

EW AND BSM PHYSICS BETWEEN THE LHEC AND THE EIC

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

EIC-LHC synergy meeting

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

FERMILAB-PUB-22-125-QIS-SCD-T

Snowmass 2021 White Paper: Electron Ion Collider for High Energy Physics

<section-header>

SCIENCE REQUIREMENTS **AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER** EIC Yellow Report

2022

Mar

24

IOP Publishing

PAST AND FUTURE; REAL AND VIRTUAL

- POSITRON OPTION: BOTH
- LIGHT NUCLEAR TARGET (d, ${}^{3}He$) MOSTLY EIC
- PROTON POLARIZATION: EIC ONLY

KINEMATIC COVERAGE

LHEC

Nuclear

Structure

QGPlasma

10 -4

 ${\rm Q}^{2}/{\rm GeV}^{2}$

 10^{5}

-four-momentum transfer squared $^{\rm 4}$ 01 $^{\rm 3}$ 01 $^{\rm 2}$ 01 $^{\rm 10}$ 10 $^{\rm 2}$ 10 $^{\rm 10}$

1

 10^{-1}

LH_eO

10 -7

LHeC Experiment:

HERA Experiments:

NMC

BCDMS

E665

SLAC

10 -6

H1 and ZEUS

Fixed Target Experiments:

High Density Matter

10 -5

XXX L1

 $\overline{}$

///

EIC

OUTLINE

- WHAT CANNOT BE DONE AT THE EIC: HIGGS AND TOP
- PRECISION EW: THE WEINBERG ANGLE AND GLOBAL FITS
- BSM: FROM SMEFT FITS TO LFV, ALPS, DARK PHOTONS AND MORE

WHAT CANNOT BE DONE AT THE EIC

HIGGS PRODUCTION

EP VS. PP

- HIGGS PRODUCED IN CC OR NC INTERACTIONS
- CLEAN SIGNAL AND ZZH VS. WWH SEPARATION \Rightarrow PROBE OF HWW VERTEX \rightarrow HIGGS CP PROPERTIES
- DIRECTION OF FS QUARK WELL DEFINED \rightarrow ACCURATE $b\bar{b}$ decay measurement

HIGGS PHYSICS AT THE LHEC (AND FCC-EH) SUMMARY OF UNCERTAINTIES ON COUPLINGS

- Gluon fusion and W fusion \Rightarrow currently measured at 10% 20%
- $H\bar{b}b$ measured to percentage precision;
- $\tau \tau$ and $\bar{c}c$ also measurable

TOP PHYSICS AT THE LHEC: FCNC

- CLEAN DEEP-INELASTIC SINGLE TOP PRODUCTION
- TEST ANOMALOUS COUPLINGS
- COMPETITIVE WITH ILC FOR $tq\gamma \& tuZ$

PRECISION EW PHYSICS

DIS: EXPLOITING THE POTENTIAL **CROSS-SECTION AND COUPLINGS** $\frac{d^2 \sigma^i}{dx dy} = \frac{2\pi \alpha^2}{x y O^2} \eta^i \left[Y_+ F_2^i \mp Y_- x F_3^i - y^2 F_L^i \right] \qquad \eta_\gamma = 1 \ ; \ \eta_{\gamma Z} = \left(\frac{G_F M_Z^2}{2\sqrt{2}\pi\alpha} \right) \left(\frac{Q^2}{Q^2 + M_Z^2} \right);$ $\eta_Z = \eta_{\gamma Z}^2$; $\eta_W = \frac{1}{2} \left(\frac{G_F M_W^2}{4\pi \alpha} \frac{Q^2}{Q^2 + M_W^2} \right)^2$. $\pm \leftrightarrow e^{\pm}$ CHARGED CURRENT STRUCTURE FUNCTIONS $\eta^{\rm CC} = (1\pm\lambda)^2 \eta_W \qquad F_2^{W^-} = 2x(u+\overline{d}+\overline{s}+c\ldots) ,$ $F_3^{W^-} = 2(u - \overline{d} - \overline{s} + c \dots)$, $\lambda \Rightarrow \text{pol.}$ NEUTRAL CURRENT STRUCTURE FUNCTIONS $F_2^{\rm NC} = F_2^{\gamma} - (g_V^e \pm \lambda g_A^e) \eta_{\gamma Z} F_2^{\gamma Z} + (g_V^{e 2} + g_A^{e 2} \pm 2\lambda g_V^e g_A^e) \eta_Z F_2^Z$ $xF_{3}^{NC} = -(g_{A}^{e} \pm \lambda g_{V}^{e})\eta_{\gamma Z}xF_{3}^{\gamma Z} + [2g_{V}^{e}g_{A}^{e} \pm \lambda (g_{V}^{e\,2} + g_{A}^{e\,2})]\eta_{Z}xF_{3}^{Z}$ $g_V^e = -\frac{1}{2} + 2\sin^2\theta_W, \qquad g_A^e = -\frac{1}{2}$

- CAN DISENTANGLE M_w , $\sin^2 \theta_w$
- MINIMIZE PDF DEPENDENCE

EXTRACTING THE COUPLINGS

COMBINATIONS & ASYMMETRIES

EXAMPLE: THE PASCHOS-WOLFENSTEIN RATIO:

 $R^{-} = \frac{\sigma_{NC}(\nu_{\mu}) - \sigma_{NC}(\bar{\nu}_{\mu})}{\sigma_{CC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})} = \frac{1}{2} - \sin^{2}\theta_{W}$

- g_V - g_A SEPARATION \Leftrightarrow POSITRONS
- ISOTRIPLET-ISOSINGLET \Leftrightarrow DEUTERON
- W- $Z \Leftrightarrow CC$ vs. NC

ALL INFORMATION COMBINED IN A GLOBAL PDF-EW FIT

ELECTROWEAK MIXING ANGLE: EIC

- $\sin^2 \theta_W$ from NC polarization asymmetry
- SEVERAL Q^2 VALUES \Rightarrow TEST OF SCALE DEPENDENCE

- **COMPETITIVE** WITH EXISTING DETERMINATIONS
- COULD IMPROVE WITH GLOBAL EW-PDF FIT

ELECTROWEAK MIXING ANGLE: EIC vs. LHEC

- $\sin^2 \theta_W$ from NC polarization asymmetry
- LHEC: HIGHER ENERGY, COMPARABLE UNCERTAINTY

- **COMPETITIVE** WITH EXISTING DETERMINATIONS
- COULD IMPROVE WITH GLOBAL EW-PDF FIT

LHEC: GLOBAL EW+QCD FIT

- CANNOT USE EXTERNAL PDF SET WHEN MEASURING SM PARAMETERS
- SIMULTANEOUS FIT \Rightarrow RELIABLE UNCERTAINTIES
- ALL INFORMATION INCLUDED \Rightarrow UNCERTAINTIES MINIMIZED

(SOME) BSM SEARCHES

SMEFT FITS

- FIT OF DIMENSION 6 OPERATORS
- COMBINATION OF HADRONIC (DY) & DIS (PVA) OBSERVABLES
- FLAT DIRECTIONS REMOVED
- GLOBAL SMEFT+ PDF FIT (SMEFiT, PBSB)

LEPTOQUARKS

- LHEC VS EIC: RESONANCE VS. LFV INTERACTION
- EIC: ORDER ONE COUPLING PROBED FOR TEV-SCALE

- LHEC: s-CHANNEL RESONANT PRODUCTION (LFC)
- EIC: LFV radiation proportional to $m_{\ell_1}^2 m_{\ell_2}^2 \Rightarrow$ maximized for $e \tau$
- RATE PROPORTIONAL TO $Z \Rightarrow$ MAXIMAL FOR HEAVY IONS (GOLD)
- LHEC VS EIC: SIMILAR COUPLINGS, VERY DIFFERENT m_a RANGES

HEAVY OR "DARK" PHOTONS

- **RESONANT** PEAK IN DILEPTON SPECTRUM
- COLLIDER SIGNAL CLEARER THAN FIXED-TARGET DUE TO BOOST
- DIFFRACTIVE PRODUCTION \Rightarrow EIC vs LHeC qualitatively similar

TESTS OF CHIRAL STRUCTURE AT THE EIC

- CC e^{\pm} DIS:
- $\sigma_{\rm SM}^{e^{\pm}p}(P_e) = (1 \pm P_e) \sigma_{\rm SM}^{e^{\pm}p}(P_e = 0)$ FOR POLARIZATION P_e
- DEVIATIONS FROM $\sigma_{SM}^{e^{\pm}p}(P_e = \mp 1) = 0 \Rightarrow$ NONSTANDARD CHIRAL STRUCTURE
- DIFFERENT POLARIZATION \Rightarrow TESTED THROUGH LINEAR FIT

EXCLUDE $M_R \lesssim 270 \text{ GeV}$ at 95% c.l. Right-handed W

MORE BSM SEARCHES AT THE LHEC

- EXTENDED HIGGS SECTORS
 - MODIFIED TOP-HIGGS INTERACTIONS
 - CHARGED SCALARS
 - NEUTRAL SCALARS
 - MODIFIED HIGGS SELF-COUPLINGS
 - EXOTIC HIGGS DECAYS
- SUSY SEARCHES
 - SUSY EW SECTOR: PROMPT SIGNATURES
 - SUSY EW SECTOR: LONG-LIVED PARTICLES
 - R- parity violation
- FEEBLY INTERACTING PARTICLES
 - HEAVY NEUTRINOS
 - FERMION TRIPLETS IN TYPE-II SEESAW
- ANOMALOUS GAUGE COUPLINGS
- VECTOR-LIKE QUARKS
- EXCITED FERMIONS
 - COLOR OCTET LEPTONS
 - QUARK SUBSTRUCTURE AND CONTACT INTERACTIONS
- ANOMALOUS GAUGE COUPLINGS
- VECTOR-LIKE QUARKS
- KALUZA-KLEIN GRAVITONS

SUMMARY

"Nature does not distinguish 'Nuclear' vs. 'High Energy' physics"

(Abhay Deshpande)

• RICH SET OF OPPORTUNITIES FOR EW AND BSM STUDIES AT EIC

UNRELATED TO PDFs/NUCLEON STRUCTURE

- CURRENT EIC STUDIES ONLY SCRATCHED THE SURFACE OF FUTURE OPPORTUNITIES
- EXPLOIT KNOW-HOW ACCUMULATED OVER 15 YEARS OF LHEC STUDIES