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Introduction Integrating with Monte Carlo methods

Parton-level Monte Carlo generators

Predictions for observables (for instance for LHC phenomenology) often require the
numerical computation of the following integral:

O =

∫
dΦn dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

where:

f (x , q): Parton Distribution Function

|M|: Matrix element of the process

{pn}: Phase space for n particles.

J : Jet function for n particles to m.
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Introduction Integrating with Monte Carlo methods

Parton-level Monte Carlo generators ingredients

In practice that requires a number of (mostly independent) ingredients:

O =

∫
dΦn dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The numerics being handled numerically by
CPU-expensive Monte Carlo (MC) generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!
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Introduction Integrating with Monte Carlo methods

The phase space integral

Most of the difficulty of the previous equation is hidden in the differential phase space
dΦn

dΦn =
n∏

i=1

(
d3pi

2Ei (2π)3

)
(2π)4 δ4

(
pa + pb −

∑
pi

)
.

Where the dimensionality of the integration grows with the number of particles in the
final state n as 3n − 4 (+2). The resulting integral presents the following issues:

→ High dimensionality (2 → 2 is at least dimension 4)

→ Complicated integration limits: the physical space we are integrating over (the
detector geometry) doesn’t necessarily match in a clean way the particles
momenta.

→ Divergences: to add insult to injury, the Mi→f quantity might be divergent for
single events even if the integral converges. Theses divergences are either
cancelled numerically or by playing with the integration limits.
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Introduction Integrating with Monte Carlo methods

The age of precision

MC algorithms are very convenient as they provide an estimate of the integral and of
the error while imposing almost no assumptions on the integrand.∫

ddxf (x⃗) ≃ 1
N

N∑
i=1

f (x⃗i ) = I var = 1
N

(
1
N

N∑
i=1

f (x⃗i )
2 − I 2

)
However, the error decreases with the number of shots only as 1√

N
.

Despite techniques to
reduce the number of
shots necessary, the
O ≃ 1√

N
holds.

π ≃ 3.2
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N

(
1
N

N∑
i=1

f (x⃗i )
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However, the error decreases with the number of shots only as 1√

N
.

It can take forever

π ≃ 3.16
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Introduction Motivation for new technologies

ATLAS current (2018) CPU usage
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Introduction Motivation for new technologies

ATLAS projected CPU usage
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Introduction Motivation for new technologies

CPU parallelization

For years adding more
power/transistors was
enough

Then adding more cores...

... but even that is not
enough anymore.

From H. Sutter’s

“The Free Lunch Is Over”
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Introduction Motivation for new technologies

Just add more cores
Wait, not so fast...

Plus...

✗ Power consumption

✗ Race conditions

✗ The memory wall

✗ Moore’s law still applies
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Introduction Motivation for new technologies

Why move to hardware accelerators

✓ Better performance

✓ Better efficiency

✓ GPUs are now as capable (and competitive!)
as CPUs for many operations
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Introduction Motivation for new technologies

Hardware accelerators
Or how I learned to stop worrying and love the Central Graphical Processing Unit

GPUs are designed to perform many operations at once in parallel:

✗ Each “worker” in the GPU must be doing the same as all its siblings

✗ Cannot share data during the calculation1

✗ in summary: only useful for calculations where each event is independent of all
other events and...

Wait...

1Not in the CPU sense anyway
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Introduction Techniques for parallelization

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a great target for
GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Example: n-dimensional gaussian
function

I =

∫
dx1 . . . dxn e

x2
1+···+x2

n

Every event is independent of all
other events!

GPU computation can increase the performance of the integrator by more than an
order of magnitude.
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Introduction Techniques for parallelization

If it is so good, why are we not using GPUs everywhere?

At least in the field of theoretical calculations there are a few points holding progress
back

✗ Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

✗ Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

✗ Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.
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Introduction Techniques for parallelization

Act in parallel: CPU

Actually the way we do Monte Carlo calculations in CPU already allows for a certain
degree of parallelization

I =
1

N

∑
f (x⃗i )

Where the form of the function f (x⃗) might
be arbitrarily complicated
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Introduction Techniques for parallelization

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which takes
a different input and a
different output

All operations must act on all
inputs at once!
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Introduction Techniques for parallelization

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which takes
a different input and a
different output

All operations must act on all
inputs at once!

So far so good, but how can we do it?
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Introduction Techniques for parallelization

Lack of Tools

Running on a CPU:

Indeed, you can usually only worry about
the part of the calculation that you are
interested in (say, a new NNLO matrix
element).

While you can find tools that solve
everything else (if you didn’t already had
that tools yourself!)

✓ PDF providers

✓ Phase space generators

✓ Integrator libraries...

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!
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interested in (say, a new NNLO matrix
element).

While you can find tools that solve
everything else (if you didn’t already had
that tools yourself!)

✓ PDF providers

✓ Phase space generators

✓ Integrator libraries...

Cuba

RAMBO

fastjet

madgraph

LHAPDF

Root

result!
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Introduction Techniques for parallelization

Lack of Tools

Running on a GPU:

There is no such tool set yet

so it needs to be written from scratch

?????

?????

?????

?????

?????

?????

result!
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GPU-enabled tools VegasFlow, PDFFlow, MadFlow

Wish list

Ideally we want a framework such that:

- Able to run on GPU

- ...of any brand!

- Can be interfaced with other languages.

- With primitives for often-used operations.

- Same program running in CPU and GPUs.

- Actively mantained.

- No need to learn a GPU-specific language.

There are many frameworks
available that can be used but
they are often quite complex or
fail one of the given points.

CUDA

OpenCL

OpenACC

numba

Alpaka

Kokkos

etc...

However we can look at another set of tools: Machine Learning frameworks.
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Ideally we want a framework such that:

- Able to run on GPU

- ...of any brand!

- Can be interfaced with other languages.

- With primitives for often-used operations.

- Same program running in CPU and GPUs.

- Actively mantained.

- No need to learn a GPU-specific language.

Most machine learning frameworks
usually comply with our wishlist,
the two most used frameworks at
the moment are TensorFlow and
pyTorch.

However we can look at another set of tools: Machine Learning frameworks.
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GPU-enabled tools VegasFlow, PDFFlow, MadFlow

Filling up the box: tools for modern computation

The goal is to provide tools that can facilitate the transition:

VegasFlow: Monte Carlo library with different algorithms that can be used in any
device: single-threaded and multi-threaded CPUs or AMD/nvidia GPUs.

PDFFlow: Bulk PDF interpolation, specially well suited for parallel calculation where
sequential steps can harm performance.

- Python and TF-based engine.

- Compatible with other languages: Cuda, C++,
Rust, Fortran.

- Seamless CPU and GPU computation out of
the box (develop in a laptop, deploy in a
cluster).

- A language with a mathematically oriented
“standard library”.
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GPU-enabled tools VegasFlow, PDFFlow, MadFlow

Other efforts

Beyond the tools presented on this talk, other groups are also working on the same
direction:

- TorchQuad by the ESA, similar to VegasFlow but using pytorch instead:
https://github.com/esa/torchquad

Most of the HEP focus is in the generation of Matrix Elements for Sherpa and
Madgraph:

- Madgraph for GPU: make fortran generate cuda code instead of fortran.

- BlockGen algorithms using Berends-Giele recursion.

A LHAPDF vectorized/parallel implementation is in the roadmap for 6.6 using Kokkos.
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GPU-enabled tools VegasFlow, PDFFlow, MadFlow

Easy to use and develop

Minimal changes to the external interface can achieve enormous speed ups.

Create PDF

query PID, (x ,Q2) point

xfxQ2()

fa (x ,Q
2) ⟳

Figure: LHAPDF6

Create PDF

query PID, array x , array Q2

xfxQ2()

f⃗a (x⃗ , Q⃗2)

Figure: PDFFlow

The heavy lifting is done “automagically” internally in PDFFlow
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GPU-enabled tools VegasFlow, PDFFlow, MadFlow

VegasFlow in detail

The VegasFlow library focuses on speed and
efficiency for both the computer and the developer

- Python and TensorFlow based engine

- Compatible with other Cuda, C++, Fortran
(and of course, python)

- Seamless CPU and GPU computation out of
the box

- Easily interfaceable with NN-based integrators
(if you don’t like MC anymore).

- Tensors are a natural way of thinking for many
physicists!

Source code available at:
github.com/N3PDF/VegasFlow

wi = M
j
ivj

In a classic C++ program we would
write:

#pragma omp parallel for

for(int i = 0; i < 3; i++) {

w[i] = 0;

for(int j = 0; j < 3; j++) {

w[i] += M[i][j] * v[j]

}

}

while instead we can just do:

w = tf.einsum("ij, j -> i", M, v)

TensorFlow will automatically
select the right code depending on
the target hardware, pragmas
included!
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GPU-enabled tools Benchmarks

VegasFlow Vs collission simulators

For Leading Order calculations the advantages are immediately visible

0 10 20 30 40 50
Time (minutes)

Madgraph
MG5_aMC@NLO

VegasFlow
Running on CPU

VegasFlow
GPU: Titan V

VegasFlow
GPU: RTX 2080 Ti

VegasFlow
GPU: Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.014 pb 
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Madgraph Vs VegasFlow implementation

- Port of CPU (C++ based)
code, no GPU-specific
algorithms (beyond
“tensorization”)

- Meaning: many points being
thrown away, which is ok for
CPU but harmful for GPU
performance!
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GPU-enabled tools Benchmarks

LHAPDF vs PDFFlow
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GPU-enabled tools Benchmarks

MadFlow: a madgraph interface

An example of what can be obtained is MadFlow: Taking advantage of Madgraph’s
ALOHA we produce tensorflow-versions of the matrix elements.

The TensorFlow library contains all
necessary kernels to run the matrix
elements in parallel.

Everything can run in both a CPU or a
GPU

Perfect compatibility ✓
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GPU-enabled tools Benchmarks

MadFlow in different devices

We see speed-ups for both complex and simple processes

0 5 10 15
Time (s)

i9-10885H 8 cores 32GB
AMD 2990WX 32 cores 128GB

i9-9980XE 18 cores 128GB
E5-2698 20 cores 256GB

AMD EPYC 7742 64 cores 2TB
NVIDIA Quadro T2000 4GB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events 
 gg tt (3 diagrams)

0 250 500 750 1000 1250 1500
Time (s)

AMD 2990WX 32 cores 128GB
i9-9980XE 18 cores 128GB

E5-2698 20 cores 256GB
AMD EPYC 7742 64 cores 2TB

AMD Radeon VII 16GB
NVIDIA Titan V 12GB

NVIDIA RTX 2080 Ti 12GB
Titan V + RTX 2080 Ti

NVIDIA V100 32GB
NVIDIA RTX A6000 48GB

MadFlow time for 1M events 
 pp ttgg (267 diagrams)

While having the whole thing in TensorFlow gives us great flexibility (the exact same
code is running in all those systems) we might want to forfeit some flexibility in
exchange for device-based optimization.
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GPU-enabled tools Benchmarks

Interfacing with CUDA

Main goal: flexibility and ease-of-use, that also means one can also make life harder for
oneself... for a benefit.

✗ Limited to a single
architecture

✗ Requires a transpiler to the
“low”-level language of choice

✓ More efficient memory management
and performance

✓ We can limit this more complicated
step only to the bottlenecks

0 5 10 15

g g > t t~ g g

p p > t t~ g

g g > t t~ g

g g > t t~

200 220Time (s)

Titan V 12 GB, Tree-level 1M events
Generic code (tf)
Device specific (Cuda)
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GPU-enabled tools Examples

Usability

The goal

The developer writes the code once (for instance, the matrix element for the process
they are interested in) and it can automatically be used for both GPU and CPU.

There is an obvious and common caveat: what if I already have some codebase (e.g.,
analysis tools) that have no need to be parallelized but that I need to call at certain
stages of the calculation.

The workaround

We have focus on compatibility with existing code and have tested interfaces with
Cuda, C++ and regular python at many stages of the development.

In what follows I will show some examples.
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GPU-enabled tools Examples

Run a simple integrand

>>> @tf.function

>>> def complicated_integrand(xarr, **kwargs):

>>> return tf.reduce_sum(xarr, axis=1)

>>> from VegasFlow.vflow import VegasFlow

# Instantiate the integrator

# limit the number of events to be computed at once

# (hardware dependent!)

>>> n_dim = 10

>>> n_events = int(1e6)

>>> integrator = VegasFlow(n_dim, n_events, events_limit = int(1e5))

# Register the integrand

>>> integrator.compile(complicated_integrand)

# Run a number of iterations

>>> res = integrator.run_integration(n_iter = 5, log_time = True)

Result for iteration 0: 5.0000 +/- 0.0009(took 0.47029 s)

Result for iteration 1: 5.0006 +/- 0.0003(took 0.32042 s)
.
.
.

Final results: 4.99995 +/- 8.95579e-05
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GPU-enabled tools Examples

Analyze the results mid-way

from vegasflow import vegas_wrapper

import tensorflow as tf

def my_cpu_only_analysis(results):

# Very complicated analysis:

return 2.0*results

def my_integrand(xarr, **kwargs):

# Start the calculation in the GPU

raw = tf.sin(xarr*4.0*3.1416)**2

res = tf.py_function(my_cpu_only_analysis, [raw], Tout=tf.float64)

# continue in the GPU

return tf.reduce_prod(res, axis=1)*xarr.shape[-1]**2

n_dim = 4

n_events = int(1e4)

n_iter = 5

result = vegas_wrapper(my_integrand, n_dim, n_iter, n_events)
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GPU-enabled tools Examples

PineAPPL

Example: interfce with the grid filling tool PineAPPL (Carrazza, Nocera, Schwan,
Zaro, hep-ph/2008.12789) addresses the problem of generating grids to produce
predictions for generic set of PDFs.

VegasFlow Integration

Events

CPU Pool

Events Events Events…...

PineAPPL
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The generation of such grids is a common use of Monte Carlo generators.
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Conclusions Open source in HEP

The importance of being open

Usual concerns:

✗ The code is too ugly to follow / be useful

✗ We would need to dedicate people to technical assistance

✗ Other fears about scooping or people finding bugs in the code.

But in reality:

✓ Perfect is the enemy of good

✓ Having many users is a good thing! (also, you can always decide not to respond)

✓ Opening the door to new collaborations and improvements is a good thing!
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Conclusions Open source in HEP

Where to find the code

Where to obtain the code

Vegasflow, PDFFlow and MadFlow are open source and can be found at the N3PDF
organization repository github.com/N3PDF (alongside other projects by the group)

How to install

They can all easily be installed with pip:

~$ pip install vegasflow pdfflow madflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io
PDFFlow: pdfflow.rtfd.io
MadFlow madflow.rtfd.io

Juan Cruz-Martinez (University of Milan) MC GPU Freiburg 33 / 35

https://github.com/N3PDF
https://VegasFlow.readthedocs.io
https://pdfflow.readthedocs.io
https://madflow.readthedocs.io


Conclusions The end

Summary

Monte Carlo simulations (fixed-order and otherwise) are great targets for
parallelization on hardware accelerators.

→ Despite being more than competitive with CPU not many groups are working on
it!

✗ Maybe we still have a big entry barrier?

✓ VegasFlow, PDFFlow and MadFlow provide a framework to run in any device.

✓ Generate all the different pieces (ME, PS, PDFs, integration algorithm) needed for
fixed order calculations.

✓ Remove all entry barrires while still leaving space for further optimization

Available open source

the code for madflow is available at https://github.com/n3pdf/madflow
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Conclusions The end

Thanks!
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