error. Median speed and std of each cluster
(red).Average speed distribution of the elements of each clusters (transparent
colors).
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Figure 3.8: Mean squared error. Plots of class shape (left) and ratio class shape
(right).
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Figure 3.9: Mean squared error.Plot of centers shape (left) and centers average
speed (right)
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Figure 3.10: Mean absolute error. Median speed and std of each cluster
(red).Average speed distribution of the elements of each clusters (transparent
colors).
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Figure 3.11: Mean absolute error. Plots of class shape (left) and ratio class
shape (right).

30



0 20 40
Time [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

d 
[m

/s
]

Centers Shape

0 2 4 6
Class

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

d 
[m

/s
]

Centers Average Speed

Figure 3.12: Mean absolute error. Plot of centers shape (left) and centers
average speed (right)
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Figure 3.13: Kolmogorov-Smirnoff test. Median speed and std of each cluster
(red).Average speed distribution of the elements of each clusters (transparent
colors).
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Figure 3.14: Kolmogorov-Smirnoff test. Plots of class shape (left) and ratio
class shape (right) for class-0, class1.

in 3.14, 3.15. Class 0 contains seven elements with non similar shape.
Class 1 contains nine elements with similar shape. Class 2 contains six
elements with similar shape. Class 3 contains nine elements with non
similar shape. Class 4 contains ten elements with non similar shape.
Class 5 contains four elements with similar shape. Class 6 contains
eight elements with similar shape. Class 7 contains seven elements with
non similar shape. Class 8 contains five elements with similar shape and
one elements with an anomalous shape. Indeed, as discussed later, the
algorithm built with the Kolmogorov-Smirnoff test, has produced classes
considering the value of their average speed .

3.6 Clusters analysis with zeros method

Another method to reconstruct swimming profiles with dimension is to
add some zeros into the beginning of the speed vector (this method is
called zeros method). Applying the affinity propagation algorithm to the
swimming profiles constructed with the zeros method, different results
in the clusters have been found. In particular, the number of classes
obtained by the mean absolute error and the Kolmogorov-Smirnoff test
is different from the one computed with the spline method. Indeed,
11 clusters have been produced with the mean absolute error rather
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Figure 3.15: Kolmogorov-Smirnoff test. Plots of class shape (left) and ratio
class shape (right) for class-2 to class-8.
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Figure 3.16: Kolmogorov-Smirnoff test. Plot of centers shape (left) and centers
average speed (right).

then eight, and eight clusters have been produced with the Kolmogorov-
Smirnoff test rather then nine. Instead, the euclidean distance and the
mean squared error have produced the same number of clusters as the
spline method.

In addiction, it has been impossible to identify the classes shape with
the zeros method because each swimmer has the best swim in a different
temporal position in the entire profile, but the zeros method requires to
plot the original time. So it has been decided not to include this results
in the present work.

3.7 Comparison of clusters results with spline
method

In this section, the different results of the swimmers’ profiles clustering
are discussed. Three clusters have been produced, grouping the same
elements by the euclidean distance, the mean squared error and the
mean absolute error. The first of these clusters is shown class five with
euclidean distance, class 3 with mean squared error, class 3 with mean
absolute error and it represents the swimmer-1 who is the fastest one.
The second of these clusters is class one with euclidean distance, class
one with mean squared error, class six with mean absolute error and it
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represents different performances of the same athlete named swimmer-2.
The third of these clusters is class three with euclidean distance, class
six with with mean squared error , class 1 with mean absolute error
and it represents different performances of the swimmer-6. Based on
these results, it is possible to underline that the affinity propagation
algorithm recognizes the particular style of a single swimmer in different
performances.

However, the main part of the dataset comprises single profiles of dif-
ferent swimmers (up to 35). Due to the high number of single swimmers’
profiles, the algorithm does not recognize a particular pattern and creates
different classes for each metric used. It is also possible to recognize
some recursions in certain classes obtained by the different metrics.
Unfortunately, these classes are composed by the profiles of different
swimmers, hampering to identify a particular style. It is possible to
speculate that these classes cluster elements with similar average speed
and similar profile shape, as shown by the graphs plotting those features.

3.8 Analysis of swimmers’ performance

A program which computes the value of all the metrics and the percentage
loss between two swimmers has been built to compare the different per-
formances. By this program, it is possible to analyse the performances
of two different swimmers or to test the same swimmer in two different
performances. To accomplish this analysis, the spline method has been
used to reconstruct swimmers’ best period profiles. In the subsections
below, two examples of this analysis are reported.

3.8.1 Analysis of best and worst swimmers

The aim of this subsection is to study how the affinity propagation
algorithm produces clusters of the fastest swimmers and the slowest
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Figure 3.17: Best period of fastest (left) and slowest (right) swimmer

swimmers. The fastest swimmer is named swimmer-1 (3.17, left). He
is clustered alone in graphs obtained by using the Euclidean distance,
mean squared error, and mean absolute error. Instead, the Kolmogorov-
Smirnoff test clusters him with other profiles (3.15, class 8), specifically
with some of the repetitions of another swimmer named swimmer-2. Wor-
thy of note is that those profiles of swimmer-2 are the fastest ones after
swimmer-1’ s ones.

The slowest swimmer is named swimmer-3 (3.17, right). The Euclidean
distance and the squared mean error clusters him in the same class with
other profiles which are the slowest ones after swimmer-3 (green dots
in 3.4, 3.7). The mean absolute error clusters swimmer-3 in a different
cluster with other swimmers which are not as slow as him (grey dots in.
3.10). The Kolmogorov-Smirnoff test clusters swimmer-3 in a class that
comprises the slowest swimmers (violet dots in 3.13).

Analysing the shape of the classes of the fastest and the slowest
swimmers, it is possible to detect the features which characterize the
style of the fast swimmer versus the slow one. Indeed, in swimmer-3’s
profile, it is possible to observe a section between the two peaks where
the swimmer does not gain speed. Instead, in swimmer-1’s profile there
is an important gain of speed after the first peak. Analysing the shape of
the classes of the two swimmers, it is possible to observe the charateristic
features quoted above.
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3.8.2 Analysis of swimmer’s performance with extra-
weight

The aim of this subsection is to study swimmers’ performances where
the athletes carry extra weights. The dataset consists of three profiles
of two different swimmers, named swimmer-4 and swimmer-5. In the
three performances, the athletes carry weights (computed in Newton)
respectively of zero Newton, 30 Newtons, and 50 Newtons. The results are
shown in the graphs below. The speed percentage loss with increasing
weight has been computed as the percentage ratio between the average
speeds of two profiles.

As 3.18 shows, swimmer-4 loses the 7% of his speed carrying an extra
weight of 30 Newtons and 21% increasing his weight from 30 Newtons to
50 Newtons. Instead, as shown in 3.19, swimmer-5 has lost only 10% of
his speed increasing his weight of 30 Newtons, whereas 9% increasing
his weight from 30 Newtons to 50 Newtons. Based on these results,
swimmer-5 seems to be an athlete trained to swim with extra-weight.
Indeed, he loses speed in a linear way when increasing the extra weight.
Instead, swimmer-4 loses speed in an irregular way, when increasing
the extra weight from 30 to 50 Newtons. This suggests that swimmer-4
could be an athlete who is not trained to swim with extra-weights. It is
also possible to analyse how the affinity propagation algorithm clusters
the profiles with an extra weight to check the loss in the swimming style
instead of the speed loss.

The mean absolute error and the euclidean distance group swimmer-
5’s profiles of zero and 30 Newtons in the same cluster and swimmer-5’s
50 Newton profile in a separate one. Instead, the mean squared error
clusters swimmer-5’s profiles of 30 and 50 Newtons in the same class, but
it places swimmer-5’s zero Newtons profile in another cluster. According
to these results, it is possible to affirm that the affinity propagation
algorithm does not recognize an important loss in the swimming style.
All the metrics clusters swimmer-4’s zero and 30 Newton profiles in the
same class, whereas swimmer-4 with 50 Newtons in a separate cluster.
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Figure 3.18: Swimmer-4 best period with extra-weight. Top left: 0N blue vs
30N yellow. Top right: 30N blue vs 50N yellow. Bottom left: 0N blue vs 50N
yellow.

These results show that the algorithm has detected a significant loss in
the swimming style as the percentage loss of 20% and 26% respectively
suggests.
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Figure 3.19: Swimmer-5 best period with extra-weight. Top left: 0N blue vs
30N yellow. Top right: 30N blue vs 50N yellow. Bottom left: 0N blue vs 50N
yellow.

3.9 Anomalous profiles

Two anomalous profiles have been found in the analysis of the profiles.
The first anomalous profile is shown in 3.20. It is considered anomalous
because it does not record the succession of peaks representing the
alternation of the stroke and the flutter kick. Two other profiles show
this shape in the original dataset. It has been decided to remove those
profiles from the dataset because the filtering program had difficulties to
recognize that shape.
The second anomalous profile is the one that has been clustered alone
using the euclidean distance, the mean squared error and the mean
absolute error metrics. In addiction, the swimmer (swimmer-1) associated
to that profile is the fastest one. It is possible to underline that it is an
anomalous profile due to its unique shape, as it is possible to observe
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Figure 3.20: Anomalous profile
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Figure 3.21: Swimmer-1 entire profiles (left) and best period (right)

in 3.21 (right). The question is if the filtering program has made some
errors in filtering the entire profile. However, analysing in 3.21 (left), it
is possible to observe that this particular shape represents the first the
stroke and the flutter kick after the irregularities. So it is possible to
conclude that the filtering program does not make any error in filtering.

3.10 Swimmer style discussion

Based on the performed analyses, it is possible to infer some conclusions
about the swimming style. It has been verified that the flutter kick is the
most powerful movement, as it has been described in the introduction.
In fact, analysing the fastest swimmer’s profile it is possible to observe
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that tit is the one with the highest peak in correspondence of the flutter
kick. Analysing 3.21 (left), it is possible to speculate that the fastest
swimmer spends a lot of energy to swim, so its endurance could be very
short. Indeed, the fastest swimmer has only a little speed drop after the
flutter kick, making its performance very fast, but its endurance short. In
other profiles, as those in 3.1, there is a big so drop after the flutter kick,
so the average speed is lower, but they can endure the performance longer.
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Chapter 4

Conclusions

In the present work, we have verified that the affinity propagation algo-
rithm is able to recognise different performances of the same swimmer,
clustering them in the same class. Furthermore, this result has been
obtained using different metrics. It would now be interesting to apply
the affinity propagation algorithm to a dataset composed by 8-10 swim-
mers with 5-6 different profiles each, to test if that algorithm is able to
recognise the different athletes performances also in that case.

A method has been proposed to compare different performances of
same swimmer or of several swimmers, confirming the importance of the
flutter kick in attaining high breaststroke speed.

Finally, based on the results of this work, three kinds of specific train-
ing can be proposed.

1. The first is a training which aims to improve the swimming style
trying to reproduce the profile of a better performing swimmer, in
particular the distribution of speed in time. Comparing his profile
with that of a better performing swimmer, an athlete could change
its style and attempt new movements which may enhance his speed.

2. The second is a training where different swimmers try to reproduce
the style of other swimmers, who may be also less performing than
them. That training could allow the athletes to learn how to gain a
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better control of their movements improving their style. In addition,
a swimmer could understand the pros and cons of its style.

3. The last training proposal is to compare different styles in endurance
tests on long term performances detecting the best ones. Under-
standing the features of the stronger swimmer, it is possible to create
a particular training to strengthen the athletes. That strengthening
could be also useful in short distance performances to improve the
swimmers’ speed.

43



Bibliography

[1] B. A. Novatchkov H., “Artificial intelligence in sports on the example
of weight training,” Journal of Science and Medicine in Sport, 12(1),
pp. 27–37, 2013.

[2] U. O. Mezyk E., “Machine learning approach to model sport training,”
Computers in Human Behavior 27, p. 1499–1506, 2011.

[3] C. M. J. B. T. M. Bartolomeu, R. F., “Contribution of limbs’ actions
to the four competitive swimming strokes: a nonlinear approach,”
Journal of Sports Sciences, 36(16), pp. 1836–1845, 2018.

[4] C. D. A. M. M. J. S. A. J. Barbosa, T. M., Biomechanics of Competitive
Swimming Strokes. In V. Klika (Ed.), Biomechanics in Applications.
IntechOpen, 2011.

[5] E. W. Maglischo, Swimming fastest. Human Kinetics, 2003.

[6] L. H. H. R. K. J. B. C. C. D. Seifert, L. M., “Inter-individual vari-
ability in the upper-lower limb breaststroke coordination,” Human
movement science, 30(3), pp. 550–565, 2011.

[7] S. L. M. C. D. Leblanc, H., “Arm-leg coordination in recreational and
competitive breaststroke swimmers,” Journal of Science and Medicine
in Sport, 12(3), pp. 352–356, 2009.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[9] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

44

http://www.deeplearningbook.org


[10] C. Sammut and G. I. Webb, eds., Mean Squared Error, pp. 653–653.
Boston, MA: Springer US, 2010.

[11] C. Sammut and G. I. Webb, eds., Mean Absolute Error, pp. 652–652.
Boston, MA: Springer US, 2010.

[12] S. K. e R.A. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, 22(1), pp. 79–86, 1951.

[13] W. J. Marsaglia G, Tsang WW, “Evaluating kolmogorov’s distribution,”
Journal of Statistical Software, 8 (18), pp. 1–4, 2003.

[14] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scien-
tific tools for Python,” 2001–. [Online; accessed <today>].

[15] B. J. F. et al, “Clustering by passing messages between data points,”
Science, 2007.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python ,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

45



I am very grateful to prof. Stefano Carrazza for having offered me the
opportunity to investigate this very interesting topic which combines a
new and promise tool such as machine learning to a sport discipline, a
subject that has not been studied up to now.
I am indebted to the athletes of Dipartimento di Scienze Sportive, whose
fatigue has provided me some work.
I warmly thank my family for having supported me and thought me to
work hard.
I thank all my friends and Miriana because they make my efforts lighter.

46


	Introduction
	Aim and forward of the work
	Breaststroke
	Machine learning

	Analysing breaststroke signals
	Filtering
	Metrics for the accessment of swim profile
	Mean squared error
	Mean absolute error
	Kullback Leibler divergence
	Kolmogorov Smirnoff test

	Best period reconstruction
	Affinity Propagation

	Analysis and results discussion
	Dataset
	Profiles
	Filter
	Metrics and confront
	Clusters analysis with spline
	Cluster results and analysis with euclidean distance
	Cluster results and analysis with mean squared error
	Cluster results and analysis with mean absolute error
	Cluster results and analysis with kolmogorov-smirnoff test

	Clusters analysis with zeros method
	Comparison of clusters results with spline method
	Analysis of swimmers’ performance
	Analysis of best and worst swimmers
	Analysis of swimmer's performance with extra-weight

	Anomalous profiles
	Swimmer style discussion

	Conclusions

