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Precision physics at the LHC

ATLAS Preliminary
Run 12 v =7813TeV

20 22 24
data/theory

SM cross-sections [ATLAS, PRD 87, 112003 (2013)]

o Currently good agreement between data and theory

o Observing deviations requires sub-percent accuracy
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Precision physics at the LHC

Vs = 14 TeV, 3000 fb™ per experiment

| Total ATLAS and CMS|
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Standard Model Production Cross Section Measurements
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Importance of faithful uncertainties

o This years’ my determination highlights the importance of understanding all sources of uncertainty
o Understand apparent discrepancies between measurements

o Important that predictions are accurate
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SM parameters: myy [LHCb-FIGURE-2022-003]
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Importance of faithful uncertainties

°
o Understand apparent discrepancies between measurements
o Important that predictions are accurate
@ Important role for PDF uncertainties
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SM parameters: myy [LHCb-FIGURE-2022-003]

This years’ myy determination highlights the importance of understanding all sources of uncertainty

Source

Size [ MeV]

Parton distribution functions
Theory (excl. PDFs) total
Transverse momentum model
Angular coefficients
QED FSR model
Additional electroweak corrections

Experimental total

Momentum scale and resolution modelling
Muon ID, trigger and tracking efficiency
Isolation efficiency
QCD background

Statistical

Total

9
17
11

SM parameters: myy [JHEP01(2022)036]
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Status of modern PDF sets

T

60 1
LHC 14 TeV, 20
581 1
561 ] o PDF predictions are consistent but with different
= uncertainties
[= L . .
= 54 o Ingredients of a PDF fit:
S XISHT20 e Data
59- ~NNPDF3.1 + o Theory
> ABMP16 o Methodology
sol- 2 ATLASpdf21 |
2 ¢ PDF4LHC15
# PDFALHC21 Main difference between fitting groups is the
48+ «NNPDF4.0 methodology J
750 800 850 900

oz [pb]

[Snowmass (2022), 2203.13923]
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Status of modern PDF sets
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= uncertainties
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\ # PDFALHC21 Main difference between fitting groups is the
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“Does the NNPDF methodology produce faithful uncertainties?”
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Particularly relevant today!

Parton distributions need representative sampling
Aurore Courtoy,’* Joey Huston.? | Pavel Nadolsky,? ! Keping Xie,* ¥ Mengshi Yan,> ¥ and C.-P. Yuan?® **
*nstituto de Fisica, Universidad Nacional Auténoma de Mégico, Apartado Postal 20-364, 01000 Ciudad de Mé
2Department of Physics and Astronomy, Michigan State University, East Lansing, MI 4552
#Department of Physics, Southern Methodist University, Dallas, TX 75275-0181, USA
* Pittsburgh Particle Physics, Astrophysics, and Cosmology Cent
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, /»A 15260, USA
5School of Physics and State Key Laboratory of Nuclear Physics and Ir'rhﬁnl»yv/, Peking University, Beijing 100871, China
(Dated: September 27, 2022)

In global QCD fits of parton distribution functions (PDFs), a large part of the estimated uncer-
tainty on the PDF' originates from the choices of parametric functional forms and fitting method-
ology. We argue that these types of uncertainties can be underestimated with common PDF ensem-
bles in high-stake measurements at the Large Hadron Collider and Tevatron. A fruitful approach
to quantify these uncertainties is to view them as arising from sampling of allowed PDF solutions
in a multidimensional parametric space. This approach applies powerful insights gained in recent
statistical studies of large-scale population surveys and quasi-Monte Carlo integration methods. In
particular, PDF fits may be affected by the big data paradox, which stipulates that more experi-
mental data do not automatically raise the accuracy of PDFs - close attention to the data quality
and sampling of possible PDF solutions is as essential. To test if the sampling of the PDF uncer-

tainty of an experimental observable is truly representative of all acceptable solutions, we introduce

a technique (“a hopscotch scan”) based on a combination of parameter scans and stochastic s
pling. With this technique, we show that the PDF uncertainty on key LHC cross scct
obtained with the public NNPDF4.0 fitting code is larger than the nominal uncertainty
with the published NNPDF4.0 Monte-Carlo replica sets. For example, the uncertainties on the
charm distribution at a large momentum fraction z and gluon PDF at small z are enlarged. In PDF
ensembles obtained in the analytic minimization (Hessian) formalism, the tolerance on the PDF
uncertainty must be based on sufficiently complete sampling of PDF functional forms and choices
of the experiments.
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Response to “Parton distributions need representative sampling”
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Outline

© NNPDF4.0
o Data
o Methodology
@ Phenomenology

© PDF correlations
@ Correlation between different sets of PDFs
o Combination of PDF sets

© Future ML developments
o A data-based parametrization
@ An overfitting metric



NNPDF4.0
o

NNPDF4.0
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PDFs from data

o Evaluating LHC cross-sections:
° 0ab = D ap fa @ f1 ® Gab

e PDF f, of flavor a
(non-perturbative, from data)

o hard-scattering matrix element 6,5
(perturbative QCD)

e ® denotes a convolution over momentum fraction =
e PDFs f, depends only on x and Q2

@ Other kinematic variables in &

NNPDF4.0 at Q= 3.2 GeV

1.0
a/10
Uy
dy
0.8 s
a7 d
v d
/s C
0.6
0.4
0.2
0.0 T T r
1073 1072 107t 10°
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PDFs from data

o Evaluating LHC cross-sections:
0 Tab = Yoy fa @ fo ® Gap NNPDF4.0 at Q= 3.2 GeV

1.0
e PDF f, of flavor a - 3/10
(non-perturbative, from data) d
o hard-scattering matrix element 6,5 081 ﬁ ‘ .5,
(perturbative QCD) v
e ® denotes a convolution over momentum fraction = 0.6 =
e PDFs f, depends only on x and Q2
o Other kinematic variables in & 0.4
The problem 0.2
o Given a dataset D, determine p(f|D) in the space of
PDFs f:[0,1] - R 0.0 y y "
. ) - L. . . 1073 1072 107t 10°
o PDFs are multivariate probability distributions in X

infinite dimensional space

o However data is discrete
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Data in NNPDF4.0



NNPDF4.0

[e]e]e] lo

Data in NNPDF4.0

Kinematic coverage

Deep Inelastic Scattering
Fixed-Target Drell-Yan
107 4 Drell-Yan Rapidity Distribution
Drell-Yan Mass Distribution
Heavy Quarks Total Cross Section
Jet Transverse Momentum Distribution
106 4 Drell-Yan Transverse Momentum Distribution
Heavy Quarks Production Single Quark Rapidity Distribution More than 4000 data POi nts
Heavy Quarks Production Rapidity Distribution
Jets Rapidity Distribution and 13 processes!
5 Dijets Invariant Mass and Rapidity Distribution
10”4 Photon Production
O Black edge: New in NNDPF4.0 .
_ ) New processes:
< PRI
[ 104 4 e ] (] i
8 D Ty T direct photon
~ .
e Biagataagalis @ single top
1034 ..
o H] o dijets
o o .
o ] o W+jet
102 4 T IIATH ° ° )
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The NNPDF approach: probabilities in a space of function

Data is fully defined by central values p; and covariance
matrix cov;;

@ Generate Npop Monte Carlo data “replicas” fi; such
that as Nyep — 00
L — 1 Nrep -
i = Nop Dot i
covij = cov|il;, fif]
@ Perform a PDF fit to each replica
© Compute observables X and their uncertainties

(X[ = x T X (7]
Var [X [f]] = = 00 (X [FO] = (X (/)

vy ¥ ¥

-




The NNPDF approach: probabilities in a space of function

Data is fully defined by central values p; and covariance
matrix cov;;

@ Generate Npop Monte Carlo data “replicas” fi; such
that as Nyep — 00

Nrep ~
Hi = ﬁep Zizlp Hi
covij = cov|il;, fif]
@ Perform a PDF fit to each replica

© Compute observables X and their uncertainties

(X[ = x T X (7]

Nrep -
e
gat 165 GeV gat 1.65GeV
wworio 30 cisia
30
25 /

vy ¥ ¥

Var [X [f]] = = 00 (X [FO] = (X (/)

-
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The NNPDF approach: an importance sampling

o Importance sampling produces Gaussian posterior distribution

o All replicas equally likely

1020 .
1015
1010

51005

=

1000 .

995
990

985

32.50 3275 33.00 33.25 33.50 33.75 34.00 34.25
oy [pb]

« NNPDF4.0
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The NNPDF approach: an importance sampling

o Importance sampling produces Gaussian posterior distribution

o All replicas equally likely
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« NNPDF4.0

How did we obtain this distribution?
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Parametrization

Neural network: universal interpolator Physical constraints:
1o Inx =2 e PDF positivity [JHEP 11 (2020)]

o Integrability of nonsinglet distributions (Gottfried
sum rules)
n® =25
e Train by minimizing x2 loss function comparing data
to prediction

n® =20

."/.’ [ & | L J B J ‘.\T. =8
C‘g(xv Q) xE(x,Qp)  xV(x,Qp)  xV3(x,Qp)  xVy(x,Qp) T3(x,Qp)  xTy(x, Qp)  xTys(x, Qu))
(38,0 w0 xi(50)  xd,0)  xd(x.Q) w(0) x5 Q)  x(,Qp)

fi (£,Qo0) = =% (1 — x) NN, (z)
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Training the neural network

o Optimize using a gradient descent algorithm

@ NN should generalize the underlying law, but if trained to long noise is fitted

Cross-validation

next training step

J
l
)
)

o Divide data into training and

e Minimize training x?2

o Stop if X2 no longer improves [
count

Training
Validation
--- Bestfit

2300

[

positivity fulfilled?

2275

2250

Loss

2225

lYes

Xoi < best x*

2200

o
2175

2150

0 2000 4000 6000 8000 10000 12000 14000
epoch

lYes

reset counter — best X2 = xfal J

NLP
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Verify the importance sampling assumption

training x?

oy [pb]

85
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81000
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o All PDF replicas are fitted equally well to their data replica

@ Thus outliers correspond to unlikely data replicas

validation x?

85
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Automated model selection

NNPDF aims to minimize sources of bias in the PDF:
@ Functional form — Neural Network

o Model parameters — ?
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Automated model selection

NNPDF aims to minimize sources of bias in the PDF:
@ Functional form — Neural Network

o Model parameters — Hyperoptimization

Scan over thousands of hyperparameter combinations
and select the best one

k-fold cross-validation: used to define the reward
function based on a test dataset

Objective function:
L =mean(x?,x3,x3,. .., x3)

Final step requires human input
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High-precision: gluon

- o 1 ) Mxey ] MXe_y
Ly (Mx,y,/5) = - ijf (—ﬁ ,MX) i (—\/g ,Mx)

Relative uncertainty for gg-luminosity Relative uncertainty for gg-luminosity
NNPDF3.1 (NNLO) - V'S = 14000.0 GeV NNPDF4.0 (NNLO) - V'S = 14000.0 GeV
104 50 50
255 255
s s
103 ‘E ‘E
s 108 108
8 g g
x =1 =1
= e e
107 s 5
[ [T
o o
10t 1 1
-4 -2 0 2 4
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High-precision: singlet

Lij (Mx,y,/s) = éZfz (%,MX) fi (%,Mx)
K2¥)

Relative uncertainty for qg-luminosity Relative uncertainty for gg-luminosity
NNPDF3.1 (NNLO) - V'S = 14000.0 GeV NNPDF4.0 (NNLO) - V'S = 14000.0 GeV
10* 50 10* 50
253 255
S S
10% ‘E 10% ‘E
s g = 108
é g 8 g
x 5 x S
= 5 e = 5 e
102 2 102 Z
° °
o o
10t 1 10t ; ‘ 1
-4 -2 0 2 4 -4 -2 0 2 4
y y

Typical uncertainties in the data region:
@ singlet: from ~ 3% to ~ 1%
@ nonsinglet: from ~ 5% to ~ 2%



Impact of the new data

gg luminosity

qq luminosity

Vs =14 TeV Vs =14 TeV
1.15 4 11 NNPDF4.0 (68 c.l.+10) 777 NNPDF4.0 (68 c.l.+10)
£ NNPDF4.0 meth. NNPDF3.1 data (68 c.l.+10) 1.04 NNPDF4.0 meth. NNPDF3.1 data (68 c.l.+10)
o 1104 o
< < 1.02
o o
[a) [a)
E E
£ 1.051 E
8 g 1.00
L L
© T
« 1.004 <
0.98
0.95
0.96
10! 10? 10° 10! 102 10°
mx (GeV) my (GeV)

Individual datasets have a limited impact, but collectively they result in:

@ Moderate reduction of PDF uncertainties

@ Shifts in central value at the one-sigma level
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Future ML developments

Impact of the new fitting methodology

gg luminosity qq luminosity
Vs =14 TeV Vs =14TeV
77 NNPDF4.0 (68 c.l.+10) 77 NNPDF4.0 (68 c.l.+10)
1.34 N NNPDF3.1 meth. NNPDF4.0 data (68 c.l.+10) AN NNPDF3.1 meth. NNPDF4.0 data (68 c.l.+10)
12 1.3
e 2
g 1.14 %
g g 12
= 1.0 =z
28 8
209 o111
=1 =1
© ©
o o
0.8
1.0
0.74
10! 10? 10° 10! 10? 10°
my (GeV) my (GeV)

e Significant reduction of PDF uncertainties PDF uncertainties are validated using closure tests and future tests
o Good agreement between the central values Validation tests successful for both NNPDF4.0 and NNPDF3.1 J
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The open-source NNPDF code

Experimental data:

Methodology:
hyperopt

@ The full NNPDF code has been made public along
with user friendly documentation

buildmaster

@ This includes: fitting, hyperoptimization, theory,
data processing, visualization

o It is possible to reproduce all results of NNPDF4.0
and more!

Postfit selection

Fit analysis:
validphys

Eur.Phys.J.C 81 (2021) 10, 958
https://github.com/NNPDF/nnpdf
https://docs.nnpdf .science



https://link.springer.com/article/10.1140/epjc/s10052-021-09747-9
https://github.com/NNPDF/nnpdf
https://docs.nnpdf.science

NNPDF4.0 PDF correlations

o0

PDF correlations

2110.08274
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PDF correlations: definition and application

Definition:
Covariance:
Cov [fa, fo] (z,2") = E [fa (2, Q}) f» (2/,Q3)] — E [fa (z, Q)] E [f» (', Q3)]
ttH
Correlation:
plfa, fol (z,2") = Covlfa,fol(z2') NP T LHC HIGGS XS WG 2011
’ 7 \/V&r[faKI) Var[fd](=") POFALHC Averags ——
HERAPDF1.5
GJRO8
ABKMO3

In the MC approach this can be calculated using 1

E[fa (2,Q3) fi (+/,Q3)] = £ 2N, £ (2.@3) £ (', @3)

Correlation induced by data, theory (e.g. sumrules), and methodology
(e.g. preprocessing). P U .

Application: determination of PDF induced
signal-background correlation between e.g. ggH and
ttH
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Correlations between different PDF sets

General cross-covariance between PDFs in different sets, e.g. NNPDF4.0 and MSHT20:

Cov [flll\INPDF’fé\/ISHT] (l,,x/) - E [f;\INPDF (%Qg) fé\/ISHT (xlyQ(Q))] _E [f‘ll\INPDF (I7 Q(Q))] E [fé\/ISHT (:Elng)]

Special cases of cross-correlation:

@ F-correlation - same PDF, different flavor p [f}l\TNPDF, fé\lNPDF]

@ S-correlation - different PDF, same flavor p [f}l\n\IPDF7 f}l\/ISHT]

The same replica must be used when calculating covariance

’ . .
If (") and (") are uncorrelated, covariance vanishes:

Elfafs] = = SN £085 = 1] 1]

Problem: What is the meaning of “same replica” across PDF sets?
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Future ML develof

Correlations between different PDF sets

General cross-covariance between PDFs in different sets, e.g. NNPDF4.0 and MSHT20:

Cov [flll\INPDF’fé\/ISHT] (I,x/) - E [f;\INPDF (:c,Q%) fé\/ISHT (xlyQ(Q))] _E [f‘ll\INPDF (I7 Q(Q))] E [fé\/ISHT (xlng)]

Possible solution: PDF replicas fitted to the

fFNNPDF fNNPDF] same data replica
a »Jp
o Fit fMSHT(r) 5pd fNNPDE(r) ¢4 the

same data replica r

Special cases of cross-correlation:

@ F-correlation - same PDF, different flavor p [

@ S-correlation - different PDF, same flavor p [f}l\n\IPDF7 f}l\/ISHT]

o Calculate covariance as

The same replica must be used when calculating covariance E[fafs] =
1 <N NNPDF(r) .MSHT(r)
N ZT:1 a fb

If () and f(rl) are uncorrelated, covariance vanishes:
Elfafs) = 5 XN R = [fal 1]

Problem: What is the meaning of “same replica” across PDF sets?
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Uncorrelated methodological aspects

The data replica does not uniquely determine the PDF replica

1020 -
1015
1010
1005
S
1000

« NNPDF4.0
- fits to central data
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Uncorrelated methodological aspects

The data replica does not uniquely determine the PDF replica

1020 .

1015

1010 PDF depends on uncorrelated methodological aspects:
1005 e
8 @ initialization of the neural network

1000

005 @ preprocessing exponents

990 @ training/validation mask

985 °

326

« NNPDF4.0
- fits to central data
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Data-induced correlation

Let us distinguish
o data replicas r
° methodological repIicas r’

(i) (i) 1 L& ) ()
Zf — BB < |5 2o 22 fa T — Bl E L]
r=1p/=1
Only data-induced contributions are calculated
NNPDF4.0
1.0
up(a) O down(b)
up(a) O down(a)
§ 05
©
g
S 0.0
&
e
£-05
-1.0

1075 1074 1073 1072 1071 10°
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Correlated methodological replicas

o Can easily be done for parametric components such as preprocessing or architecture

o Noticeable impact of preprocessing, negligible for architecture

1.0+ u 1.0+ 9
NNPDF4.0 O NNPDF4.0 NNPDF4.0 O NNPDF4.0
including preprocessing including preprocessing
0.81 different architecture 0.81 different architecture
5 5
£ 06 E 0.6
? g
S04 S 0.4
» )
0.2+ 021
0.0 T - - - ) 0.0 T T . : )
107> 1074 1073 1072 107t 10° 10-° 1074 1073 1072 107! 10°
X X

Non-trivial for non-parametric aspects of the methodology
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Data-induced self-correlation

@ Correlation between two determinations of the same PDF set (e.g. NNPDF4.0)

@ The deviation from 100% correlation is due to uncorrelated aspects of the methodology

u
1.0 1.0 9
NNPDF4.0 O NNPDF4.0 NNPDF4.0 O NNPDF4.0
NNPDF3.1 O NNPDF3.1 NNPDF3.1 O NNPDF3.1
0.8 NNPDF3.1 O NNPDF4.0 0.8 NNPDF3.1 O NNPDF4.0
s s
£ 0.6 0.6
° °
£ £
S04 go4
» »
0.2 0.2
0.0 0.0
10-° 1074 1073 1072 107! 10° 107 1074 1073 1072 107! 10°
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Data-induced self-correlation

o Correlation between two determinations of the same PDF set (e.g. NNPDF4.0)

o The deviation from 100% correlation is due to uncorrelated aspects of the methodology

o Calculate correlation between different methodologies
@ "weakest link” NNPDF3.1o0NNPDF4.0 ~ NNPDF3.1oNNPDF3.1

Higher correlation indicates a more efficient methodology

NNPDF4.0 O NNPDF4.0
NNPDF3.1 O NNPDF3.1
NNPDF3.1 O NNPDF4.0

1.0 u 1.0
NNPDF4.0 O NNPDF4.0
NNPDF3.1 O NNPDF3.1
0.8 NNPDF3.1 O NNPDF4.0 0.8
s s
2 0.6 E 0.6
] g
S04 S04
w "
0.2 0.2
0.0 0.0
1073 1074 103 1072 107t 10° 10°°
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P D F4 L H C com bl nat i on 10P Putlishing ouenal o Physics G Nucear and Partc Physics

4 Phys.G: Nucl Part Phys. 49 (2022) 080501 (34pp) hitps/dol rg/10.1088/136-6471/ac7216

Major Report

The PDF4LHC21 combination of global

. PDF fits for the LHC Run lII"
o All PDFs assumed to have equal probability

@ Monte Carlo combination of 300 replicas from each of the underlying PDF sets

MSHT20
0.200 T
NNPDFS 1

|4+

00000
[}

w0 ol 01z 013 0ad 015
(0.1, 100)

Uncertainty of the Monte Carlo combination:
Var[f(iomb] — % (Var[f}lVISHT} + Va,l‘[f}l\INPDF]) + %(E I:f(lz/[SHT:I _E [f(lJTNPDF})Q
combined uncertainty bigger than average uncertainty if central values disagree
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Correlated PDF combination?

Idea:

o Combine PDF determinations as independent observations

o Correlated combination produces a weighted average
Assuming two sets of same variance, Var[fNNPPF] = Var[fMSHT],

Varl 7o) = 2 (14 pLA2SHT, fNNPPP]) Var fANPPY



NNPDF4.0

PDF correlations

Correlated PDF combination?

Idea:
o Combine PDF determinations as independent observations

o Correlated combination produces a weighted average

Assuming two sets of same variance, Var[fNNPPF] = Var[fMSHT],

Varl 7o) = 2 (14 pLA2SHT, fNNPPP]) Var fANPPY

Problems:
@ Does not account for difference in central values

@ How to compute correlations reliably? l.e. methodological
components

Underestimated data-induced correlations leads to underestimated
uncertainty of combination

o(Ratio to NNPDF4.0)

g at 10 GeV

NNPDF3.1

NNPDF3.1 and NNPDF4.0: PDFALHC15
2.0 NNPDF4.0

NNPDF3.1 and NNPDF4.0: correlated

0.1 0.2 0.3 0.4 0.5 0.6

0.7
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Correlated PDF combination?

Idea: What if we combine many repeated
@ Combine PDF determinations as independent observations determinations of the same PDF set?
o Correlated combination produces a weighted average uatl7Gev

Assuming two sets of same variance, Var[fNNPPF] = Var[fMSHT],

s

PDF4LHCLS combination
correlated combination

k

Varl 7o) = 2 (14 pLA2SHT, fNNPPP]) Var fANPPY

°
8

Ratio to correlated combination
s
8

Problems:

°
©
8

@ Does not account for difference in central values

°
5

PDFALHC1S combination
correlated combination

@ How to compute correlations reliably? l.e. methodological
components

°
°
8

°
°
8

°
o
2

°
2

o(Ratio to correlated combination)

Underestimated data-induced correlations leads to underestimated
uncertainty of combination J
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Future ML developments

2111.02954 and 2211.12961



NNPDF4.0

Future ML developments

Preprocessing

o PDF model: f, = Agz®a(1 — x)Ba NN, (z, log x)
o Exponents a4 and B, sampled randomly per replica
o Range determined through self-consistent iterative procedure

e x and logx inputs

g at 1.651 GeV

1.0
7. NNPDF4.0 (68% c.l.+10)

NNPDF4.0 w/o (x,logx) (68% c.l.+10)

. 0.5
o Need to iterate 10-5 1074 1073 1072 101 10°

X

@ Hierarchy in input scale. A source of bias?

@ Sampled exponents add noise during hyperopt
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Feature scaling

2
g
8

2

g

g
8

8

8
2
2

g
g

number of xgrid nodes
number of xgrid nodes

s owos ow
g
8

g
8

number of xgrid nodes

g

°
°

0.0 0.2 0.4 0.6 0.8 10 Tl 12 -0 -8 4 0.6
x log(x) eCDF(x)

T log © eCDF(x)

-6 -4 -2

Avoid potential bias:
@ generate flat distribution: effective cumulative distribution function (eCDF)
o Add interpolation
@ Rerun hyperopt
= Only single input

= No preprocessing needed
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Feature scaling

00 3 ::Z geo
H H g
H e H
gow a0 g%
% 400 5300 5
H %200 ]
5200 5 100 52

°
°

0.0 0.2 0.4 0.6 0.8 10 a1z 10

8 -6 - 4 0.6
x log(x) eCDF(x)
T log © eCDF(x)
Avoid potential bias:
@ generate flat distribution: effective cumulative distribution function (eCDF)
o Add interpolation
@ Rerun hyperopt U at 1.65 GeV g at 1.65 GeV
NNPDF4.0 (68% c.1.+10) 3.0 55 NNPDF4.0 (68% c.l.+10)
= Only single input 0701 52 Fomae s i 410 Fevare S b 10
= No preprocessing needed 08 s
0.60 szo
Zoss 3
Good agreement between % % s
. 0.50
NNPDF4.0 and feature scaling! J
0.45 1.0 .
0.40
0.5
107° 1074 107% 1072 107t 10° 10°° 1074 1072 1072 1071 10°
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00000

Overfitting in hyperopt

o Statistical fluctuations affecting hyperopt results

@ Hyperopt solutions can be overfitted or underfitted

cat1.65GeV cat1.65 GeV
clpnorm bugged it (68% c1+10) T e
0.020 POFA.0 (69% c1.+10)
0.10
0015
0.08
0.010
_ 006
= X 0.005
% b1
X 0.04 X
0.000
0.02 -0.005
0.00 -0.010
=0.02+ -0.015 +
10-° 107* 107 1072 107! 10° 10 1074 10-* 1072 107 10°
x x

@ What does it mean for a PDF to be overfitted?
o More wiggles — overfitting?

o More wiggles — better agreement to data
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overfitting metric

Validation data only used for early stopping
@ Take set of PDF replicas
@ Calculated expected validation loss

© Compare to real validation loss
Ro = ngal,r [T [f(r)} ’D(r)] - % i X%al,r [T [f(r)] 7D(Tl):| .
r’=1

Negative Ro — overfitting
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Future ML developments

overfitting metric

Validation data only used for early stopping
@ Take set of PDF replicas
@ Calculated expected validation loss
© Compare to real validation loss

N
1 ,
— 2 T T 2 T T
o = [T 1) - 3 s, [r 1))
r’=1
Negative Rpo — overfitting
cat 1.65 GeV c at 1.65 GeV
iprorm bugged ft (68% c1.+10) 0% NKPOFS0 (6% c1+101
0.10
0.015
0.08
0.010
0.06
g X 0.005
oo = 0.000
002 —-0.005
0.00 -0.010
=0.02% -0.015
10 10 10 10-2 1071 100 10 10 10 10-2 10 10°
x x

old candidate: R = —0.024 4+ 0.012 NNPDF4.0: Ro = —0.001 £ 0.013



NNPDF4.0 Future ML developments
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I did not discuss other sources of uncertainty
@ Theory and missing higher order uncertainties (Andrea, next days)
@ The negligible impact of data inconsistencies (see 2212.07703)

o Future tests and closure tests

Possible future directions

o Optimize hyperopt folds

Overfitting metric in hyperopt
o Parallelization on GPU
o Understanding PDF fitting in a Bayesian framework

More work still to be done!



e ML developments

ooe

I did not discuss other sources of uncertainty
@ Theory and missing higher order uncertainties (Andrea, next days)
@ The negligible impact of data inconsistencies (see 2212.07703)

o Future tests and closure tests

Possible future directions

o Optimize hyperopt folds

Overfitting metric in hyperopt
o Parallelization on GPU
o Understanding PDF fitting in a Bayesian framework

More work still to be done!

Thank youl!



Backup
0000000000000

Backup



Backu

p
O@00000000000

Experimental data in NNPDF4.0

Data et Ref  NNPDFS. NNPDFLO ABMPIG CTIS MSHT20
Y 44 new datasets included CMS W asym. 7 TeV (£ = 36 pb~!] [268] x x x x v
NS 27TV (€= 36 o) x x x X
@ 323 more data points in NNPDF4.0 R cloctron ety 7Y ol ’ ’ -
NS IV mon asymmetry 7 Tev 50 v y v x
than in NNPDF3.1 NS Drell-¥an 2D 7 Tev 7 v v x 0|
NS Drell-¥an 2D 8 Tev 270 %) x x X x
@ New data is mostly from the LHC RUN II CMS W rapidity 8 59 v v v v v
NS W,Z pr 8 TV (€ = 15.4 - x x x 0 %
Data et Wi NNPDF31 NNPDFLO ABMPIS CTIs MSHT20 NS 7 pr 5 e o 7 7 . . B
ATLAS W,2 7 TeV (€ =35 pb) - . . . . NS W e 7 T 7 v v x| v e
ATLAS W, Z 7 TeV (£ =46 1) 52] v v x ) v OMS W +¢13 TeV [84] x v x x )
ATLAS low-mass DY 7 TeV (53] v v x ) x CMS single-inclusive jets 276 TeV (73] v x x x v
ATLAS high-mass DY 7 TeV 154 v v x (%) v CMS single-inclusive jets 7 147) v ) x v v
ATLAS W 8 Tev 9 x “ x X NS diets 7TV 4 x v x x
ATLAS DY 2D 8 TeV (78] x v x x v CMS single-inclusive jets 8 TeV (57 x v x v v
ATLAS highmass DY 2D 8 TeV ™ x x w0 NS 3D dijts 8 TeV x ) x X x
ATLAS o7 13 TV 1 x 7 vox x NS o 5 Tev (s x 4 x xx
ATLAS Wet 8 Tov o) x Y x X NS ot 1.8 TV 11 v v x o
NTLAS 7 pr 710V ool 0 x x 0 x NS oift 8 Tev 272 x x x =
- 5 L + B NS it 57,5, 13 Tev sy x x vox x
ATLAS W+ ¢ 7TV 3] x v x ©) x OMS a3gt 13 ToV o9] v v v x x
NTLAS o 7,5 Tev o & p Bl « NS # epton £t 5 Tev 0 . v x X
ATLAS ofé* 7. & TV 261-266] 7 i v i i CMS (02D dilepton § TeV 90 x v x 2 v
KTLAS ot 15 oV (€ =32 fo-1) o , " . . NS eptontjet 13 TeV o1 x 7 x o ox
ATLAS o 13 TeV (€ = 139 1b1) (134 x v x x x CMS # dilepton 13 TeV’ 2] x v x x x
ATLAS o and 2 raios pon x x X ox @ NS inge tep o +.07 7TV 1 x v ox
ATLAS i lptomtjts 5 Tov o7 v v v NS single top Ry 8,15 T x y . - -
ATLAS ¢ dilepton 8 TeV 189] x v x x v CMS single top 13 TeV x x x x (4]

ATLAS single-inlusive jets 7 TeV, R=0.6 "3 . “ x v

KTIAS ol e 8 1o, R0 . p ’ . P Dot set Ref. NNPDF31 NNPDFLO ABMPIS CTIS SHT20
ATLAS dijets 7 TeV, R=0.6 [148) x v x x x LHCb Z 7 TeV (£ = 940 pb~1) [59] v v x x v
ATLAS direct photon production § TeV [100] x ) x x x LHCb Z — e 8 TeV (C =2 b~") [61] v v v v v
ATLAS diret. photon production 13 TV 1oy x v PR LHCL W 7oV (€ =37 pb ') s x x x X v
ATLAS single top I, 7,5, 13 Tev pio608 | X . X x LHCL W, Z -+ 7 ToV W v v VA
ATLAS single top dif. 7 Tev o x v x x o x LHCH W2 - 48 ToV o | v y v .
ATLAS singl top dif. 8 Tev o0 x v x X x LHCD W ¢ 8 TeV s x “ x x o ox
LHCD 7 - e 13 ToV s x 7 x X x
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NNPDF4.0 model

For more information see EPJC79 (2019) 676

PDF = Az(1 — 2)°NN(z,log z)

m POF1 > @ —>

® Te/Vi split

Observables
Theory

{xerid, }

Main changes:
@ Python codebase

o Easier and faster development
o Freedom to use external libraries (default: TensorFlow)

o Modularity = ability to vary all aspects of the methodology


https://arxiv.org/pdf/1907.05075
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Performance benefit - time per replica

NNPDF3.1 | NNPDF4.0 (CPU) | NNPDF4.0 (GPU)

Fit timing per replica 15.2 h 38 min 6.6 min

Speed up factor 1 24 140
RAM use 1.5 GB 6.1 GB NA
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Hyperoptimization: the reward function

dat1.7 GeV
. S 2 )
Choosing as the hyperoptimization target the x* of fitted 0.5 1 T

data results in overfitting. 04l NNPDF4.0 overfiting
034

0.2+

xd(x)

0.14

0.0 4

—0.14

—0.21

0.2 0.4 0.6 0.8
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Hyperoptimization: the reward function

. L. . . dat 1.7 GeV
Choosing as the hyperoptimization target the x2 of fitted o
data results in overfitting. 041 NNPDF4.0 kfolds
L — 03
We solve this using k-fold cross-validation:
@ Divide the data into k representative subsets 2 024
x
@ Fit kK — 1 sets and use k-th as test set
=k values of X?es(’, 0.1
© Optimize the average X2, of the k test sets
0.01
= The hyperoptimization target is not based on data o2 o o6 o8
that entered the fit. X

o No overfitting
o Compared to NNPDF3.1:

o Increased stability
o Reduced uncertainties
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The (negligible) impact of datasets with tension

Excluding datasets with large (x2 — 1)/ch2 one at a time and combining the resulting PDFs following the conservative

PDF4LHC15 prescription shows stability at the level of statistical fluctuations.

d at 100 Gev

NPOF4.0 (publshed) (68% ¢+ 10)
NPOF4.0 (baseline + 7 dataset variant) (68% €. +10)

Ratio to NNPDF4.0 (published)
IS
8

107 1073 102 107t 10°
x
d at 100 Gev
0.14] — 0RO ubisheds

NNPDF4.0 (saseline + 7 dataset varants)

o(Ratio to NNPDF4.0 (published))

Ratio to NNPDF4.0 (published)

o(Ratio to NNPDF4.0 (published))

$ at 100 GeVv

115

NNPDF4.0 (publshed) (68% c L+ 10)

NNPDF3.0 (baseline + 7 dat ants) (68% c1.+10)
110
1.05
1.00
0.95
0.90
0.85

104 102 102 101 10°
x
$ at 100 GeV

NNPOF4.0 (publshed)
014 NNPDF 4.0 (baseline + 7 dataset varants)
0.12
0.10
0.08
0.06
0.04
0.02
o

10 10 102 107! 10°
x

Ratio to NNPDF4.0 (published)

o(Ratio to NNPDF4.0 (published))

°
5

u at 100 GeV

NNPDF4.0 (published) (68% c L+ 1o
NNPDF4.0 (baseline + 7 dataset varians) (68% c.+10)

104 10 102 10! 10°
x
u at 100 GeV
1074
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Envelope of fits with different arametrization bases

Different strategies to parametrize the PDF flavour combinations lead to the same result

d at 100 GeV s at 100 GeV u at 100 GeV
115 115 115
NNPOF40 (publshed) (68% c.+10) NNPOF4.0 (publshed) (68% ¢ .+10) NNPDF4.0 (publisned) (68% c..+10)
NNPDF40 (evoution flavour) (68% c1.+10) NNPDF4.0 (evoltion flavour) (68% c1.+10) NNPDF4.0 (evoluton-lavour) (68% c 1-+10)
g 110 T 110 T 110
& & &
35 3 3
3105 3105 3108
S S S
I 1.00 T 1.00 I 1.00
5 5 )
g £ £
2 2 H
5095 S 095 g o095
S S s
2 0.90 2090 2090
085 085 085
1074 10-2 102 107 10° 1074 10 102 107 10° 107 10 102 107 10°
x x x
d at 100 GeV s at 100 GeV u at 100 GeV
NNPDFA 0 (published) NNPDF4.0 (published) NNPDF.0 (publshed)
3 5 3
£ 012 £o012 2012
3 3 3
2010 2010 3 010
S S s
¥ 008 5 008 5 008
=] 5 5
£ 006 £ 006 £ 006
2" E ER
2 2 2
©0.04 ©0.04 S 004
3 3 3
& 2 2
g 002 < 002 < 002
0.00 0.00 0.00
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Understanding the x? distribution

Experimental x?

Experiments x? distribution

| 1 — X gata= 1161
i | == (X)rep..data = 1.186% 0.014
80 | : X2 rep. distr.
i :
! (]
60 |
|
i
40 |
!
| Nrep = 1000, Niata = 4618
204 |
!
I
0 |
1.14 1.16 1.18 1.20 1.22 1.24

Replica x?

704

60 -

50 1

40

301

20 1

104

to x?

Experiments x? distribution

— X ama = 1233
== (X))rep.,data = 1.258% 0.011
X2 rep. distr.

Nrep = 1000, Ngata = 4618

1.23

1.24

125 126 1.27
Replica x?

128 129 130
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Impact of positivity on the PDFs

0.16

0.14

0.12

0.10 A

0.08 A

xd(x)

0.06

0.04 4

0.02 4

0.00 A

d at 1.7 GeV

NNPDF4.0 data set, NNPDF3.1 positivity
NNPDF4.0 baseline

0.2

0.4

0.6 0.8
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Trusting uncertainties outside the data region

@ The improved methodology and extended dataset result in a reduction of the PDF uncertainties
@ ‘Closure test’ to validate uncertainty in the data region: arxiv:1410.8849
o Can we trust the uncertainties in the extrapolation region?
Kinematic coverage
datasets pre HERA

1074 datasets pre LHC
NNPDF40 datasets

1004

Idea:
@ Take a historic dataset g 1
e.g. pre-HERA or pre-LHC g1ty
@ Perform fit i 10%4
© Compare predictions to “future” data 10t



https://arxiv.org/abs/1410.8849
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Future tests

For more information see arxiv:2103.08606

datasets pre HERA
107 datasets pre LHC
NNPDF40 datasets

10°

10°

104

Q? (GeV?)

10%

102

10t

Kinematic coverage

10°

Xu(x)

x2 /N (only exp. covmat)

(dataset) | NNPDF4.0 pre-LHC pre-Hera
pre-HERA 1.09 1.01 0.90
pre-LHC 1.21 1.20 23.1
NNPDF4.0 1.29 3.30 23.1
uatl.7 GeV
0.7 7\ PreHera (68 c.l.+10)
! PreLHC (68 c.l.+10)
' NNPDF4.0 (68 c.l.+10)
0.6
0.5
0.4
0.3
10-° 1074 1073 1072 107! 10°


https://arxiv.org/pdf/2103.08606.pdf
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Future tests

For more information see arxiv:2103.08606

Kinematic coverage

datasets pre HERA
107 datasets pre LHC
NNPDF40 datasets

10°

10°

104

Q? (GeV?)

10%

102

10t

107% 1073 1072
x

The total uncertainty increases, and accommodates for difference between

107t

10°

X2/N (exp. and PDF covmat)

(dataset) | NNPDF4.0 pre-LHC pre-Hera
pre-HERA 0.86
pre-LHC 1.17 1.22
NNPDF4.0 112 1.30 1.38
uatl.7 GeV
0.7 77 PreHera (68 c.l.+10)
! PreLHC (68 c.l.+10)
' NNPDF4.0 (68 c.l.+10)
0.6
x05
S
x
0.4
0.3
10-° 1074 1073 1072 107! 10°

predictions and new data.


https://arxiv.org/pdf/2103.08606.pdf

Backup
000000000000 e

Closure test
See Eur.Phys.J.C 82 (2022); arxiv:2111.05787

Closure test of a known input assumption
© Assume a “true” underlying PDF (e.g. a single PDF replica)
@ Produce data distributed according to the experimental covariance matrices
© Perform a fit to this data

Examples of statistical estimators:

o Bias: squared difference between central value and true observable
Variance: variance of the model predictions
Faithful uncertainties require E[bias] = variance

o Is truth within one sigma in 68% of cases?

- : lat:
\/bias/variance 13 YG“ e

1.03+£0.05 0.68 £ 0.02



https://arxiv.org/pdf/2103.08606.pdf
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