
MadFlow: towards the automation of Monte Carlo
simulation on GPU for particle physics processes

Juan M Cruz-Martinez
in collaboration with: S. Carrazza, M. Rossi, M. Zaro

PDFN 3
Machine Learning • PDFs • QCD

25th International Conference on Computing in High-Energy and Nuclear Physics
May 2021

This project has received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 740006.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 1 / 18

Outline

1 Motivation
Introduction
How can we do better
Tensors, tensors everywhere

2 The Flow suite: VegasFlow, PDFFlow, and MadFlow
The what, the where and the how

3 Benchmarks and examples
PDF interpolation
Automatic cross section integration
How to

4 Conclusions

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 2 / 18

Motivation Introduction

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to m.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 3 / 18

Motivation Introduction

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The integrals are usually computed
numerically using CPU-expensive Monte
Carlo generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 4 / 18

Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Quick Example:
n-dimensional gaussian function

I =

∫
dx1 . . . dxn e

x2
1+···+x2

n

Every event is independent of all
other events!

GPU computation can increase the performance of the integrator by more
than an order of magnitude.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 5 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread in HEP?

Most of the more advance theoretical calculations still rely exclusively on
CPU.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 6 / 18

Motivation How can we do better

Lack of Tools

Running on a CPU:

Worry only about what you are
interested in. For instance, if we
want an NNLO computation for
H → j and we have a Z → j
computation we only need to change
the matrix elements.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 7 / 18

Motivation How can we do better

Lack of Tools

Running on a CPU:

Even if we don’t already have some
obscure and private fortran-based
framework already built, there exists
a complete tool set for producing
results.

X PDF providers

X Phase space generators

X Integrator libraries...

some of which can still provide that sweet 70s’

Fortran taste

Cuba

RAMBO

fastjet

madgraph

LHAPDF

Root

result!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 7 / 18

Motivation How can we do better

Lack of Tools

Running on a GPU:

There is no such tool set yet

so it needs to be written from
scratch

?????

?????

?????

?????

?????

?????

result!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 7 / 18

Motivation Tensors, tensors everywhere

Filling up the box

1 A phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points space
points.

2 A PDF interpolation tool to generate luminosities in parallel for many
events X

3 An integrator framework able to send and receive batches to and from
the GPU X

4 A tool for the evaluation of Matrix Elements (at tree or loop level)
parallelized on the received phase (tree X, loop tbd)

5 Analysis tools, experiment simulation, jet algorithms...

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 8 / 18

Motivation Tensors, tensors everywhere

Filling up the box

1 A phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points space
points.

2 A PDF interpolation tool to generate luminosities in parallel for many
events X

3 An integrator framework able to send and receive batches to and from
the GPU X

4 A tool for the evaluation of Matrix Elements (at tree or loop level)
parallelized on the received phase (tree X, loop tbd)

5 Analysis tools, experiment simulation, jet algorithms...

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 8 / 18

Motivation Tensors, tensors everywhere

Filling up the box

1 A phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points space
points.

2 A PDF interpolation tool to generate luminosities in parallel for many
events X

3 An integrator framework able to send and receive batches to and from
the GPU X

4 A tool for the evaluation of Matrix Elements (at tree or loop level)
parallelized on the received phase (tree X, loop tbd)

5 Analysis tools, experiment simulation, jet algorithms...

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 8 / 18

Motivation Tensors, tensors everywhere

Filling up the box

1 A phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points space
points.

2 A PDF interpolation tool to generate luminosities in parallel for many
events X

3 An integrator framework able to send and receive batches to and from
the GPU X

4 A tool for the evaluation of Matrix Elements (at tree or loop level)
parallelized on the received phase (tree X, loop tbd)

5 Analysis tools, experiment simulation, jet algorithms...

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 8 / 18

Motivation Tensors, tensors everywhere

Filling up the box

1 A phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points space
points.

2 A PDF interpolation tool to generate luminosities in parallel for many
events X

3 An integrator framework able to send and receive batches to and from
the GPU X

4 A tool for the evaluation of Matrix Elements (at tree or loop level)
parallelized on the received phase (tree X, loop tbd)

5 Analysis tools, experiment simulation, jet algorithms...

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 8 / 18

The Flow suite: VegasFlow, PDFFlow, and MadFlow The what, the where and the how

Filling up the box: moving with the flow

The flow suite focus on speed and
efficiency for both the computer and
the developer

- Python and TF based engine

- Compatible with other
languages: Cuda, C++

- Seamless CPU and GPU
computation out of the box

- Easily interfaceable with
NN-based integrators

Source code available at:
github.com/N3PDF/VegasFlow

github.com/N3PDF/PDFFlow

VegasFlow

?????

?????

madFlow / mg5 in GPU

PDFFlow

?????

result!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 9 / 18

https://github.com/N3PDF/vegasflow
https://github.com/N3PDF/pdfflow

The Flow suite: VegasFlow, PDFFlow, and MadFlow The what, the where and the how

Interface with Madgraph’s matrix generation

As a first step towards a full parton-level
fixed-order Monte Carlo generator we
interface the ”flow” suite with
Madgraph’s matrix element generator.

We take advantage of ALOHA to
produce tensorized versions of the matrix
elements that can be efficiently run in
GPU.

We aim to be modular enough that
different ME providers can be used or
even combined (such as Madgraph’s
CUDA output, see Andrea’s talk from 2
hours ago!)

VegasFlow

?????

?????

MadFlow

PDFFlow

?????

result!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 10 / 18

The Flow suite: VegasFlow, PDFFlow, and MadFlow The what, the where and the how

Preliminary Results

Exact same ME and
feynman diagrams X

RamboFlow phase space
7

Perfect compatibility X

0

5

10

15

20

25

d
σ
/d
p t

[f
b

/G
eV

]

Cross section differential on pt for gg → tt̄

MG5 aMC@NLO

MadFlow

0 50 100 150 200 250 300 350 400

pt [GeV]

0.94

0.96

0.98

1.00

1.02

1.04

1.06

R
at

io
to

M
G

5
aM

C
@

N
L

O

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 11 / 18

Benchmarks and examples

Benchmarks and examples

To wrap it up, we will see some examples and benchmarks that show how
the parallelization (and tensorization!) of calculations can speed them up
enormously.

X Parallel PDF interpolation

X A completely automatic LO calculation, CPU vs GPU

X Generation of unweighted events

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 12 / 18

Benchmarks and examples PDF interpolation

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

10−12 10−10 10−6 10−2

x

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

Q = 1.65× 100

Q = 1.70× 100

Q = 4.92× 100

Q = 1.00× 102

Q = 1.00× 103

Q = 1.00× 104

Q = 1.00× 105

Q = 1.00× 106

Q = 2.00× 106

Interpolation in x for fixed q.

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 13 / 18

Benchmarks and examples PDF interpolation

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

101 103 105 107

Q

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

x = 1.0× 10−10

x = 1.0× 10−9

x = 1.1× 10−9

x = 5.0× 10−7

x = 1.0× 10−6

x = 1.0× 10−4

x = 1.0× 10−2

x = 5.0× 10−1

x = 9.9× 10−1

Interpolation in q for fixed x .

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 13 / 18

Benchmarks and examples Automatic cross section integration

MadFlow Vs plain Madgraph LO

Figure: Plain Madgraph Vs MadFlow VegasFlow-based implementation

0 50 100 150 200 250 300

Time (s)

MG5 aMC@NLO
36 active CPU cores

MadFlow
36 activate CPU cores

MadFlow
GPU Titan V

Performance results for gg → tt̄
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

X PhaseSpace for VegasFlow: a
GPU version of RAMBO

X There’s even room for
improvement if a clever phase
space were to be used!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 14 / 18

Benchmarks and examples How to

Open source for HEP

Where to obtain the code

The entire Flow suite is open source and can be found at the N3PDF
organization repository github.com:N3PDF

How to install

VegasFlow and PDFFlow can be installed from the repository or directly
with pip:

~$ pip install vegasflow pdfflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io

PDFFlow: pdfflow.rtfd.io

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 15 / 18

https://github.com/N3PDF
https://VegasFlow.readthedocs.io
https://pdfflow.readthedocs.io

Benchmarks and examples How to

The MadFlow prototype

To be released

We expect to release a working prototype for “MadFlow” with unweighted
events by the Offshell conference in July

L(x1, x2)⊗ σ̂({~p})

Matrix Element generator

PDFFlow Unweighted Events

GPU Phase Space

AlohaMadFlow

PDF

RAMBO

VegasFlow

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 16 / 18

Conclusions The end

Summary

GPU computation is increasingly gaining traction in many areas of
science but it is still not heavily used in particle physics
phenomenology.

→ Is competitive with CPU for MC simulations.

→ A lot of effort on GPU-based computations.

X VegasFlow, PDFFlow and MadFlow provide a framework to run in
any device.

X Generate all the different pieces (ME, PS, PDFs, integration
algorithm) needed for fixed order calculations.

To be released

Working prototype to be ready in the next few months (we aim to release
by July Offshell conference)

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 17 / 18

Conclusions The end

Thanks!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 18 / 18

Conclusions The end

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

I =
1

N

∑
f (~xi)

(the function f (~x) might be
arbitrarily complicated)

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 19 / 18

Conclusions The end

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

I =
1

N

∑
f (~xi)

(the function f (~x) might be
arbitrarily complicated)

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 19 / 18

Conclusions The end

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 19 / 18

Conclusions The end

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 20 / 18

Conclusions The end

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 20 / 18

Conclusions The end

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

So far so good, but how can we do it?

Juan Cruz-Martinez (University of Milan) MadFlow vCHEP 2021 20 / 18

	Motivation
	Introduction
	How can we do better
	Tensors, tensors everywhere

	The Flow suite: VegasFlow, PDFFlow, and MadFlow
	The what, the where and the how

	Benchmarks and examples
	PDF interpolation
	Automatic cross section integration
	How to

	Conclusions
	The end

