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Abstract

The purpose of this thesis is to study the dependence of the gluon Parton Distribution
Function on the proton-proton scattering data, as it could be the production of top and antitop
quarks, jets, or the Z boson. We call these data processes hadronic observables.

Parton Distribution Functions (PDFs) cannot be computed from first principles: they have
to be extracted from the data, through a careful comparison of theoretical predictions and
experimental results. In order to determine the PDFs we use the NNPDF fitting methodology.

The NNPDF collaboration determines the structure of the proton using contemporary meth-
ods of artificial intelligence. NNPDF determines PDFs using as an unbiased modeling tool ma-
chine learning methods, which involve the application of neural networks, and use to construct
a Monte Carlo representation of PDFs and their uncertainties: a probability distribution in a
space of functions.

In Chapter 1 we summarize the main results of the Standard Model and QCD, and introduce
the deep scattering processes and the scaling hypotesis. After we give this theoretical framework,
we explain what is a PDF and how it appears in QCD computations, such as in the cross-sections
formula. Then we briefly recall the recent history of PDFs determination.

In Chapter 2 we present the general strategy used in the NNPDF approach for the de-
termination of a PDF set and in particular how the approach adopted in NNPDF4.0 fitting
methodology (the newest methodology) represents an improvement made since the previous
methodologies. Then we introduce the theoretical constraints which are imposed upon the
PDF parameterization and how the neural network adopted in NNPDF4.0 fits the PDFs. Fi-
nally we talk about the global NNPDF4.0 fitting framework, and how the stochastic gradient
descent method has a key role in determining the PDFs.

In Chapter 3 we present the results we got in the developed fit simulations. The basic idea
of the work is the following: we produce a reference fit with experimental data taken from
the complete NNPDF4.0 dataset; then we remove some data from the complete dataset which
correspond to certain hadronic observables, comparing the new distribution fittings with the
reference one, trying to understand how these observables have an impact on the gluon PDF.
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Introduction

Particle physics is a branch of physics that studies the nature of matter and radiation: it inves-
tigates the irreducibly smallest objects that make up matter and the fundamental interactions
necessary to explain their behaviour.

Particle physics is also called high energy physics, due to the high resolution needed to study
elementary particles.

The concept of ‘elementary’ is used in the sense that such particles have no known structure,
so they are pointlike. And the concept of pointlike depends on the resolution of the tools used
to interact with the system which is studied: the resolution is ∆r if two points of the system
can just be resolved as separate when they are a distance ∆r apart.

Assuming a probe is used in order to investigate the system, as it is used in scattering
experiments, and assuming the probing beam itself consists of pointlike particles, the resolution
is limited by the de Broglie wavelenght of these particles, which is λ = h

p , where p is the beam
momentum and h is the well known Plank’s constant. The beam of high momentum has short
wavelenghts and then can have high resolution.

For example, the resolution of an optical microscope is given by

∆r ' λ

sin θ
, (1)

where θ is the angular aperture of the light beam used to view the system. Then substituting
the de Broglie relation, the resolution becomes

∆r ' λ

sin θ
=

h

p sin θ
' h

q
, (2)

so that in a scattering experiment the resolution is inversely proportional to the momentum
transferred q to the target [1].

So, the motivation for high resolution experiments in experimental particle physics is simply
that many of the elementary particles are extremely massive, and the mass-energy mc2 required
to create them in scattering experiment is extremely large.

In this thesis we will use datasets from cross-section of high energy scattering experiments,
in order to determine distribution functions of the partons contained in a proton, and then to
gain information on the structure of this nucleon.



Chapter 1

Parton Distribution Functions

In this chapter we introduce the main subject of this thesis, the Parton Distribution Functions,
and show how they are a fundamental tool to compute predictions at hadron colliders. First
of all, however, we give some information about the hadronic cross-section, in the context of
Quantum Chromodynamics.

1.1 Theoretical framework

1.1.1 Basics of Standard Model and QCD
All experimental data from high energy experiments can be accounted for by the Standard
Model of particles and their interactions. According to this model, matter is built from a small
number of fundamental spin 1

2 particles, or fermions: six quarks and six leptons. For each of
the various fundamental constituents, its symbol and the ratio of its electric charge q to the
elementary charge qe are given in Table 1.1. Moreover an antiparticle with opposite electrical
charge can be associated to each fermion.

The leptons carry integer electric charge. The electron e is a familiar particle, while the
other charged leptons are the muon µ and tauon τ : these are heavier versions of the electron.
The neutral leptons are called neutrinos, indicated by the generic symbol ν. A different ‘flavour’
of neutrino is paired with each ‘flavour’ of the charged lepton.

The quarks carry fractional charges, of 2
3 |qe| or −

1
3 |qe|. In Table 1.1, the quark masses

increase from left to right, just as they do for the leptons. Moreover, just as for the leptons,
the quarks are grouped into pairs differing by one unit of electrical charge. Sometimes quark
are also called partons, because they constitute bigger particles, as the proton and the neutron.

While leptons exist as free particles, quarks do not. The fact that a free quark has never been
observed is compatible with known properties of QCD, but cannot be proven from mathematical
principles. No matter how energetically protons are collided together in accelerators: no quarks
are seen to emerge in the debris. This phenomenon is known as quark confinment.

Particle Flavour q/|qe|

leptons e µ τ -1
νe νµ ντ 0

quarks u c t +2/3
d s b -1/3

Table 1.1: The fundamental fermions.
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The Standard Model also describes the interaction between the fundamental fermions. The
different interactions are described in terms of the exchange of characteristic bosons, which are
integer spin particles, between the fermion constituents. These boson mediators are listed in
Table 1.2.

Interaction Mediator
strong g

electromagnetic γ
weak W±,Z0

Table 1.2: The boson that mediate fundamental forces.

Excluding the gravitational field, which is not included in the Standard Model, there are
three types of fundamental interactions, as follows [1].

Strong interactions are responsible for binding the quarks in the neutron and proton, and
the neutrons and protons within nuclei. The interquark force is mediated by a massless particle,
the gluon.

Electromagnetic interactions are responsible for virtually all the fenomena in extra-nuclear
physics, in particular for the bound states of the electron with nuclei, and for the intermolecular
force between liquids and solids. These interactions are mediated by the photon exchange.

Weak interactions determine the slow process of nuclear β-decay, involving the emission by
a radioactive nucleus of an electron and a neutrino. The mediators of the weak interactions are
the W± and Z0 bosons, with masses of order 100 times the proton mass.

As remarked before, quarks do not exist as free particles. We must also say that the lightest
bond states are the baryon and the meson, which are respectively a three quark state and
a quark-antiquark pair. These strong interacting quark states are collectively referred to as
hadrons. The fact that two and only two types of quark combinations occur is successfully
accounted for in the theory of interquark forces, called Quantum Chromodynamics (QCD).

Quantum Chromodynamics is the theory of strong interactions between quarks and gluons.
QCD is a quantum field theory known as a non-abelian gauge theory, with symmetry group
SU(3). The QCD analog of electric charge is a property called colour. Quarks and gluons can
be characterized by three types of colour charge: this colour charge is completely unrelated to
the everyday meaning of colour. The term colour and the labels red, green, and blue became
popular simply because of the loose analogy to the primary colors.

In this picture, all known particles have neutral colour charge: barions have three quarks
of different colours (blue, red and green), while mesons have two quarks, one of one colour and
the other of the relative anti-colour. The gluon carries out the interaction between coloured
quarks, so it shows two coloured components, one colour and one anti-colour. In this way, there
exist eight independent gluons, which can be combined to give different basis.

Protons and neutrons consist of the lightest u and d, three at a time: in particular a proton
consist of uud, and a neutron consist of uud. The heavier quarks s, c, t, b also combine to form
particles akin to, but much havier than, the proton and neutron, but these are unstable and
decay rapidly (in typically 10−13 s) to u, d combinations, just as the heavy leptons decay to
electrons. It is possible however to find also the haevier quarks inside the proton, because the
interactions of the gluon.
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Particle Constituents Mass [MeV/c2] Antiparticle Constituents
Proton uud 938, 28 Antiproton ūūd̄
Neutron udd 939, 57 Antineutron ūd̄d̄

Gluon basis rb̄ rḡ bḡ br̄ gr̄ gḡ 1√
2
(rr̄ − bb̄) 1√

6
(rr̄ + bb̄− 2gḡ)

Table 1.3: A table showing some properties of the proton, the neutron, their their respectively
antiparticles, and a possible gluon basis, also known as octet of states.

1.1.2 Deep inelastic processes
Deep inelastic scattering is the name given to a process used to probe the insides of hadrons
(particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos.
It is an extension of Rutherford classic scattering to much higher energies of the probes and
thus to much finer resolution of the components of the nuclei.

It is important that we introduce the concept of deep inelastic scattering, in order to intro-
duce the parton model of the nucleon, which is the simplest model to factorize. Moreover we
introduce the Bjørken variable, which we will see is a key quantity in the description of deep
inelastic scattering processes with hadrons in the initial state.

The term deep inelastic scattering arises because the nucleon which is probed in the reaction
nearly always disintegrates as a result. In particular this scattering process is named inelastic
because this can be described as follows1:

e− + p+ → e− +X , where M2
X > M2

n .

In particular the inelastic scattering process is named deep if M2
X �M2

n.
Deep inelastic scattering experiments divide into different classes, depending on the nature

of the probe used, which indicates the force involved: in this case we talk about the electron-
proton scattering, in which the leading process of the scattering is the one of a single photon
exchange.

The main measurement of these scattering experiments is the cross-section, which is the
effective target area of the nucleon, with the energy lost by the lepton during the collision and
with the angle through which the incident lepton is scattered. The energy lost ν by the lepton
is simply the difference between its incident and the final energy

ν = Ei − Ef ,

while the angle through which the lepton is scattered is related to the square of the momentum
transferred q2 by the photon from the lepton to the nucleon, by the following relation:

q2 = 2EiEf (1− cos θ) .

These are two observables in deep inelastic scattering experiments, which connect the data from
experiments with the theoretical picture of the proton interior.

Figure 1.1 shows the deep electron-proton inelastic scattering. In this diagram the incoming
electron and proton have momentum respectively k and p. The transferred momentum by the
emitted photon is q = |k− k′|, and X is the final state of the proton scattered.

The deep inelastic scattering cross-section formula for the process in Figure 1.1 has to be
characterised by some ‘structure functions’, which encode the structure of the proton. In par-
ticular, the perturbative methods of Quantum Electrodynamics (QED) show that the formula

1Mn and MX are the nucleon mass and the final product mass
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Figure 1.1: Feynman diagram for deep inelastic electron-proton scattering [2].

describing the differential cross-section for the electron-proton deep inelastic scattering with
respect to the momentum transferred squared q2 and the energy lost by the electron ν is the
following [3]:

d2σ

dq dν
=

4πα2

q4
Ef
EiMp

[
Mp

ν
F2(q2, ν) cos2(θ/2) + 2F1(q2, ν) sin2(θ/2)

]
, (1.1)

where Mp is the mass of the proton and α is the fine-structure constant.
However, in very high energy deep inelastic scattering processes, in which q2, ν → ∞, the

wavelenght of the photon is so small that the existence of the complete proton is really irrelevant
to the reaction: the photon interacts with only a small part of it, and does so independently of
the rest of it. This means that there is no justification for using the proton mass to determine
the scale of the deep inelastic regime, so we can neglet the proton mass. Then it can be
assumed that the structure functions depend only on a dimensionless ratio depending only by
the quantities |p| and |q|. Choosing such a ratio as

x = − q2

2p · q
=

Q2

2p · q
, (1.2)

then the hypothesis which is made, known as scaling hypotesis, is that the structure functions
can depend only on the dimensionless variable x, and not on either or both of the quantities
p, q solved separately. So as q2, ν →∞ we have

F1,2(q2, ν) −→ F1,2(x) . (1.3)

In this framework the variable x, which is known as Bjørken variable, has a very significant
interpretation. It turns out to be the fraction of the momentum of the proton carried by the
parton which is struck by the photon. So the structure functions, which depend only on the
parameter x, effectively measure the way in which the proton momentum is distributed among
its constituents.

1.2 Factorization in QCD
In this section we present a basic property holding in QCD, that is the factorization, which will
lead us to the definition of a PDF.

First of all we must say that QCD factorization leads to a factorization for the deep inelastic
structure function (1.3)

Fi(x) = x
∑
j

∫ 1

x

1

z
Cij

(x
z
, αs(Q

2)
)
fj(z,Q

2) dz (1.4)
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where x is the standard Bjørken variable, Cij is the structure function of a nucleon computed
with an incoming parton, and fj(z,Q2) is the distribution of the parton j in the only incoming
nucleon.

Then factorized structure functions are used in QCD factorization in order to compute the
cross-section for a generic hadroproduction process which depends on a single scale M2

X . It can
be in fact written in factorized form as [4]

σX(s,MX) =
∑
a,b

∫∫ 1

xmin

f a
h1

(x1,MX) f b
h2

(x2,MX)σab→X(x1, x2, s,MX) dx1 dx2 =

=
∑
a,b

σ0
ab

∫ 1

τ

1

x1
f a
h1

(x1,M
2
X) dx1

∫ 1

τ
x1

1

x2
f b
h2

(x2,M
2
X)Cab

( τ

x1x2
, αS(M2

X)
)
dx2 (1.5)

where s is the center-of-mass energy of the hadronic collision, f a
hi

(xi,M
2
X) is the distribution

of partons of type a in the ith incoming hadron, σab→X is the parton-level cross section for the
production of the desired final state X, and the minimum value of xi is

τ =
M2
X

s
, (1.6)

where τ is called scaling variable of the hadronic process. The hard coefficient function
Cab
(
z, αS(M2

X)
)
is a function of the scale M2

X and the dimensionless ratio of this scale to the
center of mass energy s̃ of the partonic subprocess

z =
M2
X

s̃
=

τ

x1x2
. (1.7)

In (1.5) a prefactor σ0
ab has been extracted, so that at leading perturbative order (LPO)

the coefficient function is either zero, for partons that do not couple to the given final state at
leading order, or else just a Dirac delta:

σab→X = σ0
ab Cab

(
z, αS(M2

X)
)

, Cab
(
z, αS(M2

X)
)

= cabδ(1− z) + o(αS)

where the matrix Cab depends on the specific process.

So, the importance of Parton Distribution Functions is that they encode the structure of
strongly-interacting hadrons in the beam of high-energy collisions. We must underline that
PDFs are not probability density functions, because they are not functions themselves, but
distributions, and they are also not positive-definite. Finally we must observe that a single
PDF depends on the mass-energy of the interacting parton in the collision and on the fraction
x of the momentum of the parton inside the relative hadron, that is the Bjørken variable.

The factorized equation (1.5) express the hadronic cross section in terms of PDFs at the
same scale at which the hadronic cross-section is evaluated, namely a reference valueM2

X = Q2
0.

However, PDFs at different scales are related by perturbative evolution equations, namely the
integro-differential equations

∂

∂(lnQ2)

(
Σ(x,Q2)
g(x,Q2)

)
=

∫ 1

x

PSqq(xy , αS(Q2)
)

2nfP
S
qg

(
x
y , αS(Q2)

)
PSgq

(
x
y , αS(Q2)

)
PSgg

(
x
y , αS(Q2)

) (Σ(x,Q2)
g(x,Q2)

)
dy

y
, (1.8)

∂

∂(lnQ2)
qNSij (x,Q2) =

∫ 1

x

PNSij

(x
y
, αS(Q2)

)
qij(y,Q

2)
dy

y
, (1.9)
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where g(x,Q2) is the gluon distribution, while Σ(x,Q2) denotes the singlet quark distribution
defined as

Σ(x,Q2) =

nf∑
i=1

(
qi(x,Q

2) + q̄i(x,Q
2)
)
, (1.10)

where nf is the number of quark flavours which we want to consider, while the nonsinglet quark
distributions are defined as any linearly independent set of 2nf − 1 differences of quark and
antiquark distributions

qNSij (x,Q2) = qi(x,Q
2)− q̄j(x,Q2) , (1.11)

and lastly the splitting functions Pab are perturbative series in αS , that start at order αS at
Leading Order (LO).

Finally we must say that perturbative evolution has some constrains due to conservation
laws, one of which is the conservation of the total energy-momentum, which impose∫ 1

0

[ nf∑
i=1

qi(x,Q
2) + q̄i(x,Q

2) + g(x,Q2)

]
x dx = 1 , (1.12)

while the other theoretical costraints are discussed in Section 2.2.
Therefore, combining the factorized expression in equations (1.5) with the solution of the

integro-differential equations (1.8) and (1.9), it is possible to find a way in which the PDFs
can be computed starting from the experimental values of the hadronic cross-section, from the
fitted PDFs in a reference value Q2

0.

1.2.1 The determination of PDFs
As we can see from equation (1.5), the PDFs depend on the fraction x of the momentum assumed
by the interacting parton inside the relative hadron, and on the mass of the final product
obtained by the scattering hadrons. The dependence of the single PDF on the parameter Q is
determinable through the set of differential equations (1.8) and (1.9). The dependence of the
PDF on the parameter x, however, is not determinable in the same way as the dependence on
Q: in order to determine this dependence we should operate in the non-perturbative domain of
QCD, but this would imply the knowledge of the wavefunctions of the single partons.

First of all then, we must consider a set of Parton Distribution Functions evaluated in a
reference value Q2

0 and only depending on the Bjørken variable

fi = fi(x,Q
2
0) , (1.13)

where 0 < x < 1, and we need a methodology in order to fit this set of functions, starting from
the NNPDF4.0 complete cross-section dataset.

We need to highlight that the index i in Equation (1.13) stands for the ith PDF ‘flavour’:
we have already seen that in Equation (1.5) a PDF is defined by the scattering hadron and
the relative interacting parton. Here we will consider only incoming nucleons, so the incoming
hadron can be considered to be a proton.

In principle we can identify 13 independent PDFs (12 for quarks and anti-quarks and 1
for the gluon). However, top quark and bottom quark are assumed to be perturbatively gen-
erated, so we are going to fit just the four lighter quark PDF flavours, the corresponding
anti-quark flavours, and the gluon: the PDFs which we are going to fit are then denoted as
{u, ū, d, d̄, s, s̄, c, g}. We also assume charm and anti-charm PDF to be the same, so in practice
we fit 8 independent PDFs.
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One of the first modalities in which we can approach the problem of fitting the PDFs is
postulating a parameterization of the single PDF through the choice of free parameters, for
example:

fi(x,Q
2
0) = xαi(1− x)βi . (1.14)

The parameterization of the single PDF shown in Equation (1.14) is clearly very simple: choos-
ing this parameterization or some other more complicated parameterization can lead us to some
advantages but also to some disadvantages: for example considering the parameterization (1.14)
the only parameters we have to compute per PDF flavour are αi and βi, and in order to compute
these free parameters we need a relatively small amount of data. However, in assuming such
parameterization, the analysis we make is certainly subject to a bias. Moreover, in case the
parameterization (1.14) doesn’t lead to a correct result, even if we choose a more complicated
parameterization (determined by a greater number of parameters), the analysis we make will
always be subject to a bias.

So, in order not to introduce a bias, we use machine learning methods in which, starting
with the experimental data, it is possible to extract quantities (in this case the PDFs) that
depend on them.

In Figure 1.2 we present an example of PDFs fitted by the NNPDF4.0 machine learning
fitting methodology at Q = 3.2GeV and Q = 102 GeV, in which we consider Next to Next
Leading Order accurancy (NNLO).

Figure 1.2: The NNPDF4.0 NNLO accurancy PDFs at Q = 3.2GeV (left) and Q = 102 GeV
(right) [5].



Chapter 2

The fitting framework

In this chapter we show the general strategy used in the NNPDF approach in order to fit
the Parton Distribution Functions starting from a cross section dataset, and especially the
NNPDF4.0 global dataset and machine learning techniques.

First of all we must introduce the improvements of NNPDF fitting methodology, comparing
the NNPDF3.1 and NNPDF4.0 methods, and explaining how the last methodology leads to a
better set of PDFs.

The NNPDF3.1 fitting methodology was the first to extensively include LHC data, and
was able to reach 5% precision in PDF uncertainties. The machine learning technique used by
NNPDF3.1 in order to fit the PDFs is based on using genetic algorithms [6]. The NNPDF4.0
fitting methodology represents a major step forward in many significant aspects, such as the
systematic inclusion of an extensive set of LHC scattering processes at 7, 8TeV data and, for the
first time, the inclusion of LHC data at 13TeV and of several new processes not considered before
for PDF determinations. Moreover the NNPDF4.0 machine learning technique is considerably
faster and leads to more precise PDF fittings, due to the use of stochastic gradient descent
methods, provided by TensorFlow library [7]. In fact NNPDF4.0 is the first PDF determination
methodology based on a fitting that is selected automatically rather than through manual
iterations and human experience.

2.1 Overview on NNPDF4.0 dataset
The global NNPDF4.0 dataset builds upon NNPDF3.1, by adding various new datasets to it,
which is a variety of new LHC measurements for processes already present in NNPDF3.1 on
the one hand, and data corresponding to new processes on the other. New datasets for existing
LHC processes are added for electroweak boson production, both inclusive and in association
with charm, single-inclusive jet production, and top pair production. The new processes are
gauge boson with jets, single top production, inclusive isolated photon production, and dijet
production [5].

Now we present in detail a list of the new datasets considered in NNPDF4.0 regarding LHC
cross section data. The LHC cross section data have in fact a particular importance in this
thesis.

• Inclusive collider electroweak gauge boson production: we include the ATLAS
measurements of theW and Z differential cross-section at 7TeV in the central and forward
rapidity regions. These data were already included in NNPDF3.1, but only the subset
corresponding to the central region [8];
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• Gauge boson production with additional jets: on top of inclusive gauge boson
production, we consider more exclusive measurements in which a W boson is produced in
association with n jets of light quarks, or with a single jet of charm quarks. Specifically,
we include the ATLAS data for W production with n ≥ 1 at 8TeV [9];

• Top pair production: we consider several new datasets for top pair production at the
LHC. At 8TeV, we include the ATLAS normalized differential cross-section and the CMS
normalized double differential cross-section, both of which are measured in the dilepton
channel [10],[11];

• Single-inclusive and dijet production: For single-inclusive jet production, we include
the ATLAS and CMS measurements at 8TeV [12];

• Inclusive isolated-photon production: Isolated photon production was not included
in previous NNPDF releases and is included in NNPDF4.0 for the first time. We specifi-
cally consider the ATLAS measurements at 8, 13TeV [13],[14];

• Single top production: Another process included for the first time in an NNPDF
release is t-channel single top production. We consider ATLAS and CMS measurements
at 7, 8, 13TeV [15],[16],[17],[18],[19],[20].

2.2 Overview on fitting methodology
As we said before, NNPDF4.0 is the first fitting methodology fully selected through a ma-
chine learning algorithm. This means that the use of a Monte Carlo representation of PDF
uncertainties and correlations, the use of neural networks as interpolating functions, and the
choice of neural network architecture are now selected through an automated hyperoptimization
procedure.

2.2.1 The general NNPDF approach
The PDFs determination can be seen as a pattern recognition problem, which is the determina-
tion of a set of functions starting from some data, and initially being unaware of the functional
form of these functions. In this specific case, the pattern recognition problem is not one of
the simplest, since the available data are not values of PDFs, but partonic cross-section values,
which depend in a non-linear way on the PDFs themselves.

Another peculiarity of this pattern recognition problem is that the objects needed to be
determined are not measurable quantities, but probability distributions. So through a statistical
analysis, from the cross-section data, we can calculate probability density functions of the PDFs,
which are probability density functions of probability density functions, also known as probability
functionals.

The fundamental idea behind the general NNPDF approach, shown in Figure 2.1, is the
following. From the hadronic cross-sections datasets, Monte Carlo methods can be used in
order to build a multigaussian in the space of data using mean values and variances. By
building the multigaussian it is possible to generate as many data replicas Di as we want. Then
every data replica is used to fit the most probable PDF flavours by using a neural network.
Finally by using the fitted PDFs, it is possible to make predictions Oi on the data.

Iterating the process, and comparing the data Di with their predictions Oi it is possible to
build the loss function

χ2 =
1

N

N∑
i,j=1

(Di −Oi)M−1ij (Dj −Oj) , (2.1)
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Figure 2.1: General strategy used in the NNPDF approach [6].

where the value Mij is the component of the covariant matrix between data points i and j, and
N is the total number of data. Finding the best PDFs is then possible by the minimization of
the loss function.

The process we have just described can be used for every set of data replica, for which we
have a set of PDFs fitted. Then the Monte Carlo methods are once again used in order to build
the PDF distributions, using each set of PDF fitted by the datasets.

So given a dataset, for every data the neural network fits the most probable PDF fk(x,Q2
0)

evaluated in the reference value Q2
0. An example of neural network used in NNPDF approach

in determining a single PDF flavour is shown in Figure 2.2: this type of neural network is
also known as 2-5-3-1 structure neural network. The input of this neural network is the couple
(x, lnx), and this is due to the two different regimes of PDFs: they show a linear regime for
0.03 ≤ x ≤ 0.5, and a logarithmic regime in 10−4 ≤ x < 0.03. The output of the neural network
is then the product xfk(x,Q2

0), which covers a smaller range of values than fk(x,Q2
0), so it is

easier to show graphically.

Figure 2.2: Example of the neural network used in NNPDF approach [6].
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2.2.2 PDF parameterization and sum rules
We now turn to the general structure of the PDF parameterization, and the theory constraints
that are imposed upon it. In Section 1.2 we talked about the conservation of the total energy-
momentum, summarised in equation (1.12). In this section specifically we talk about sum rules,
and PDF positivity and integrability.

The PDF fitting methodology requires a choice of basis, namely a set of linearly independent
PDF flavour combinations, which are parameterized at the reference value Q2

0. In the NNPDF
approach, this corresponds to choosing the PDF combinations whose value is the output of a
neural network. Results should in principle be independent on this specific choice of basis.

A possible set of linearly independent flavour combinations is defined flavour basis, and it
contains the single parton PDF set:

f̃k = {u, ū, d, d̄, s, s̄, c, g} .

However, the default choice of PDF basis in NNPDF, called evolution basis, is the following:

fk = {V, V3, V8, T3, T8, T15,Σ, g} ,

in which the basis PDFs are chosen as the singlet quark Σ and gluon g distribution, the valence
Vi and nonsinglet sea Ti combinations that are eigenstates of QCD evolution, namely

Σ = u+ ū+ d+ d̄+ s+ s̄+ 2c ,

T3 = (u+ ū)− (d+ d̄) ,

T8 = (u+ ū+ d+ d̄)− 2(s+ s̄) ,

T15 = (u+ ū+ d+ d̄+ s+ s̄)− 3(c+ c̄) , (2.2)
V = (u− ū) + (d− d̄) + (s− s̄) ,
V3 = (u− ū)− (d− d̄) ,

V8 = (u− ū+ d− d̄)− 2(s− s̄) .

The evolution and flavour bases each have advantages and disadvantages. For instance, if
we choose a factorization scheme in which PDFs are non-negative [21], positivity is easier to
implement in the flavour basis. On the other hand, the integrability of the valence distributions
V, V3, V8, as required by the valence sum rules, is simpler in the evolution basis. In this thesis,
we take the evolution basis as our standard choice, as it is chosen in NNPDF4.0 methodology.

Once we have talked about the need for a choice of basis, we must say that the relationship
between the neural network output and the PDFs is the following

x fk(x,Q2
0;θ) = Ak x

1−αk(1− x)βkNk(x;θ) , k = 1, . . . , 8 , (2.3)

where k runs over the elements of the PDF flavour basis, Nk(x) is the neural network output,
and θ indicates the full set of neural network parameters. The constants αk, βk are parameters
which are evaluated in every PDF fitting process: in order to make sure that the neural network
does not bias the result, the parameters are varied in a range that is determined iteratively in a
self-consistent manner [22]. The normalization constants Ak are constrained by the sum rules.

The sum rules determine the theoretical constraints on the PDFs. Irrespectively of the
choice of the fitting basis, PDFs should satisfy both the momentum sum rule (1.12), and the
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three valence sum rules: ∫ 1

0

[
u(x,Q2)− ū(x,Q2)

]
dx = 2 ,∫ 1

0

[
d(x,Q2)− d̄(x,Q2)

]
dx = 1 , (2.4)∫ 1

0

[
s(x,Q2)− s̄(x,Q2)

]
dx = 0 ,

which express the conservation of baryon number.
The sums (1.12) and (2.4) must be valid for all values of Q2. Provided that these sum rules

are imposed at the initial parameterization scale Q2
0, perturbative QCD ensures that they will

hold for any other value.
Equations (1.12) and (2.4) are the flavour basis sum rules. When transformed to the evolu-

tion basis, the valence sum rules read∫ 1

0

V (x,Q2
0) dx =

∫ 1

0

V8(x,Q2
0) dx = 3 ,

∫ 1

0

V3(x,Q2
0) dx = 1 . (2.5)

while (1.12) remains the same.

Equations (1.12) and (2.5) fix four of the normalization constants Ak which appeared in
(2.3), namely Ag, AV , AV3 , AV8 , using the evolution basis.

In Figure 2.2 we have shown an example of the neural network used in NNPDF approach.
After defining the flavour basis and the evolution basis we can now show in Figure 2.3 the
true neural network architecture adopted for NNPDF4.0. In this case we remark that a single
network is used, and its eight output values are the PDFs in the evolution basis (red box) or
in the flavour basis (blue box). The main differences between the neural networks in Figure
2.2 and in Figure 2.3 are the number of hidden layers and the number of outputs. Both neural
networks in fact have the same number of inputs, which are determined by the couple (x, lnx),
but the one adopted in NNPDF4.0 has an additional hidden layer (in Figure 2.3 the hidden
layers are labeled with n(2) and n(3)): in statistical learning the hidden layers are simply layers
of mathematical functions each designed to produce an output specific to an intended result.
Moreover the neural network in Figure 2.2 has a single output, which is the single fitted PDF,
whereas the NNPDF4.0 neural network has eight outputs, which correspond to the results
shown in Figure 2.3.

2.2.3 Positivity and integrability
We now must talk about other two theoretical constrains: positivity and integrability of PDFs.
These constraints are extremely relevant in the analysis of the fitting framework.

The hadronic cross sections are a non-negative quantities, because they are probability
distributions. On the other hand we have already said that the PDFs are not probability
distributions, thus they may be negative. Whether they are positive or negative, it depends
on the factorization scheme. It is possible to show [21] that PDFs for individual quark flavours
and the gluon in the MS factorization scheme are non-negative. So we now also impose this
positivity condition along with the constraint of positivity of physical cross-sections discussed
above.

PDF positivity is implemented by means of Lagrange multipliers. Specifically, for each PDF
flavour, one adds a contribution to the total cost function used for the neural network training
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Figure 2.3: The neural network architecture adopted in NNPDF4.0 [5].

given by

χ2 −→ χ2 +

8∑
k=1

Λk

20∑
i=1

Φγ
(
− fk(xi, Q

′)
)

, (2.6)

where Q′ = 5TeV and the xi values are given by 10 points logarithmically spaced in
(5 · 10−7, 10−1) and 10 points linearly spaced in (0.1, 0.9). The Φγ function is given by

Φγ(t) =

{
t if t > 0

γ(et − 1) if t < 0
,

with the parameter γ = 10−7.
The equation (2.6) shows how the cost function bounded with a negative PDF receives a

contribution which is proportional both to the corresponding Lagrange multipliers Λk and to
the absolute magnitude of the PDF itself. This contribution will affect PDFs that assume neg-
ative values, which will thus not be considered as best fits.

In addition to the positivity requirement, small-x behavior of the PDFs is constrained by
integrability requirements.

First of all, the gluon and singlet PDFs must satisfy the momentum sum rule (1.12), which
implies that

lim
x→0

x2fk(x,Q) = 0 , ∀Q , fk = g,Σ , (2.7)

while the valence sum rules (2.4) constrain the small-x behavior of the valence distributions

lim
x→0

xfk(x,Q) = 0 , ∀Q , fk = V, V3, V8 , (2.8)

in the evolution basis.
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Furthermore, the standard Regge theory suggests that [23]

lim
x→0

xfk(x,Q) = 0 , ∀Q , fk = T3, T8 . (2.9)

In fitting the PDFs, the framework has to verify the conditions (2.7),(2.8), and (2.9) in order
to ensure the integrability of the PDFs.

2.3 The state of the art
Finally, we talk about the global NNPDF4.0 fitting framework. This fitting framework can be
divided into three main steps.

1. Initialization: inputs are given in order to initialize the neural network;

2. Fitting and evaluation: the neural network fits the PDFs from the data replica sets,
and the algorithm evaluates the cost function and minimizes it;

3. Post-fit selection: the APFEL program evaluates the best PDFs at different values of
Q2 through the perturbation theory of QCD, then the PDFs are selected verifying their
positivity and integrability. Finally, the output is made in the LHAPDF format in order
to be viewed.

Figure 2.4: Diagrammatic representation of the NNPDF4.0 fitting framework [5].

2.3.1 Initialization
First of all, we have to give something to the machine in order to have something back (in this
case the PDF fittings). It is obvious that the first thing to give the machine is the experimental
data, which are organized in datasets.

The next step is the hyperoptimization procedure, or neural network training, which requires
as input a number of methodological choices, such as the neural network architecture and the
training rate. We can view these choices as the set of hyperparameters, which are denoted
as θ in (2.3). This set of hyperparameters defines a specific fitting strategy. While in many
methodologies (including previous NNPDF determinations) these hyperparameters are deter-
mined by trial and error, in NNPDF4.0 an automated algorithmic procedure is implemented in
order to scan the space of hyperparameters and determine the optimal configuration according
to a figure of merit. In this work, the implementation of the hyperparameter scan is based on
the hyperopt library [24].

Finally, in order to compute the loss function (2.1), the algorithm has to compute the
hadronic cross section starting from the experimental data. And to do so, the algorithm also
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has to compute the convolution integral (1.5) once the PDFs are fitted. Therefore, the PDFs
are convoluted with partonic scattering cross-sections (including perturbative QCD evolution):
the convolution integrals are substituted with convolution products which are encoded in pre-
computed grids called FK-tables.

2.3.2 Fitting and evaluation
Once we give the input, the machine is ready to begin the process of fitting.

We have already said that the best way to fit the PDFs is using machine learning methods.
In particular the problem that NNPDF4.0 fitting framework tries to solve is often known as un-
supervised problems in machine learning: this kind of problems is based on having some dataset
for which one wants to extract information or quantities that depend on the experimental data.

Previous NNPDF determinations used stochastic algorithms for the training of neural net-
works, and, in particular, in NNPDF3.1 nodal genetic algorithms were used. Stochastic mini-
mization algorithms are less prone to end up trapped in local minima, but are generally less effi-
cient than deterministic minimization techniques. In the approach adopted here in NNPDF4.0,
the algorithms that we consider are Stochastic Gradient Descent algorithms implemented in
the Tensorflow package [7].

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum
of a differentiable function. The idea is to take repeated steps in the opposite direction of the
gradient of the function at the current point, because this is the direction of steepest descent.
In this case the algorithm chooses a set of hyperparameters θn in order to fit the PDF as in
(2.3) for given data of a dataset. Then, as the algorithm iterates the fitting and calculate
the loss function χ2, it has to choose other hyperparameters in order to minimize the loss
function. Considering that this function depends on the PDF fitted, and so it also depends on
the hyperparameters, the new hyperparametrization chosen by the algorithm is such that

θn+1 = θn − γn∇θχ
2(θn) (2.10)

where the factor γn is known as step size, and it is possible to show that it is given by

γn =
|(θn − θn+1) · (∇χ2(θn)−∇χ2(θn+1))|

||∇χ2(θn)−∇χ2(θn+1)||2
. (2.11)

In doing so, for every dataset we find the better fitting that minimizes the loss function.
The use of gradient descent algorithms ensures greater efficiency, while the use of hyperop-

timization guarantees the best methodology without underfitting or overfitting the data replicas.

Figure 2.5: Diagrammatic representation of the calculation of the loss function in the NNPDF4.0
fitting framework [5].

Figure 2.5 illustrates the structure of the algorithm that evaluates the loss function (2.1) in
terms of the PDFs fitted from the data replica.
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In gradient descent method used in NNPDF4.0, a set of experimental data replica {x(k)n } is
generated1 through Monte Carlo methods, to which a set of momentum fractions is associated.
Then the code first fits the functions Nj(x;θ) seen in equation (2.3) through the neural net-
work and evaluates the preprocessing factors to construct un-normalized PDFs, which are then
normalized determining the factor Ak, again from (2.3), in order to fit the every PDF flavour

f
(k)
jn ≡ fj

(
x(k)n , Q0

)
, (2.12)

where j, k, n in (2.12) label the jth PDF flavour, the kth data replica, and the nth data from
the data from the data replica. Then in order to evaluate the loss function χ2, the algorithm
associates a value on the fast Kernel tables to the {x(k)n } data. This value is denoted as FKn.
Once the PDFs have been fitted by the neural network, the 4-rank luminosity tensor is then
defined as

Liαjβ = fiα fjβ , (2.13)

where (i, j) in (2.13) label the PDF flavour, while (α, β) label the preprocessed parameters.
Finally, the algorithm can determine a prediction of the xn data On contracting the lumi-

nosity tensor with the nth convolution product of the Fast Kernel tables

xn −→ On = FK iαjβ
n Liαjβ , (2.14)

and once the algorithms computes the set of reals {O1,O2, . . . ,On}, it is possible to determine
the loss function χ2. Then the algorithm iterates the procedure choosing a new set of parame-
ters (2.10) in order to minimize the loss function.

Finally, in Figure 2.5 we can see that the loss function is subject to a split. The final product
of the algorithm used in NNPDF4.0 are then the two loss functions χ2

tr and χ2
val. This is caused

by the fact that, in fitting the PDFs, we may occur in the problem of fitting also the statistical
noise.

Because of this noise, we cannot let the algorithm make too many iterations, because we
may occur in the overfitting, that is the production of an analysis that corresponds too closely
or exactly to a particular set of data, and may therefore fail to fit additional data or predict
future observations reliably.

In order to remove the noise from fitting and in order to avoid the algorithm to overfit,
it is introduced a stopping criterion method, and precisely the method used in this work is
called cross-validation method : this method consists in splitting the experimental data in a
certain dataset in two arbitrary sets, called training set and validation set, then compute the
loss function χ2 for every set. The ratio of these two sets is choosed a priori2, but the data
which are sent to these two sets are chosen randomly.

So, instead of having a single loss function, we have the two different loss functions

χ2
tr =

1

n

n∑
i,j=1

(Di −Oi)M−1ij (Dj −Oj) ,

χ2
val =

1

m

m∑
i,j=1

(Di −Oi)M−1ij (Dj −Oj) .

where n and m are the number of data contained in the training set and in the validation set
respectively.

1The expression {x(k)
n } represents the nth data from the kth set of data replicas.

2In NNPDF4.0 usually the 75% of the data extracted from a dataset are sent in the training set, and the the
25% of the data are sent in the validation set.
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The aim of the cross-validation method is that of minimize the loss function χ2 = χ2
tr,

while the value of χ2
val is monitored: the gradient descent method acts on the training set in

order to minimize the function χ2
tr, modifying the neural network weights as in equation (2.10).

Simultaneously also the function χ2
val changes because of the changes of the neural network

weights. However, since the gradient descent method acts only on the training set, χ2
tr might

not always improve: so if this quantity stops improving, the process is arrested in order to avoid
the overfitting. Since the noise has no correlation between the training set and the validation
set, the cross-validation method ensures that the gradient descent method isn’t fitting over the
noise.

Figure 2.6: Flowchart describing the algorithm used in NNPDF4.0 to determine the optimal
length of the iteration based on the cross-validation stopping method [5].

In Figure 2.6 it can be clearly seen how the process of this stopping criterion works. There
is in fact a fixed maximum number of possible iterations, and for every iteration it is verified if
the positivity of the fitted PDF is fulfilled. Then it is verified if the χ2

val is smaller of the best
χ2 previously computated: if this conditions are fulfilled, then the iteration counter is reset,
and the PDF fitted is stored, while if just one of these conditions isn’t fulfilled, then the fitted
PDF is rejected, and the iteration counter continues.

The importance of using a stopping criterion in the fitting methodology is shown in Figure
2.7, in which we show an example of PDFs fitted with and without using the cross-validation
method: we can see how the overfitting leads to a deviation of the PDF fittings from the mean.

Finally, we must say that there are a few differences between the stopping criterion used
in NNPDF4.0 and that of its predecessor used in NNPDF3.1. One of these differences is that
the percentage of data that enters the training set has been increased to 75% for all datasets.
This is motivated by the observation that the current dataset is so wide that even with just
25% validation overlearning does not occur in practice. Moreover the stopping algorithm in
NNPDF4.0 also tracks the positivity requirement so that a fit a priori discarded if the positivity
condition is not satisfied. Instead in NNPDF3.1 replicas which were not fulfilling positivity could
be generated and had to be discarded a posteriori.
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2.3.3 Post-fit selection
After the fitting is done, the mean value of the PDF fi(x,Q

2
0) is computed with its variance.

Then the PDF is given to the APFEL program, which determines the values of the PDF
for other values of Q2, solving the differential equations of perturbative QCD (1.8) and (1.9)
presented in Section 1.2. Then we use the post-fit selection, in order to discard PDFs that
deviate too much from the average and non integrable PDFs. Finally the PDF is output in the
LHAPDF format in order to be used.

(a) s̄ and ū PDF fits with the use of the cross-validation method.

(b) s̄ and ū PDF fits without the use of the cross-validation method.

Figure 2.7: The graphics in Figure 2.7a show an example of PDFs fitted (from two different
runcards), using NNPDF4.0 methodology, while the graphics in Figure 2.7a show the same
fittings without using a stopping criterion.



Chapter 3

Analysis of the PDF fits

The aim of this thesis is to study in detail the gluon PDF, and determine how the experimental
observables, like the production of top and antitop quark pair or jet production, can influence
the shape of this distribution. The study of the behavior of the gluon distribution can determine
which data cause an impact on its shape.

The analysis of PDF fits is made by comparing the PDFs fitted from different datasets of
hadronic cross-section contained in runcards. These runcards are written in YAML lenguage,
which is a human-readable data-serialization language. It is commonly used for configuration
files and in applications where data is being stored or transmitted.

3.1 First analysis
In order to determine which data cause an impact on the gluon PDF, first we take the complete
NNPDF4.0 dataset and place it in the runcard standard.yml . After we make a fit of the gluon
distribution using this runcard, we remove some datasets from the runcard, linked to some
hadronic observables, like the dataset which contain the data of the production of top-antitop
quark pair. We then compare the new fit with the old ones, trying to understand how the
absence of some datasets influence the gluon distribution.

The first analysis is determined by the first bunch of runcards for which the PDF plots are
compared:

• standard.yml : the complete dataset from NNPDF4.0;

• no_jets_no_top.yml : the data from top quark and jet production are excluded;

• no_jets.yml : the jet production data are excluded;

• no_top.yml : the top quark data production are excluded;

• no_jets_no_top_atlasjets.yml : only ATLAS jet production data are included;

• no_jets_no_top_cmsjets.yml : only CMS jet production data are included.

From this analysis we check that indeed the data from top-antitop quark production and jet
production have a big influence on the gluon distribution. This fact is given by the comparison
between the fits made from the runcards standard.yml and no_jets_no_top.yml, shown in Figure
3.1a. In Figure 3.1b it is presented a comparison of the distance of the two fits, where the
distance of two PDFs is defined as follows

d(f1, f2)(x) ≡ |f1(x)− f2(x)| . (3.1)
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(a) (b)

Figure 3.1: Figure 3.1a shows the plots of the gluon PDFs using the datasets accord-
ing to the key. Figure 3.1b instead shows the distance of every PDF flavour fitted from
no_jets_no_top.yml to the PDFs fitted from standard.yml .

As we can see in Figure 3.1b, the distance of the gluon PDFs fitted from the runcards
standard.yml and no_jets_no_top.yml are much greater of the distance of the other fits. It is
then understandable that it could be interesting to analyse especially the gluon distribution, in
order to understand in what ways the production of top quark and quark jets can influence the
interaction between gluons.

For completeness in Figure 3.2 we present also the comparison of the plots of every PDF
flavour fitted from the dataset presented earlier.

From the first analysis of the fits, presented in Figure 3.3a and in Figure 3.3b it is possible
to make some first considerations. In Figure 3.3a for example, where the gluon PDF fitted
from the runcard standard.yml is taken as the reference PDF, we notice that excluding some
data, for istance top production data and jet production data, the gluon PDF shows a shifting
between the region 0.2 < x < 0.6: excluding only the top production data, the gluon PDF
shifts upwards, while excluding only the jet production data it shifts downwards in that region.
Moreover it can be seen that excluding both jet and top production, the gluon PDF shifts
downwards in an even more marked way, with respect of the two previous shiftings, as we saw
previously. These considerations can be made considering the graphics in Figure 3.4a.

In Figure 3.3b instead, where the gluon PDF made from the runcard
no_jets_no_top.yml is taken as the reference PDF, it can be considered that in this case both
jet and top production data make the gluon PDF shift up. Furthermore the fact that the two
last plots are identical ensures that the jet production data by LHC and CMS are consistent.
These considerations can be made considering the graphics in Figure 3.4b.

In conclusion, Figure 3.3a shows that excluding the jets production and top quark production
makes the reference PDF shift in two different directions, but on the other hand Figure 3.3b
shows that the jet production and top quark production data makes the reference PDF shift in
the same direction, that is upwards, but by a different amount, in fact adding the jet production
data make the reference PDF shift upwards by a much larger amount.

Then the dataset which would favor a lower gluon distribution in comparison to jet and
top pair production, as it is shown in Figure 3.1a, are still unknown. However, an analysis of
PDF sets in which datasets are removed one by one in [5] suggests that datasets that have a
significant impact on the gluon distribution are the Z boson production ones. We will therefore
perform a new analysis also considering these datasets.



3.1. First analysis 23

Figure 3.2: Comparison of every flavour PDF plots from the ‘first analysis’ data.
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(a) Comparison of gluon PDFs plots in which the reference PDF is the one fitted from the runcard standard.yml .

(b) Comparison of gluon PDFs plots in which the reference PDF is the one fitted from the runcard
no_jets_no_top.yml .

Figure 3.3: First analysis of the PDF fits comparisons.
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(a) Graphics in which we compare the distance of the PDFs fitted from the runcard standard.yml from the PDFs
fitted from the runcards no_jets_no_top.yml, no_jets.yml and no_top.yml.

(b) Graphics in which we compare the distance of the PDFs fitted from the runcard no_jets_no_top.yml from
the PDFs fitted from the runcards no_jets.yml, no_jets_no_top_atlasjets.yml and no_jets_no_top_cmsjets.yml.

Figure 3.4: Distance between first analysis PDF fits.
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3.2 Second analysis
In this second analysis, we again consider the complete NNPDF4.0 dataset, and in addition to
the top pair production data and jet production data, we consider also the datasets linked to
the Z boson production. Then we again remove these dataset from the runcard standard.yml ,
and compare the new fits with the old ones.

The second bunch of runcards for which the PDF plots are compared, in order to find
what hadronic observable can explain the shifting of the PDFs plotted in Figure 3.1a, is the
following1:

• baseline.yml : the jets, top quark, and Z boson production data from ATLAS and CMS,
as well as Z production data from LHCb are excluded;

• baseline+top.yml : top quark production data are re-included in the baseline;

• baseline+jets.yml : jet production data are re-included in the baseline;

• baseline+LHCb.yml : Z boson production data from LHCb are re-included in the baseline;

• baseline+ZpT.yml : Z boson production data (with non-null transversal momentum) from
ATLAS and CMS are re-included in the baseline.

In Figure 3.6a we show the comparisons of the PDF fits of these second bunch of runcards,
and from these comparisons too it is possible to make some considerations.

First of all it can be seen that the reference gluon PDF fitted in Figure 3.6a, that is the one
fitted from the runcard baseline.yml, has a larger variance then the other PDF fits in Figure 3.3
and Figure 3.6a: this is due to the fact that this fit is made removing many dataset from the
default runcard baseline.yml.

From the analysis of this PDF fits, it can be seen that with the addition of jets production
and top quark production data the PDF fits shift upwards in respect to the reference PDF fit
from baseline.yml, while with the addition of the Z boson production data the PDF fit shifts
downwards. So we can assume that it seems that it is the presence of the Z boson production
data with the absence of jets and top quark production data that makes the gluon PDF fit shift
downwards and so make this distribution assume such lower values in the region 0.2 < x < 0.6
compared to the PDF fitted from the runcard standard.yml .

(a) (b)

Figure 3.5: Figure 3.5a shows the comparison between the fits of the gluon PDF using the
runcards no_jets_no_top.yml and baselin+ZpT.yml. Figure 3.5b instead shows the distance
between the PDF fits.

1We consider again the the complete dataset from NNPDF4.0 as reference, that is the runcard standard.yml .



3.2. Second analysis 27

(a) Comparison of gluon PDFs plots in which the reference PDF is the one fitted from the runcard baseline.yml .

(b) Graphics in which we compare the distance of the PDFs fitted from the runcard baseline.yml from the PDFs
fitted from the runcards baseline+top.yml, baseline+jets.yml, baseline+ZpT.yml and baseline+LHCb.yml

Figure 3.6: Second analysis of the PDF fits comparisons, and distances between the PDF fits.



Conclusions

In this thesis we presented the problem of determining probability distributions of partons
inside the proton, showing how these Parton Distribution Functions encode the structure of
strongly-interacting hadrons in the beam of high energy collisions.

We presented then the machine learning method implemented by NNPDF4.0 in order to
determine the PDFs strarting from some datasets, which require the gradient descent method
and the cross-validation method.

The aim of this thesis was to determine how the experimental observables in high energy
scattering experiments can influence the shape of the gluon PDF, and we presented the approach
used in finding an answer. First we considered the complete dataset from NNPDF4.0, place
it in the runcard standard.yml (the reference runcard), and we made a fit from it. Then we
removed some of the datasets from standard.yml linked to the top-antitop pair production and
jet production, creating new runcards, and we made a fit from them, comparing the PDFs
fitted.

From this first analysis we understood that the the top-antitop quark production data and
the jet production data have a huge impact on the gluon distribution, as it seemed that removing
both these kind of data from the reference runcard, the PDF fitted from the new runcard
no_jets_no_top.yml deviates significantly from the one fitted from standard.yml . However,
it seemed also that removing singularly top-antitop production data and jet production data
from standard.yml made the gluon PDF shift in different direction from the PDF fitted from
the refenrence runcard.

Aware of the fact that the Z boson production data have a significant impact on the gluon
distribution, we then performed a new analysis considering also these datasets. So we removed
top-antitop production data, jet production data, and Z boson production data from the ref-
erence runcard, made a fit from this new runcard (baseline.yml), and then we re-added one by
one the different kind of datasets in this runcard, comparing the new fits with the old ones.
From this second analysis we found that it is the presence of the Z boson production data with
the absence of jets and top quark production data that makes the gluon PDF deviate in a such
significant way from the one fitted from the reference runcard.

Of course the deviation of the PDFs fitted from the runcards standard.yml and
no_jets_no_top.yml could occur due to a statistical fluctuation, or maybe due to the fact
that the jet production data are far more numerous than top-antitop production data, so our
conclusion could be wrong. In the future, when we will be equipped of some more data, NNPDF
will verify if the deviation of the previously gluon PDFs is due to a lack of data or is due to a
truly physically motivation.
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