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Combining Resummations



Transverse Momentum Distribution

h1 + h2 → F (M) + X (M : Invariant Mass)

QCD factorization theorem as a main guiding principle:

dσF

dp2
T ,F

(
pT ,F , αs

)
=

1

M2

∑
a,b

∫ 1

τ

d

dx
Lab

( τ
x

) d σ̂ab,H

dp2
T ,F

(x , pT ,F , αs)

in which the partonic part is expanded as a series in αs

d σ̂ab,F

dp2
T ,F

(
x , pT ,F , αs

)
= σ

(0)
F

 1︸︷︷︸
LO

+αsC(1)
ab︸ ︷︷ ︸

NLO

(
x , pT ,F

)
+ α2

sC
(2)
ab︸ ︷︷ ︸

NNLO

(
x , pT ,F

)
+ · · ·


Perturbative computations assume that C(n)

ab are WELL-BEHAVED. What happens when the smallness of αs

is compensated by large logarithms (αn
s Lm ∼ 1)?

C(1)= c21L2 + c11L

C(2)= c42L4 + c32L3 + c22L2 + c21L
L = ln

(
M2

p2
T ,F

)
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Resumming logarithmic enhancement to all order

Conjugate spaces:

• Bypass convolution =⇒ Mellin Space:∑
a,b

∫ 1

τ

d

dx
Lab

( τ
x

) d σ̂ab

dp2
T

(x) −→
∑
ab

L(N)
d σ̂ab

dp2
T

(N)

• Factorize δ-constraint =⇒ Fourier Space:∫
d2~pT exp

(
−i~b · ~pT

)
δ

(
~pT −

n∑
k=1

~pT ,k

)
−→

n∏
k=1

exp
(
−i~b · ~pT ,k

)

Exponentiation:

d σ̂ab,F

dp2
T

(N, b) = σ
(0)
F H(N) exp

Lf1(αsL)︸ ︷︷ ︸
LL

+ f2(αsL)︸ ︷︷ ︸
NLL

+αs f3(αsL)︸ ︷︷ ︸
NNLL

+ · · ·


where the logs become L = ln

(
b2M2

)
.

3



State of the art for small-pT resummation

[Bizon et al. (’18)] [Bizon et al. (’19)]

• WELL-BEHAVED distribution at small-pT . Matched results yield good predictions in medium and large-pT
• N3LL+NNLO corrections amount to about 5-10% in the Jacobian peak

• Very good convergence of the predictions at different perturbative orders: N3LL+NNLO bands are entirely

contained in NNLL+NLO

4



What about the other logarithmic enhancement?
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(Consistently) Supplement small-pT resummation with threshold logarithms

(1) Reproduces standard small-pT (CFG) resummation in the small-pT limit

(2) Reproduces threshold resummation to some given logarithmic accuracy in the soft limit

(3) Leads to the total cross section upon integration over pT :

exp {S(αn
s Lm)}L→0 = 1 −→

∫ ∞
0

dp2
pT ,F

(
d σ̂F

dp2
T ,F

)
= σ̂TOT

F

(In CFG’s formulation, this is enforced by the Unitarity Constraint)
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Some previous attempts

Joint resummation for Higgs (NLL) and VB (NNLL) [Kulesza et al. (’03)][Marzani & Theeuwes (’17)]

Soft and collinear logs jointly resummed in lnχ(N, b)

χ(N, b) =
bM

2e−γE
+

NeγE

1 + η bM
2N

(3) Reproduces standard small-pT resummation

(7) Reproduces threshold resummation

(3) Leads to the total cross section upon integration over pT

SCET [Li et al. (’16)] [Lustermans et al. (’16)]

(3) Reproduces standard small-pT resummation

(3) Reproduces threshold resummation

(7) Leads to the total cross section upon integration over pT
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Soft-improved small-pT (SIpT) resummation

MAIN INGREDIENTS:

Factorization of the Phase Space [Forte & Muselli & Ridolfi (’17)]

The factorization of the Phase Space is performed by taking the small-pT (or b → ∞) while keeping N/b in

order to preserve the threshold behavior at the inclusive level.

New treatment of the Evolutions

In order to compute NkLL soft-improved small-pT resummation, the large-N behavior of the evolution has to be

included up to NkLO (as opposed to Nk−1LO in standard small-pT ).

New prescription to compute the Fourier-Mellin inverse (?)

MAIN RESULTS: [Forte & Muselli & Ridolfi (’17)]

New argument for the Logarithms

The modified argument takes into account both the small-pT ,H and threshold limit

χ =
b2M2

b2
0

+ N̄2 with b0 = 2e−γE and N̄2 = NeγE

which interpolates between b2Q2 when b →∞ and N̄2 when b = 0.
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Structure of the SIpT resummed expression

Resummed expression:

dσ̂cons
ab

dξp
(N, χ, αs) = σ0

c Hc

(
N̄2

χ
, αs

(
Q2
))

Cci

(
N, αs

(
Q2

χ

))
Ccj

(
N, αs

(
Q2

χ

))
Uia

(
N, αs

(
Q2

χ

)
, αs

(
µ2
F

))
Ujb

(
N, αs

(
Q2

χ

)
, αs

(
µ2
F

))
exp

(
Sc
(
N, χ, µ2

R

))
Hard function H̄:

Hc

(
N̄2

χ
, αs

)
= Hc (αs) + A

(1)
c Li2

(
N̄2

χ

)
αs +O

(
α3
s

)
Sudakov exponent (Process-Independent):

Sc (χ,N) = −
∫ Q2

Q2

χ

dq2

q2

[
Ac
(
αs
(
q2
))

ln
Q2

q2
+ Bc

(
αs
(
q2
))]

+ α2
s

∫ Q2

Q2

N2

β0A
(1)
c Li2

(
N̄2

χ

)

Landau Pole+Additional Singularities =⇒ @ Fourier/Mellin Inverse =⇒ Borel Summation
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CFG vs. SIpT: Results for Higgs at LHC
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CFG vs. SIpT: Results for Z Boson at Tevatron II
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Fully Combined Resummation

• Not all soft logarithms are taken into account by SIpT: these are soft logarithms emitted at large angle &

pT -suppressed initial state radiations.

• Therefore, one needs to combine it with the pure threshold resummed expression through a profile matching

function such that the resulting expression reproduces small-pT and threshold resummation in the resp. limit.

dσ̂ab

dξp
(N, ξp , αs) = (1− T (N, ξp))

dσ̂tr
ab?

dξp
(N, ξp , αs) + T (N, ξp)

dσ̂th
ab

dξp
(N, ξp , αs)

• For small-pT , T gets rid of the ξp → 0 singularity and only keeps dσ̂tr?
ab which contributes to the total

cross-section.

• For finite pT and large-N, T gets rid of the N → ∞ singularity and only keeps dσ̂th
ab which reproduces the

soft behavior.
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CFG vs. Combined: Results for Higgs at LHC
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CFG vs. Combined: Results for Z Boson at Tevatron II
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Missing Higher Orders (MHO)



Predictions in Perturbation Theory

An observable Σ is computed in perturbation theory as:

Σ'
n∑

k=0

αk
s Ck +O(αn+1

s )

The perturbative expansions are asymptotic to Σ, i.e. (up to some order) increasing in powers of αs improves

the approximation.

Σ ' ΣNnLO + ∆ΣMHO

How to estimate ∆ΣMHO?

Renormalization in QFT introduces an unphysical dependence µ, and despite the fact that RGE states that physical

observables are independent of µ (µ∂Σ/∂µ = 0), residual µ-dependence appear in perturbative computations.

µ
∂

∂µ
ΣNnLO = O(αn+1

s ) = O (∆ΣMHO)

=⇒ Use the unphysical scale µ to probe MHO
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Scale variation prescription

CANONICAL METHOD: Variation by a factor of 2 around a central scale µ0.

Σ ' ΣNnLO(µ0)± max
µmin≤2µ0
2µmax≥µ0

|ΣNnLO(µ)− ΣNnLO(µ0)|

For a multi-scale process involving the renormalization scale (µR = κRµ0) and the factorization scale

(µF = κFµ0), there exists various (most common) prescriptions:

κF

κR

κF

κR

κF

κR
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How good is the Scale Variation method?

[Gavin Salam’s Slides (’16 PSR,’19)]

• NNLO predictions just barely reach 1% and for many processes the scale band is ∼ ±2%

• Only 3/17 cases in which the NNLO central values are contained in NLO uncertainty band
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Pros & Cons of Scale Variation

ADVANTAGES:

• Renormalization Group Invariance ensures that as the order increases, the scale dependence decreases

• Lead to smooth functions hereby incorporating correlations between nearby regions in the phase space

• Universal and therefore can be applied to various processes

CAVEATS:

• Lack of Probabilistic Interpretation

• Ambiguity in defining the central scale and the ranges at which the scale should vary

• Do not account for new singularities appearing at higher-orders
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Approximate Higher-Order with Resummations

Consider the gg -channel in gg −→ H (HEFT):[
d σ̂gg

dpT

]Nn+1LO

(N, ξp) =

[
d σ̂gg

dpT

]NnLO

(N, ξp) +
d σ̂gg

dpT

(n+1)

(N, ξp)

where the (n + 1)-th order:

d σ̂gg

dpT

(n)

(N, ξp) =
d σ̂gg

dpT

he,(n)

(N, ξp) +
d σ̂gg

dpT

th,(n)

(N, ξp).

Only holds if small-N (BFKL) behaviours are not spoiled by large-N (soft), and vice-versa.

Treatment of Soft part: (N-soft approximation is expected not to be good at finite N)

Resummation:
d σ̂gg

dpT

th,(n)

(N) =
∞∑
n=0

αn
s

2n∑
k=0

Cn,k lnk N, M−1 (lnN) ≈
(

ln(ln 1/x)

ln 1/x

)
+

FO:

∫ 1

0
dx xN−1

(
ln(1− x)

1− x

)
+

=
1

2

(
γ2
E +

π2

6

)
+ γEψ0(N) +

1

2

(
ψ2

0(N)− ψ1(N)
)
,
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Soft Part: Validation at NLO
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High-Energy Part: Validation at NLO
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Threshold+High-Energy: Validation at NLO
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Threshold+High-Energy: Validation at NLO
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NNLO Approximation: Hadonic result
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Generative Modellings for PDFs



Motivations

• ∆χ2 strongly depends on the number of

Monte Carlo (MC) replicas.

• Drawback: Dealing with very large samples

of replicas can become unpractical.
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Compression of Probability Distributions

Statement of the Problem:

How to find a specific subset of the original replicas such that the statistical distance between the original

and the compressed probability distribution is minimal?

Figure of merit to quantify distinguishability between two Monte Carlo PDF sets:

ERF =
1

Nest

∑
k

1

Nk

∑
i

(
Ck (xi )− Pk (xi )

Pk (xi )

)2

where:

• Pk is the value of the estimator k for the Prior.

• Ck is the value of the same estimator for the Compressed.

• Nk is the normalization factor for the estimator k.

List of possible estimators:

3 Central Value

3 Higher Moments (standard deviation,

Kurtosis, Skewness)

3 Kolmogorov-Smirnov distance

3 Correlation between pairs of flavours
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Standard Compression Workflow

Workflow design of a standard compression algorithm [S. Carrazza et al., 2015]
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Prior vs. Compressed set

The main concept works! (Np = 1000 −→ Nc = 100)
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Nc = 100 captures the statistical information of Np = 1000

BUT CAN WE DO BETTER?
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ganpdfs: Generation of Synthetic Replicas

Why GANs?

Observation: Standard compression algorithm just extracts

samples that present small fluctuations and which reproduce

best the statistical properties of the Prior.

Consideration: Efficiency of the compression can be improved

by generating additional (synthetic) replicas that contain less

fluctuations.

How?

Assuming PRIOR∼ PR : Generate SYNTHETIC∼ Pθ with

GANs such that Pθ ∼ PR .

Input Latent
Space z

Input PDF
(Np, nf , xLHA)

xr ∼ pr

Generator
Gθ(z)

Synthetic Repl.
(Ns, nf , xGAN)

xg ∼ pθ

Discriminator
Dφ(xS , xR)

(Ns, nf , xGAN)

GAN

Enhanced PDF
(Np + Ns, nf , xLHA)

Interpolation

ganpdfs
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Incorporating ganpdfs into a Compressor

Input PDF with
shape (Np, nf , xLHA)

Enhance

Np + Ns

replicas
Np

replicas

Reduced set
of replicas

Total ERF GA/CMA

Converges

Stop pyCompressor

GAN

Yes No

No

Yes

Samples for the compressed set C are now drawn

from (Np + Ns) while the minimization is still

performed w.r.t the prior P.

=⇒ The compression algorithm has to be:

• efficient to avoid the possibility of being

stuck in a local minima

⇒ Add various minimizers

• fast enough in order to perform more

iterations

⇒ Modify code design
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The Art Hyperparameter Optimization

How can we make sure that the set of hyperparameters are well-chosen in order to get the best results out

of a Model?

”. . . evaluating the quality of generated images samples with human vision is expensive and cumbersome,

biased [. . . ] difficult to reproduce, and does not fully reflect the capacity of the models.”

[Pros & Cons of GANs Evaluation Measures, 2018]

Solution:

Perform a Hyperparameter Optimization Scan:

• Define a reward function to assess the model.

ganpdfs uses a Frechet Inception Distance (FID): [M. Heusel et al., 2018]

FID =
1

2nf + 1

nf∑
i=−nf

||µ(i)
r − µ

(i)
s ||2 + Tr

(
Σ

(i)
r + Σ

(i)
s − 2

√
Σ

(i)
r Σ

(i)
s

)
.

• Scan over thousands of hyperparameter combinations:

ganpdfs relies on the Tree-Structured Parzen Estimator (TPE) algorithm to scan over the parameter

space. [J. Bergstra et al., 2013]
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Example of a Hyperparameter Scan

There are over 15 hyperparameters to be taken into account:

Generator Discriminator Others

nb. layers & nodes nb. layers & nodes size of xGAN grid

kernel initializer weights clipping Gaussian noise

activation function Gradient Penalty loss & weight nb. epochs

· · · · · · · · ·

Visual representation of a hyperparameter scan:

Glorot Uniform Random Uniform
Disc. Kernel Initializer

1.0

1.5

2.0

2.5

3.0

3.5

FI
D

1000 1500 2000
Nb. Epochs

FI
D

Glorot Uniform Random Uniform
Gen. Kernel Initializer

FI
D

2 3 4
Disc. Steps

FI
D

1 2 3
Gen. Steps

FI
D

32



Efficiency of GAN-enhanced Compression: Individual Estimators

SETUP: (Np = 1000 + Ns = 2000) −→ {Nc}

Non-normalized ERFs:

900800700600500400300200100908070605040

10 8

10 6

10 4

10 2

NC

ERF correlation

Random Mean (1k)
Standard

Enhanced
Random 68% c.l. (1k)

correlation kolmogorov_smirnov mean stdev skewness kurtosis
STATISTICAL ESTIMATORS

10 5

10 3

10 1

101

103

105

107

ER
F(

ES
TI

M
AT

O
R)

ERF value for the different Estimators for Nc=70

Random Mean (1k)
Random Median (1k)
Standard

Enhanced
Random 68% c.l. (1k)

3 Both standard and GAN-enhanced compression methodologies outperform any random selection.

3 GAN-enhanced approach yields better compression for all the individual estimators.
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Efficiency of GAN-enhanced Compression: Total ERF

60 80 100 120 140 160 180 200
Size of Compressed Set

0.14

0.15

0.16

0.17

0.18

0.19

ER
F

compressor vs. pyCompressor performance
Standard ERFs
Synth. Nc=70
Synth. Nc=90
Synth. Nc=100

Nc (GAN-Enhanced) = 70 ∼ Nc (Standard) = 110
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GANs for finite size effect?

Consider 3 different fits:

• 2 disjoint fits S1 and S2 with N = 500 replicas

• GAN fit S3 with with N = 500 replicas determined from N0 = 100

Compare D(S1, S2) and D(S1, S3) using different resampling methodologies.

mean stdev skewness/105 kurtosis kolmogorov correlation
Estimators

10 2

100

102

104

Di
st
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s

Delete-1 Jackknife resampling at Q=1 GeV
Reals
Synthetics

mean stdev skewness/105 kurtosis kolmogorov correlation
Estimators

10 3

10 2

10 1

100

101

102
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104

Di
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s

Bootstrap sampling with size 100 at Q=1 GeV
Reals
Synthetics
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Conclusions

Resummation:

• SIpT helps elucidate the relation between collinear and soft logarithms

• SIpT accelerates perturbative convergences of the Higgs pT ,H spectra in the small-pT regions

• Combined resummation yields more reliable results beyond small-pT

Approximation:

• Resummed expressions could be potential tools to estimate/approximate MHO

• Extend results beyond HEQT and/or to DY processes (currently ongoing work)

GANs for PDFs:

• GANs can be used to generate synthetic MC PDF replicas

• ganpdfs-pyCompressor outperforms standard compression by providing a compressed set with smaller num-

ber of replicas and a more adequate representation of the original probability distribution

• GANs can potentially be used to address finite size effects in PDFs
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”The second main type of machine learning is the descriptive or unsupervised learning approach. Here we are

only given inputs, and the goal is to find interesting patterns in the data. [. . . ] This is a much less well-defined

problem, since we are not told what kinds of patterns to look for, and there is no obvious error metric to use.”

K. P. Murphy, Machine Learning: A Probabilistic Perspective

THANK YOU
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Phase Space Factorization

Move to conjugate space

• Mellin space: trade the convolution for a normal product

dσ̂ab

dξp
(N, ξp , αs) =

∫ 1

0
dx xN−1 1

x

dσ̂ab

dξp
(x , ξp , αs)

• Fourier space: factorize constraints in δ-terms

dσ̂ab

dξp
(N, b, αs) = π

∫ ∞
0

dξp J0(bpT )
dσ̂ab

dξp
(N, ξp , αs)

Factorization of the Phase Space

The phase space for n emissions factorizes in Mellin-Fourier space:

dΦn+1 (p1, p2; p, k1, . . . , kn) =
8π3−εQ2n

[4(2π)2−ε]n+1

τ̂

Γ(1− ε)
dξp

∫
db2 (bpT)−ε b2nε

J−ε (bpT)

. . . J−ε (bkTn )
(bkTn )−ε dξndzn√

(1− zn)2 − 4
z2

1 ...z
2
n−1

ξn τ̂

 δ (τ̂ − z1 . . . zn) +O
(

1

b

)



Phase Space Factorization

In the context of SSpT, the phase space factor is expanded in the ξi limit as

1√
(1− z)2 − 4ξ

→
(

1

1− z

)
+

−
1

2
δ(1− z) ln ξ

However, power counting in Fourier-Mellin space shows that

FM
[

1√
(1− z)2 − 4ξ

]
=

2

b2Q2

(
1−

4N2

b2Q2
+

16N4

b4Q4
+ . . .

)
(1)

=⇒ To preserve the threshold limit at inclusive level, small-pT resummation

must be performed by taking the limit b →∞ at fixed N/b.

The factorized phase space then writes:

dΦn+1 (p1, p2; p, k1, . . . , kn) =
8π3−εQ2n

[4(2π)2−ε]n+1

τ̂

Γ(1− ε)
dξp

∫
db2J0 (bpT) n∏

i=1

J−ε (bki)
(bki )

−εdξidzi√
(1− zi )

2 − 4ziξi

 δ (τ̂ − z1 . . . zn) +O
(

1

b

)
+O

(
1

N

)



Problem of Fourier-Mellin inverse transform

In addition to the Landau Pole that prevents the existence of a Mellin inverse. TIpT exhibits more complicated

singularities due to the interplay between N and b in the logs.

1st Trick: Expand the resummed expression as a series in ᾱsL (ᾱs = αsβ0):

dσ̂′

dξp
(N, ᾱs lnχ) =

∞∑
k=0

hk (N) ᾱk
s lnk χ =

∞∑
k=0

hk (N, αs) ᾱk
s lnk

(
N̄2 +

b̂2

b2
0

)

and perform the b integration term-by-term:

dσ̂′

dξp
(N, ξp) =

∞∑
k=0

hk (N, αs)
k!

2πi

∮
H

dξ

ξ
M (N, ξp , ξ)

(
ᾱs

ξ

)k

where M (N, ξp , ξ) =

∫ ∞
0

db̂
b̂

2
J0

(
b̂
√
ξp
)

lnk

(
N̄2 +

b̂2

b2
0

)

Problem: The series does not converge!



Problem of Fourier-Mellin inverse transform

2nd Trick: Sum the series using Borel method (i.e. αs → wk

k!
):

B
[

dσ̂′

dξp
(N, ξp)

]
(w) =

1

2πi

∞∑
k=0

hk (N)

∮
H

dξ

ξ
M (N, ξp , ξ)

(
w

ξ

)k

=
1

2πi

∮
H

dξ

ξ
M (N, ξp , ξ)

dσ̂′

dξp

(
N,

w

ξ

)
and then perform a Borel inverse transform:

dσ̂′

dξp
(N, ξp) =

∫ ∞
0

dw e−wB
[

dσ̂′

dξp
(N, ξp)

]
(w)

Since the above integral diverges at ∞, we have to cut the integration at a given cutoff C .

Finally, the Mellin inverse transform is performed using the standard Minimal Prescription.



Prior vs. Synthetic: PDFs

Samples of Ns = 2000 synthetic replicas generated from Np = 1000 prior. The plots are the results of a

hyperparameter scan with 1000 trials.
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Prior vs. Synthetic: Normalized PDFs & Luminosities

Normalized PDFs:
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Prior vs. Synthetic: Physical Constraints

The generated synthetic samples satisfy physical constraints:

Sum Rules:

Prior | Synthetic mean std

momentum 0.9968 | 0.9954 7.315× 10−4 | 1.907× 10−3

uv 1.985 | 1.992 3.122× 10−2 | 3.788× 10−2

dv 0.9888 | 0.9956 3.764× 10−2 | 3.796× 10−2

sv 3.249× 10−3 | 2.073× 10−4 3.547× 10−2 | 4.833× 10−2

Positivity:
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Intuition for FID

Given some probability distributions:



Intuition for FID

The FID can provide an estimation on the similarity:



Prior vs. GAN-enhanced

Np = 1000→ GAN→ (Np + Ns) = 3000→ Nc = 70, 100
Normalized PDFs:
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Prior vs. GAN-enhanced: Correlation

Compression to Nc = 100:
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Phenomenological Implications: Accuracy & (Non) Gaussianity

Phenomenological Implications:

Higgs boson production fully differential in either pHT = [0, 200] GeV or yH = [−2.5, 2.5].

Process: gg → H VBF H2j HW HZ Htt̄ [Les Houches, 2015]
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Deliverables

The implementation of the tools presented here are Open-Source:

Resummation & Approximation:

• HpT-MON: Higgs transverse momentum distribution in momentum and Mellin space.

� github.com/N3PDF/HpT-MON

• HpT-N3LO: Approximation of the Higgs transverse momentum distribution at NNLO.

� github.com/N3PDF/HpT-N3LO

GANs for PDFs:

• ganpdfs: Generation of synthetic MC PDF replicas with GANs.

� github.com/N3PDF/ganpdfs p n3pdf.github.io/ganpdfs/

• pyCompressor: Fast compression of MC PDF replicas.

� github.com/N3PDF/pycompressor p n3pdf.github.io/pycompressor/

https://github.com/N3PDF/HpT-MON
https://github.com/N3PDF/HpT-N3LO
https://github.com/N3PDF/ganpdfs
https://n3pdf.github.io/ganpdfs/
https://github.com/N3PDF/pycompressor
https://n3pdf.github.io/pycompressor/
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