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Introduction

Years of efforts in trying to describe fundamental physics produced the so-called
Standard Model or rather the theory of fundamental interaction. This is a theory
which provides a picture of 3 of the 4 fundamental forces (electromagnetic, weak
and strong interactions). In order to validated the theory, many experiments have
been conducted, exploring its effectiveness in describing particle physics at increas-
ingly higher energies. In order to provide the necessary data to test the theory,
particle accelerators have been built, where different types of particles (leptons or
hadrons) are accelerated and are made to collide between each other and then the
particle outcome is measured. The simplest observable which can be both com-
puted from the theoretical model and measured by the experiments is the so called
inclusive cross section. It represents the rate of a certain type of events, once the
colliding particles are fixed.

The theory has passed many experimental tests. Among them, probably the
most popular one is the prediction of the existence of the Higgs boson, but there
are still some physical ingredients which are missing. Two examples are dark
matter, which is believed to be composed of particles still not included, and gravity,
which we are not able to represent as a fundamental force within the framework
of quantum field theory. In order to obtain hints on how to add these and other
phenomena to the theory, we need to get increasingly stringent constraints from
experiments. This can be done by raising the energy of the particle collisions, or
by measuring more specific observables, such as differential cross sections, namely
cross sections where some kinematic characteristics of the final state has been fixed.

This thesis points in the latter direction. In fact, we will focus on the production
of a massive final state (a Higgs boson, a Z boson or a virtual photon), with
fixed longitudinal rapidity (along the collision axe). Inclusive and differential cross
sections can be computed perturbatively, namely as an infinite sum of terms with
decreasing value, therefore computing a finite number of them should provide an
approximation of their true value. The condition that the terms of the series
become less and less important is not always correct, in particular it is known to
fail near the kinematic thresholds, for instance when the collision energy is barely
sufficient to produce a Higgs boson, or when the Higgs boson has the maximum
longitudinal momentum.

In these cases, the perturbative approximation is spoiled because some loga-
rithmic terms become of the same order of magnitude at any perturbative order.
The solution to this problem is to reorganise the perturbative series and to collect
all the terms which are of the same magnitude from every perturbative order. The
reorganised series can be obtained by the so called resummation formulas, which
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can be derived following different approaches. In this thesis we aim to obtain the
resummation formulas for the rapidity distribution of the Higgs production in the
two mentioned threshold behaviour: doubly soft limit (barely sufficient energy)
and singly soft limit (maximum longitudinal momentum).

In chapter 1 we provide a brief description of the strong interaction sector of the
fundamental interaction theory, known as Quantum Chromodynamics. We recall
the QCD Lagrangian and its fundamental properties. Among them, asymptotic
freedom and colour confinement are particularly important. Then, we briefly de-
scribe the fixed order computation notation. Finally, we explain the emergence of
IR divergence from the emission of soft or collinear massless particle emission, and
their cancellation between real and virtual contribution.

In chapter 2, we face a problem due to colour confinement. In fact, since single
quark states can not be observed in nature, the collisions must take place between
hadrons, which are composite particles, and therefore are not fundamental objects
of the theory. Moreover, we are not able to provide either an exact treatment of
the hadrons or a perturbative one. The solution to this problem is the so-called
factorization, and in this chapter we describe a formal derivation for the case of deep
inelastic scattering. From this derivation parton distribution functions emerge, and
we describe some of their key features. Finally, we report the most commonly used
kinematic variables for deep inelastic scattering and hadron collision.

In chapter 3, we motivate the emergence of logarithmic enhanced terms and we
characterise them in different classes, some of which we aim to resum. Moreover, we
describe how these big logs are mapped into big logs by the Mellin transform. Then,
we describe the renormalization group argument which allows us to derive the
resummation formulas. Firstly, we apply it to the case of inclusive cross sections,
and then we generalise it for differential cross sections, which will be called multi-
scale case.

Chapter 4 represents the core of the thesis. Firstly, we describe the notation
used to refer to physical quantities, in order to later highlight the threshold be-
haviours. Then, in order to obtain the factorization of the rapidity distribution,
we describe the necessity of a double transform (Mellin-Fourier or Mellin-Mellin).
After providing a brief description of two examples of rapidity distributions in their
most common forms, we derive to which variable limits the thresholds correspond,
both in Mellin-Fourier and Mellin-Mellin space. Then, thanks to a study of the
phase space structure, we derive the soft and collinear scales of our process, both
in the singly and doubly soft kinematic limit. Once we obtained them, we are
ready to substitute them into the resummation formulas. We prove that in the
doubly soft case, the contributions from the soft scale are only subleading, while
in the singly soft limit both soft and collinear scales are relevant. We also prove
that in the doubly soft limit the resummed expression is identical to the one of the
inclusive cross section up to an algebraic substitution.



Chapter 1

The strong interaction

In this chapter we summarize the key theoretical ingredients of Quantum Chro-
modynamics. Our aim is to recall the basic features of QCD, and in particular
those which will be important in chapters 3 and 4, which are the core of this work.
In particular, we briefly describe the QCD Lagrangian, we recall the properties
of asymptotic freedom and colour confinement, the perturbative technique and its
notation. Finally, we provide some examples of the treatment of IR divergences,
their factorization and cancellation properties.

1.1 Quantum Chromodynamics
Quantum Chromodynamics is the theory which describes the strong interaction.
It is a gauge theory with SU(NC) gauge group, where NC = 3. It takes place
between 1/2-spin fermions, called quarks, which are represented by Dirac spinors
ψ. There are six known types of quarks, which are identical with respect to the
strong interaction, but they have different masses (among other differences). In
order to highlight their common strong behaviour, it is usually said that quarks
come in six different flavours, and they are denoted by ψf , with f = 1, ..., Nf . The
strong interaction between quarks is mediated by 1-spin massless bosons, called
gluons, which are the gauge bosons of the theory and are denoted by Aµ. Quarks
live in the fundamental representation of SU(3), therefore they are represented by
ψi
f , where i = 1, 2, 3 (3 is the dimension of the representation space), while gluons

live in the adjoint representation, hence they are represented by Aa
µ, a = 1, ..., 8.

The QCD Lagrangian reads as follows:

LQCD =
∑︂
f

ψ̄
i
f (i /D −mf )

ijψj
f −

1

4
F a
µνF

µνa, (1.1)

where the sum is over the flavours f ,

F a
µν := ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

b
ν (1.2)

is the field strength tensor of the gluon field Aa
µ, fabc are the structure constant

of the SU(3) algebra and gs is the coupling constant. In addition to gs, it is often
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Flavours Up (u) Down (d) Charm (c) Strange (s) Top (t) Bottom (b)
Masses 2.5 MeV 5.0 MeV 0.1 GeV 1.3 Gev 4.2 GeV 173 GeV

Table 1.1: The six different flavours of quarks, with their masses and their electric
charges

convenient to use αs :=
g2s
4π

. The different quark masses mf can be found in table
1.1. The covariant derivative Dµ is defined as

Dij
µ := Iij∂µ − igsA

a
µT

aij, (1.3)

where T ij
a are the generators of the SU(3) algebra in the fundamental represen-

tation. They are often chosen to be T ij
a = λija /2, where λa are the Gell-Mann

matrices. The Lagrangian (1.1) is invariant under the following gauge transforma-
tions: {︄

ψ(x) ↦−→ U(x)ψ(x)

Aµ(x) ↦−→ U(x)AµU
†(x) + i

gs
U(x)∂µU

†(x),
(1.4)

where U(x) = exp{iθa(x)T a} ∈ SU(3).

1.2 Gauge fixing and ghosts
For non abelian gauge theories in general and for QCD in particular, it is well-
known that the usual quantization procedure, i.e. naively imposing the canonical
quantization relations, does not work. This is due to the gauge invariance of such
theories, in fact we are considering an infinite number of gauge equivalent field
configurations, and we need to constrain the gauge field configurations space. This
can be done in the path-integral formulation of Quantum Field Theory by means
of Faddeev-Popov formula (see [2] and [6]). It can be shown that this procedure is
equivalent to adding to the Lagrangian (1.1) a gauge fixing term and a ghost term.
Then, the QCD Lagrangian reads as follows:

L = LQCD + Lfix + Lghost, (1.5)

where
Lfix := −f(A)

2

2ξ
and Lghost := c̄∂µDµc. (1.6)

In definitions (1.6), f(A) is the function chosen for the gauge field configuration
contraint f(A) = 0, ξ is an arbitrary parameter and c(x) are gauge-dependent
fermionic spinless fields, known as ghosts.

We recall the fact that no physical quantity can depend on the choice of f(A)
and ξ, because the theory is invariant under gauge transformations, therefore fixing
a gauge can not affect the theoretical predictions of the theory. Moreover, it can be
shown that the ghosts fields we introduced are not physical particles, but they play
the role of negative degrees of freedom, namely they cancel the contributions from
the longitudinal and time-like polarization of the gluons. A systematic treatment
of gauge fixing and a precise explanation of the physical interpretation of the ghost
fields can be found in [2].
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1.3 Feynman rules of QCD
In the Quantum Field Theory framework, transition amplitudes are computed by
summing over all possible Feynman diagrams allowed by the Feynman rules of the
considered theory. Here we report the Feynman rules of the Lagrangian (1.5) in
the Feynman gauge, i.e. ∂µAµ = 0 and ξ = 1:

= δab
−igαβ

p2 + iϵ
(1.7)

= δab
i

p2 + iϵ
(1.8)

= δji
i

/p−m+ iϵ
(1.9)

= −gsfabcqα (1.10)

= igsT
a
jiγ

α (1.11)

=
gsf

abc[gαβ(k − p)γ+

gβγ(p− q)α + gγα(q − k)β]
(1.12)

=

−ig2sf eacf ebd(gαβgγδ − gαδgβγ)

−ig2sf eadf ebc(gαβgγδ − gαγgβδ)

−ig2sf eabf ecd(gαγgβδ − gαδgβγ)

(1.13)
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1.4 Running coupling and asymptotic freedom
Amplitude computations involve loop integrals, (as in eq. (1.26)), which may
present UV divergences. The well-known procedure of renormalization removes
divergences and makes the coupling constant acquire a dependence αs = αs(µ

2
R)

on the renormalization scale µ2
R. Its dependence can be described by defining the

beta function:

β(αs(µ
2
R)) :=

d lnαs(µ
2
R)

d lnµ2
R

. (1.14)

The beta function can be computed as a power series in the coupling constant as
follows:

β(αs(µ
2)) = −β0α2

s − β1α
3
s +O(α4

s), (1.15)

where, for a generic SU(NC) gauge theory with Nf flavours, the first coefficient is

β0 =
11NC − 2Nf

12π
. (1.16)

The solution of equation (1.14) at first non trivial order is:

αs(Q
2) =

αs(µ
2
R)

1 + β0αs(µ2
R) ln

Q2

µ2
R

. (1.17)

For NC = 3 and Nf ≤ 16, we have β0 > 0. Therefore, for the case of QCD, αs

decreases as µ2
R increases, and the theory is said to be asymptotically free. On the

other hand, as µ2 decreases, αs increases, and it hits the Landau pole at

Q = ΛQCD = µR exp

{︃
− 1

2β0αs(µ2
R)

}︃
. (1.18)

Actually, the Landau pole is not a consistency problem of the theory because,
before reaching Q = ΛQCD, the coupling constant has already reached the value
αs ≈ 1, and therefore the perturbative approximation (1.15) is no longer valid,
hence the rest of the above derivation.

1.5 Callan-Symanzik equation
In section 1.4 we stated that, after the renormalization procedure, the coupling
constant acquires a dependence on the renormalization scale αs = αs(µ

2
R). More-

over, the generic transition amplitude M(Q2, αs) under consideration acquires a
dependence on µ2

R, too, i.e. M(Q2, µ2
R, αs(µ

2
R)). We recall the fact that the renor-

malization scale µ2
R is an arbitrary scale, and therefore no physical observables

can depend on it. For a generic observable O, this statement is equivalent to the
Callan-Symanzik equation:

dO(Q2, µ2
R, αs(µ

2
R))

d lnµ2
R

= 0. (1.19)
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By computing the derivative of a composite function, the equation can be written
in the usual form:

∂O(Q2, µ2
R, αs)

∂ lnµ2
R

+ β(αs(µ
2
R))

∂O(Q2, µ2
R, αs)

∂αs

= 0, (1.20)

where we recognised the definition of the β function (1.14). From this equation, we
can read that the explicit dependence of O on µ2

R exactly compensates the implicit
dependence of O through αs(µ

2
R).

1.6 Colour confinement
Colour confinement is the property of QCD that, below approximately 150 MeV,
colour charged particles can not be directly observed. Usually, we refer to the Lan-
dau pole ΛQCD as an indication for the threshold of confinement. Below this scale,
only colourless states can be directly observed. These states are called hadrons and
are bound states of the fundamental particles of the theory (quarks and gluons).
Hadrons are divide in two classes: barions, composed of three quarks, and mesons,
which are a quark-antiquark pair. This physical phenomenon has been directly
observed, but, to date, there is not a proof of QCD confinement because, at this
energy scale the value of the coupling constant is αs ≳ 1, hence the perturbative
techniques fail. However, lattice QCD simulations show the presence of a phase
transition compatible with the observed phenomenon.

1.7 Perturbative series
In the Quantum Field Theory framework, the main tool to compute a desired
observable O is expanding it in a series in coupling constant powers, i.e.

O =
∞∑︂

n=n0

Onα
n
s . (1.21)

In the above expression the first non trivial contribution, i.e. the term proportional
to αn0

s is called leading order (LO), the second non trivial term is called next-to-
leading order (NLO) and the k-th non trivial term is denoted with NkLO. The
partial sums of the above series are increasingly better approximations of O if αs ≪
1. With the expression "fixed order computation", we refer to the approximation
of the series with its partial sum up to NkLO, for some chosen k, i.e.

Ofix
k =

k∑︂
n=n0

Onα
n
s . (1.22)

1.8 IR divergences
In addition to UV divergences, in QCD amplitude computations also IR divergences
arise because of the presence of gluons, which are massless particles. With the term
infrared, we refer to two different types of kinematic limit:
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• soft particles, which means that all the components of its 4-momentum are
approaching 0;

• collinear particles, which means that its 4-momentum is becoming collinear
to the 4-momentum of the particle which emitted it.

1.8.1 Soft singularities

In this section, we provide a specific example to describe the factorization of soft
emissions, the emergence of soft singularities and their cancellation properties. We
consider a virtual photon decay into a quark-antiquark pair in the high energy
limit, where the quark masses can be neglected. The NLO contributions to the
cross section can be computed as:

σNLO = σNLO
real + σNLO

virt , (1.23)

where

σNLO
real =

1

2E2
cm

∫︂
dϕ3 |Mreal|2 and σvirt =

1

2E2
cm

∫︂
dϕ2 |Mvirt|2, (1.24)

and dϕn is the n-particle phase space integration measure. The squared modulus
of the amplitudes are obtained as follows:

|Mreal|2 =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ +

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
2

(1.25)

and

|Mvirt|2 = 2Re

⎛⎜⎜⎜⎝
∗⎛⎜⎜⎜⎝ + +

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(1.26)
If we write the real emission contribution to the amplitude (1.25), we get:

Mµ
real(q; p1, p2, k) = ū(p1)

(︃
(−igsT aγν)

i(/p1 + /k)

(p1 + k)2
(−ieγµ)

+ (−ieγµ)
i(−/p2 − /k)

(p2 + k)2
(−igsT aγν)

)︃
v(p2)ϵ

a
ν(k), (1.27)

where p1 and p2 are respectively the 4-momenta of the final state quark and anti-
quark, k is the 4-momentum of the gluon and ϵaµ(k) its polarization vector. In the
soft gluon limit of this amplitude, i.e. kµ → 0, Mµ

real becomes:

Mµ
real(q; p1, p2, k) =

= gsū(p1)

(︃
T aγν

/p1
2(p1, k)

(−ieγµ)− (−ieγµ) /p2
2(p2, k)

T aγν
)︃
v(p2)ϵ

a
ν(k). (1.28)
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By exploiting the relation {γα, γβ} = 2δαβ to switch the order of /p1 and /p2 with
γν , and by exploiting the Dirac equations of motion for a massless quark ū(p)/p = 0
and /pv(p) = 0, we obtain:

Mµ
real(q; p1, p2, k) =

(︃
ϵa(k),

p1
(p1, k)

− p2
(p2, k)

)︃
ū(p1)(−ieγµT a)v(p2). (1.29)

By computing the unpolarized squared modulus of the amplitude and by exploiting
the relation∑︂

spins

ϵµ(k)ϵν(k)

(︃
pµ1

(p1, k)
− pµ2

(p2, k)

)︃(︃
pν1

(p1, k)
− pν2

(p2, k)

)︃
=

2(p1, p2)

(p1, k)(p2, k)
, (1.30)

we finally get:

|Mreal(q; p1, p2, k)|2 = g2sCF
(p1, p2)

(p1, k)(p2, k)
|M(q; p1, p2)|2 (1.31)

where M(q; p1, p2) is the LO order contribution to the amplitude. If we substitute
this expression in equation (1.24), we obtain:

σNLO
real =

CFg
2
s

2Ecm

∫︂
d3p1d

3p2
(2π)64E1E2

|M(q; p1, p2)|2(p1, p2)
∫︂

d3k

(2π)32Ek

1

(p1, k)(p2, k)
,

(1.32)
which is a divergent integral in the region of kµ → 0. This is an example of a soft
singularity.

By looking at expression (1.31), we recognise that the real gluon emission cor-
rections to the LO factored in a product of the LO and the factor (p1,p2)

(p1,k)(p2,k)
in the

soft gluon limit. These are called Eikonal factors, and the factorization (1.31) is a
general property of soft emission, and does not depend on the considered process.

Now we consider the contributions to σNLO
virt and in particular we consider the

following amplitude:

= ū(p1)(−igsT aγν)

[︃∫︂
d4k

(2π)4
−i
k2
i(/p1 − k)

(p1 − k)2

]︃
(−igsT aγν)(−ieγµ)v(p2).

(1.33)
As in the real gluon emission case, also the virtual contributions are singular. In
fact, as we can see from expression (1.33), this is due to the fact that the loop
integral is divergent in the soft gluon region.

In [4] there is a proof that all soft divergences from loop integrals are cancelled
by soft divergences coming from phase space integrals of real emission contribu-
tions. Therefore, in the example above, once σNLO

real and σNLO
virt have been regularized,

by adding them together we obtain a finite contribution. The full computation of
the virtual photon decay can be found in [8], where the cancellation of soft diver-
gences is also checked.
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1.8.2 Collinear singularities

In this section, in order to analyse the emergence of collinear singularities and their
cancellation properties, we consider again the virtual photon decay of section 1.8.1.
We examine the following real gluon emission amplitude:

= ū(p1)(−igsT aγν)
i(/p1 + /k)

(p1 + k)2
(−ieγµ)v(p2)ϵaν(k). (1.34)

We substitute the identity
∑︁

spins u(p+ k)ū(p+ k) = /p+ /k and we obtain:

=
1

2(p1, k)

∑︂
spins

[ū(p1)(gsT
aγν)u(p1 + k)ϵaν(k)] [ū(p1 + k)(−ieγµ)v(p2)]

=
1

2(p1, k)

∑︂
spins

Mµ(q; p1 + k, p2)M(p1 + k; p1, k). (1.35)

It is convenient to introduce the following approximated parametrisation of the
4-momenta p1 and k in the collinear limit:

p1 = zp+ kT − ηk2T
2z(p1, η)

k = (1− z)p− kT − ηk2T
2(1− z)(p1, η)

, (1.36)

and p21 = k2 = (p, kT ) = (η, kT ) = 0, hence p2 = (p1 + k)2 = 2(p1, k) = − k2T
z(1−z)

. If
we take the square modulus of the amplitude and we compute

1

2

∑︂
spins

|M(p1 + k; p1, k)|2 = 2g2sCFk
2
T

1 + z2

1− z
, (1.37)

the contribution σ̃ of this particular squared amplitude to the cross section is:

σ̃ =
αs

4π

∫︂
dz

∫︂
dk2T
k2T

CF
1 + z2

1− z
σLO(p). (1.38)

We can immediately recognise that the dk2T integral is logarithmically divergent,
which is an example of a collinear singularity.

As in the case of soft singularities, some divergences are removed, but not all
of them. In fact, in [4] there is also a proof that, once we add real and virtual
emission corrections, the result is free from collinear singularities due to gluons
emitted from final state particles, while collinear singularities from initial state
particles are not removed. Therefore, the example discussed in this section is free
of collinear divergences, because the only initial state particle is a virtual photon,
which can not radiate a collinear gluon, hence the collinear gluons must be radiated
from the final state quark and antiquark.

Differently, if we consider a deep inelastic scattering process (DIS), i.e.

γ∗ + q −→ q +X, (1.39)
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the process has an incoming quark. If we compute again the cross section including
both real and virtual corrections, we obtain:

σNLO =
αs

2π

∫︂
dk2T
k2T

∫︂
dz Pq→q(z)σ

LO(zp), (1.40)

where
Pq→q(z) := CF

1 + z2

[1− z]+
. (1.41)

Pq→q(z) is called quark-to-quark splitting function. It is a plus distribution (see
A.2) and it does not depend on the considered process, but only on the species of
quarks/gluons involved in the splitting amplitude and on the variable z.

We can see that the soft singularity 1
1−z

in the limit z → 1 is cancelled in the
integration with the splitting function because of the numerator σLO(zp)−σLO(p),
which vanishes in this limit. On the other hand, the collinear singularity is still
present. The solution to the problem of initial state collinear singularities will be
provided in chapter 2.



Chapter 2

Factorization

In section 1.6, we discussed the phenomenon of colour confinement, which forbids to
observe free quark states. Therefore, the initial state particles are hadrons, which
are not fundamental 1-particle states of the theory. To overcome the problem, we
exploit the QCD property of factorization. In this chapter we provide a proof of
factorization for DIS and afterwards a discussion of the solution to the initial state
collinear singularities problem within this framework. Then, we outline the PDFs
properties and we describe the application of the factorization to DIS and hadron
collision.

2.1 Factorization for DIS
In this section we provide a formal derivation of factorization for a DIS process
between a hadron and a hard (Q2 = −q2 → ∞) virtual photon, i.e.

h(P ) + γ∗(q) −→ X(PX). (2.1)

For a matter of simplicity, we drop parton indices (quark flavours and gluons),
which will be restored at the end of this argument. We start by computing the
total cross section σtot for this process thanks to the optical theorem, which reads:

σtot =

∫︂
dϕX |M(h, γ∗ → X)|2 = 2

π
Im{M(h, γ∗ → h, γ∗)}. (2.2)

Then, thanks to the reduction formula, we can write the amplitude M(h, γ∗ →
h, γ∗) as the Fourier transform of the following matrix element:

M(h(P ), γ∗(q) → h(P ), γ∗(q)) = ⟨h(P ), γ∗(q)|h(P ), γ∗(q)⟩ =

= ϵµ(q)ϵν(q)i

∫︂
d4x eiqx ⟨h(P )|Jµ(x)Jν(0)|h(P )⟩ = ϵµ(q)ϵν(q)W

µν , (2.3)

where
W µν := i

∫︂
d4x eiqx ⟨h(P )|Jµ(x)Jν(0)|h(P )⟩ . (2.4)

The Q2 → ∞ limit in momentum space, corresponds x2 → 0 limit in conjugate
space. Therefore, we can apply the OPE (Operator Product Expansion or Wilson

14
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expansion) to the operator pair, which can be written as

Jµ(x)Jν(0) =
∞∑︂

N=0

CN(x
2)Oµνα1...αn

N xα1...αn , (2.5)

where CN(x
2) are position dependent coefficients and {ON} are a basis of the

space of operators. It is important to highlight the fact that we are considering
the light cone limit x2 → 0, which does not imply that every component xµ → ∞.
Similarly, as Q2 → ∞, the components of the 4-momentum qµ are not approaching
∞. Therefore, in a DIS process we are interested in the high energy limit, but we
are free to ask for the ratio x := Q2

2(P,q)
∝ qµ to be finite.

As regards the operator basis {ON}, since the dimension of the product Jµ(x)Jν(0)
in mass units is a constant, the dimension of the rhs of equation (2.5) must be
constant, too. Therefore, if ON has dimension dO, then its coefficient CN must
have dimension d− dO. Since CN(x

2) depends only on one dimension variable x2,
we get that CN(x

2) ∝
(︁

1
x2

)︁d−dO , hence the operator ON is multiplied by a sup-

pression factor of
(︂

1
Q

)︂dO
. Moreover, if Oµνα1...αn

N is a s-spin operator, its matrix

element ⟨h(P )|Oµνα1...αn|h(P )⟩ will carry s additional factors
(︂

2(P,q)
Q2 Q

)︂s
, hence an

enhancing factor Qs. Therefore, globally, the factor is
(︂

1
Q

)︂dO−s

, which means that
the leading contributions of the OPE come from the operators with lowest twist
t = dO − s.

It can be shown that the lowest allowed value for QCD is t = 2, and the leading
contributions come from the following elements of the operator basis:

Oα1...αN
N := ψ̄γ(α1Dα2 ...DαN )ψ − trace terms, (2.6)

where the symmetrization (α1...αN) and the subtraction of the traces are aimed
to extract the highest spin components. If we substitute these basis elements
into the Fourier transform of the operator product, we get the following operator
approximation:

i

∫︂
d4x eiqxJµ(x)Jν(0) ≈ 4

∞∑︂
N=2

2qα1 ...2qαN−2

(Q2)N−1
O

µνα1...αN−2

N . (2.7)

In order to obtain W µν , our task is now to compute the mean value of this operator
basis elements on the state |h(P )⟩. Since the operator has N 4-vector indices, and
the matrix element can depend only on the 4-vector P , then the matrix element
can be written as follows:

⟨h(P )|Oµνα1...αN−2

N |h(P )⟩ = 2P µP νPα1 ...PαN−2fN . (2.8)

If we substitute the form (2.8) into definition (2.4), we get:

W µν = 8
∑︂
N

(︃
2(q, P )

Q2

)︃N−2
P µP ν

Q2
fNCN(Q

2), (2.9)
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where we can recognise the definition of the Bjorken variable (2.30), obtaining

W µν(x,Q2) = 8
∑︂
N

(︃
1

x

)︃N−2
P µP ν

Q2
fNCN(Q

2). (2.10)

In expression (2.10), we can focus on the scalar part

W (x,Q2) :=
∑︂
N

(︃
1

x

)︃N−2

fNCN(Q
2), (2.11)

where fN is the only term which depends on the hadron under consideration. As
it has already been stated, the OPE is a relation between operators, therefore it
does not depend on the state where the operators are to be evaluated. Therefore,
we now exploit this universality characteristic, and we choose a convenient state
where the matrix element fN takes the value of 1 at tree level, in order to compute
the coefficients CN(Q

2). This state is obviously the single quark state |q(P )⟩. We
now define

Ŵ
µν

:= i

∫︂
d4x eiqx ⟨q(P )|Jµ(x)Jν(0)|q(P )⟩ , (2.12)

and after rerunning the same argument we get:

Ŵ
µν
(x,Q2) = 8

∑︂
N

(︃
1

x

)︃N−2
P µP ν

Q2
CN(Q

2) (2.13)

and its scalar component

Ŵ (x,Q2) :=
∑︂
N

(︃
1

x

)︃N−2

CN(Q
2). (2.14)

Now, our aim is to compute the coefficients CN(Q
2) from the relation (2.14). This

can be done by realising that (2.14) is a Laurent expansion, therefore by defining
ω = 1/x, the coefficients of this series can be obtained thanks to the residue
theorem as follows:

CN(Q
2) =

∫︂
|ω|=r

dω

2πi

Ŵ (ω,Q2)

ωN
, (2.15)

where Ŵ (ω,Q2) is intended as its analytic continuation for complex values of ω,
and r has to be chosen sufficiently small in order to not encounter points where Ŵ
is not analytic. We now ask ourselves where the non-analiticity points are. The
answer lies in the consideration of section 2.4 that the physical region of DIS is
represented by x ∈ [0, 1], i.e. ω > 1. Since Ŵ

µν
is a 2-point correlation function,

then it admits a Kallen-Lehmann spectral representation, which implies that it
present a branch cut in the physical region ω > 1 along the real axe. Moreover,
by recalling the definition (2.12), it is clear that Ŵ

µν
(x,Q2) must be symmetric

under x ↦→ −x, therefore ω < −1 is a branch cut along the real axe, too, and no
more non-analytic regions can be present. Then, we can deform the integration
path into the one of figure 2.1 without changing the value of the integral. The
only contributions to this integral come from the paths along the branch cut and,
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exploiting the Schwarz’s reflection principle and the symmetric property of Ŵ , we
can obtain the coefficients as:

CN(Q
2) = 4i

∫︂ 1

0

dx

2πi
xN−2Ŵ (x,Q2) =

∫︂ 1

0

dx xN−1 2

π

Im
{︂
Ŵ (x,Q2)

}︂
x

, (2.16)

where CN(Q
2) are the Mellin transform of the function

C(x,Q2) :=
2

π

Im
{︂
Ŵ (x,Q2)

}︂
x

. (2.17)

This relation is clearly nothing but the optical theorem for the partonic cross
section. By retaining only the most singular term in the expansion and substituting
our definitions into the eq. (2.2), we get:

σtot(N,Q
2) = fNCN(Q

2). (2.18)

By denoting the inverse-Mellin transform of fN with

f(x) =

∫︂ c+i∞

c−i∞
dN x−NfN , (2.19)

and by computing the inverse-Mellin transform of equation (2.18), the result is:

σ(x,Q2) = (f ⊗ C)(x,Q2). (2.20)

The symbol ⊗ denotes the convolution integral. Its definition and its properties
under Mellin transformations are reported in appendix A.1. If we restore the
different parton indices (quark flavours and gluon) in the above formula we obtain:

σ(N,Q2) =
∑︂
i

fi(N)Ci(N,Q
2), (2.21)

where we can read that, in general, different i partons (quarks and gluon) are
associated with a different function fi.

The matrix fi(x) has the physical interpretation of the mean presence of a
parton in a hadron state, and the Bjorken variable x has the interpretation of the
fraction of the 4-momentum of the hadron carried by the quark. ff (x) is called
parton distribution function (PDF), they have no dependence on the considered
process and can be measured by fitting experimental data.

2.2 Higher order factorization
The derivation of factorization of section 2.1 is correct only at tree level and in this
section we state how it can be generalised to include higher order corrections. It is
important to highlight that we exploited the fact that the matrix element fN takes
the value 1 at tree level when evaluated in a single quark state. If we consider higher
order corrections, we must also compute loop diagrams, which are divergent. These
singularities are nothing but the initial state collinear singularities we discussed
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Figure 2.1: The figure illustrates the analytic properties of the complex function
Ŵ (ω,Q2) and its integration path.

in section 1.8.2. Since PDFs are experimentally measured quantities, to remove
these divergences, we should follow the renormalization procedure, for example in
dimensional regularization. By defining a multiplicative counter term Z(µ2

F , ϵ), we
can define a renormalized PDF f ren(N,µ2

F ) := f(N, ϵ)Z(µ2
F , ϵ). Therefore, both

the PDF f(x) and the partonic cross section C(x,Q2) acquire a dependence on a
new scale µ2

F , which is called factorization scale. Then, the factorization in Mellin
space reads as follows:

σ(N,Q2) =
∑︂
i

fi(N,µ
2
F )Ci(N,Q

2, µ2
F ), (2.22)

where, since µ2
F is an arbitrary scale, the physical observable σ(N,Q2) can not

depend on it.
Moreover, the PDFs dependence on the factorization scale can be computed.

In fact, by imposing the Callan-Symanzik equation of section 1.5 for a generic
observable, it can be shown that the solutions are the DGLAP equations (see [2]),
which read as follows:

dfi(x, µ
2
F )

d lnµ2
F

=
∑︂
j

(Pj→i ⊗ fj)(x, µ
2
F ), (2.23)

or more explicitly

dfi(x, µ
2
F )

d lnµ2
F

=
∑︂
j

∫︂ 1

x

dξ

ξ
Pj→i

(︃
x

ξ
, αs(µ

2
F )

)︃
fj(ξ, µ

2
F ), (2.24)

where Pj→i are the splitting functions, and we recall the fact that i, j indices include
quark flavours and gluon.

2.3 PDFs properties
In this section we state some relations that the PDFs must satisfy, in order to be
a proper description of the considered hadron.
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Firstly, since the Bjorken variable x is the fraction of momentum carried by
the parton involved in the process, the sum over all partons integrated over this
variable must result in the total momentum of the hadron. This constraint reads
as follows:

1 =
∑︂
i

∫︂ 1

0

dz zfi(z). (2.25)

Moreover, PDFs from different hadrons can be distinguished because they must
verify different relations. In fact, for instance for the proton the quark PDFs must
satisfy: ∫︂ 1

0

dz fu(z)− fū(z) = 2, (2.26)∫︂ 1

0

dz fd(z)− fd̄(z) = 1, (2.27)

while, for other flavours c ∫︂ 1

0

dz fc(z)− fc̄(z) = 0. (2.28)

These relations can be interpreted as the mean presence of a quark of a certain
flavour inside the proton. The quark flavours with non-zero PDFs integrated value
(in the sense of the relations above) are called valence quarks.

If we consider a process with multiple incoming hadrons, then the PDFs of each
hadron must individually verify the above relations.

2.4 DIS and hadron collision
In this section we present the DIS and hadron collision cross sections expressed
with the most commonly used kinematic variables.

If we consider a DIS process, i.e.

h(P ) + l(q) −→ l(q′) +X(PX), (2.29)

(l lepton) the cross section is usually expressed in terms of the Bjorken variable

x =
Q2

2(p, q)
, (2.30)

where Q2 = −q2 and x ∈ [0, 1] in the physical kinematic region. If we denote with
z the fraction of 4-momentum of the hadron carried by the parton, then (2.22) can
be rewritten as

σ(x,Q2) =
∑︂
i

∫︂ 1

x

dz fi(z, µ
2
F )σ̂i

(︂
x̂ =

x

z
,Q2, µ2

F

)︂
. (2.31)

Analogously, also for the case of hadron collision with a massive final state (for
example a Higgs boson), i.e.

h1(P1) + h2(P2) −→ H(PH) +X(PX), (2.32)
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the usual variables are the mass of the final state particle M2
H = P 2

H , the fraction of
the 4-momenta of the hadrons carried by each parton pi = xiPi, the hadronic centre
of mass energy s = (P1 + P2)

2, the partonic centre of mass energy ŝ = (p1 + p2)
2,

the fraction of the hadronic energy used to produce the final state particle τ =
M2

H

s

and the fraction of the partonic energy used to produce the final state particle
z =

M2
H

ŝ
= τ

x1x2
.

In section 2.1, we proved factorization for a DIS process, i.e. with only one
incoming hadron. The generalisation to the case of two incoming incoming hadrons,
for instance the case of a hadron collision, is very technical and it goes beyond the
aim of this work. Therefore, we will simply assume that for a hadron collision
the factorization hypothesis holds. The cross section in Mellin space takes the
following form:

σ(N,Q2) =
∑︂
ij

fi(N,µ
2
F )fj(N,µ

2
F )Cij(N,Q

2, µ2
F ). (2.33)

As for DIS, by computing the inverse-Mellin transform, we obtain:

σ(τ,M2
H) =

∑︂
ij

(fi ⊗ fj ⊗ Cij)(τ,M
2
H). (2.34)

In terms of the variables above, it can be rewritten as

σ(τ,M2
H) =

∑︂
ij

∫︂ 1

τ

dx1 fi(x1, µ
2
F )

∫︂
τ/x1

dx2 fj(x2, µ
2
F )Cij

(︃
z =

τ

x1x2
,M2

H , µ
2
F

)︃
.

(2.35)
The convolution can be also factored by defining the parton density luminosity

Lij(x) := (fi ⊗ fj)(x), therefore we can obtain the hadronic cross section as the
convolution of the parton density luminosity with the partonic cross section, i.e.

σ(τ,M2
H) =

∑︂
ij

(Lij ⊗ Cij)(τ,M
2
H). (2.36)



Chapter 3

Resummation

In section 1.8 we discussed the emergence of IR singularities and their cancellation
mechanism. In this chapter we focus on the leftovers of these divergences. In fact,
these residues, in the limit of soft emissions, become big logarithms at all orders,
spoiling the perturbative series. We now provide a description of the origin and of
the form of these enhanced logarithms and then we prove that they are mapped
into big logs also in Mellin space. Afterwards, we briefly present an argument to
show that the resummed expression takes the form of an exponential series in the
single and multi-scale case. Finally, we describe how the coefficients of this series
can be determined by matching the resummed expression with the fixed order cross
section.

3.1 Logarithms
In this section we describe the origin of enhanced logarithms. Firstly, we analyse
the collinear logarithms, then we consider logarithms due to soft emission and our
they are mapped into logs in Mellin space.

3.1.1 Collinear logarithms

To explain the origin of collinear logarithms, we consider the NLO cross section of
DIS, already discussed in section 1.8.2. Here we report the partonic cross section
(1.40):

CNLO =
αs(Q

2)

2π

∫︂ (k2T )max

µ2

dk2T
k2T

∫︂ 1

τ

dτ Pq→q(τ)σ
LO(zp). (3.1)

In a DIS, it is easy to check that the maximum transverse momentum available for
the emitted gluon is (k2T )max = (s−Q2)2

s
, which can be written as (k2T )max = Q2 (1−τ)2

τ

in terms of τ = Q2

s
. Therefore, if we compute the transverse momentum integral,

we obtain the following logarithmic factor:

αs(Q
2) ln

(︃
Q2

µ2

(1− τ)2

τ

)︃
= αs(Q

2) ln

(︃
Q2

µ2

)︃
+ αs(Q

2) ln

(︃
(1− τ)2

τ

)︃
. (3.2)

It is important to remark that, in the example above, we considered a DIS process,
but for the case of hadron collision we would have obtained the same logarithmic

21
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factor, with the only difference that in the (k2T )
max integration endpoint we should

have substituted the Q2 with the mass M2 of the final state particle. Q2 or M2
H

are usually called the hard scale of the process.
The first term αs(Q

2) ln(Q2/µ2) is O(1) at high energy because the logarithm
compensates the αs decrease. In general, if we consider multiple collinear emission,
we obtain terms of the form αn

s ln
n(Q2/µ2), which are againO(1), hence at all orders

we obtain terms of the same order and the perturbative serie is spoiled. Therefore,
it is convenient to introduce the notation LL (αk lnk leading log), NLL (αk+1 lnk

next to leading log), ... and to reorganise the perturbative series by collecting all
the terms in the series which are of the same order. For the case of ln(Q2/µ2), the
task of resummation is performed by DGLAP equations (2.23), which enable us to
subtract collinear logarithms.

The second logarithm of eq. (3.2) grows as τ is approaching 1, i.e. in the
soft limit. Moreover, by looking at the inner integral over the variable z, the
splitting function contains a plus distribution 1

(1−z)+
. Therefore, by computing the

integral, we obtain another logarithmic contribution of the form ln(1− τ), which
is enhanced in the soft limit. Therefore, overall the emission provided us with a
double logarithm of soft-collinear origin. Depending on the factorization scheme,
we can choose to subtract from the partonic cross section not only ln(Q2/µ2), but
also ln(1− τ)2, and include it in the PDFs. In this work we opt for the minimal
subtraction scheme (MS), which means that we only subtract ln(Q2/µ2) from the
partonic cross section.

3.1.2 Soft logarithms

In this section we aim to explain the origin of purely soft logarithms. In section
1.8.1, we described how the cross section, which involves the emission of a real soft
gluon, factors in the product of an Eikonal factor and the cross section without
the emission. The Eikonal factor is

E(p; k, p− k) = =
pµ

(p, k)
, (3.3)

where k is the 4-momentum of the emitted gluon and p the 4-momentum of the
quark which emitted it. In the soft limit, the emitted gluon is also becoming
collinear, hence by defining k = (1− z)p, the soft limit is obtained for z → 1 and
the Eikonal factor is proportional to 1

1−z
. Therefore the contribution to the cross

section takes the following form:

σNLO
real ∝

∫︂ 1

τ

dz

1− z
σLO(zp). (3.4)

On the other hand, if we consider the corresponding soft virtual gluon contribution
to the cross section, we obtain:

σNLO
virt ∝

∫︂ 1

τ

dz

1− z
σLO(p), (3.5)
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and by adding virtual and real contributions together we get

σNLO ∝
∫︂ 1

τ

dz

(1− z)+
σLO(zp). (3.6)

By computing the above integral, we obtain a factor ln(1− τ), which is again big
as τ → 1.

Moreover, if we consider the emission of n gluons, we obtain n factors 1
(1−z)+

.
By integrating n − 1 of them and leaving the n-th one, the leading contribution
takes the following form: [︃

lnn−1(1− z)

1− z

]︃
+

. (3.7)

3.1.3 Logarithms in Mellin space

Since the cross section factorizes in Mellin space, we are interested in how contri-
butions of the form (3.7) are mapped in Mellin space. In this section we show that
distributions (3.7) in the soft region in conventional space are mapped into powers
of ln(N) for N ∈ C and |N | → ∞ in Mellin space. In fact, by considering the
Mellin transform of a generic function∫︂ 1

0

dz zN−1f(z), (3.8)

the soft region z → 1 corresponds to the limit |N | → ∞, because for z < 1, the
function is mapped to 0. The same argument can be applied to the inverse Mellin
transform, hence this is a 1 ↔ 1 correspondence.

Now, if we consider the Mellin transform of the contributions which need to be
resummed, i.e.

Ip :=

∫︂ 1

0

dz zN−1

(︃
lnp(1− z)

1− z

)︃
+

=

∫︂ 1

0

dz
zN−1 − 1

1− z
lnp(1− z), (3.9)

by defining the generating functional

G(N, η) :=

∫︂ 1

0

dz (zN−1 − 1)(1− z)η−1, (3.10)

we can obtain our contributions as:

Ip =
dp

dηp

⃓⃓⃓⃓
η=0

G(N, η). (3.11)

In the definition of the generating functional we can recognise the Euler beta
function definition, i.e.

G(N, η) = B(N, η)− 1

η
=

Γ(N)Γ(η)

Γ(N + η)
− 1

η
. (3.12)

By taking the first derivative of expression (3.12) as in relation (3.11), it is easy to
compute:

I1 =
1

2

[︂(︁
ψ(0)(N) + γE

)︁2
+ ζ2 − ψ(1)(N)

]︂
, (3.13)
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where γE is Euler-Mascheroni constant, ζ2 denotes the Riemann zeta function
evaluated at 2, and ψ(n)(x) is the n-th polygamma function, which is defined as
follows:

ψ(n)(x) :=
dn+1

dxn+1
ln Γ(x). (3.14)

In the large-N limit, it can be shown that ψ(0)(N) ∼ lnN + O(1/N), hence
I1 ∼ 1

2
ln2(N) + γE lnN + O(1). In general, the asymptotic behaviour of Ip is

the following:

Ip ∼
1

p+ 1
lnp+1

(︃
1

N

)︃
− γE lnp

(︃
1

N

)︃
+O

(︃
lnp−1

(︃
1

N

)︃)︃
. (3.15)

Thanks to the fact that logarithms are mapped into logarithms via Mellin trans-
form, the notation LL, NLL, ... can be immediately adopted also in Mellin space.

3.2 Soft resummation
In this section we derive the resummation formula for the cross section of a Drell-
Yan or a Higgs production processes, i.e. processes with a colourless massive final
state. The mass of the final state particle is denoted with M2

H and it is the hard
scale of the process, as discussed in section 3.1.1. By changing the hard scale
M2

H ↦→ Q2 and the soft scale M2
H(1 − x)2 ↦→ Q2(1 − x), the following argument

can be also applied to the case of DIS (for the interested reader we refer to [13]).
The following derivation is based on [13] and [15]. We start by considering the
factorization in Mellin space for hadron collisions (we drop parton indices, i.e.
flavours and gluon, for simplicity):

σ(N,M2
H) = L(N,µ2

F )C

(︃
N,

M2
H

µ2
R

,
µ2
R

µ2
F

, αs(µ
2
R)

)︃
, (3.16)

where L(N,µ2
F ) is the parton density luminosity defined in section 2.4. Since both

the renormalization scale µR and the factorization scale µF are arbitrary, then we
can choose them to be equal to each other µR = µF = µ. Hence the equation
(3.16) becomes:

σ(N,M2
H) = L(N,µ2)C

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
, (3.17)

where the cross section σ is µ-independent because µ2 is an arbitrary scale and σ
is an observable. It is now convenient to define the physical anomalous dimension
of the cross section:

γ(N,αs(M
2
H)) :=

d

d lnM2
H

lnσ(N,M2
H). (3.18)

Obviously, since σ(N,M2
H) is µ-independent, γ(N,αs(M

2
H)) can not depend on µ

either. Now, by substituting σ(N,M2
H) from eq. (3.17) into the definition (3.18)

and by exploiting the fact that L(N,µ2) is MH-independent, we obtain:

γ(N,αs(M
2
H)) =

d

d lnM2
H

lnC

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
, (3.19)
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therefore γ(N,αs(M
2
H)) is also the physical anomalous dimension of the coefficient

function C(N,M2
H/µ

2, αs(µ
2)). Finally, by solving eq. (3.19), we can write the

resummed coefficient function:

C

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
= C(N, 1, αs(µ

2)) exp

{︄∫︂ M2
H

µ2

dk2

k2
γ(N,αs(k

2))

}︄
. (3.20)

We now recall the fact that the renormalized coefficient function C is multi-
plicative renormalized as follows:

C

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
= ZC(N,αs(µ

2), ϵ)C0(N,M2
H , α

0
s, ϵ), (3.21)

where C0 is the bare coefficient function, α0
s is the bare coupling constant and we

choose to regularize the divergent expression in dimensional regularization with
d = 4−2ϵ. Moreover, thanks to dimensional analysis, we can deduce that the bare
coefficient function in d dimensions can depend on M2

H and α0
s only through the

combination M−2ϵ
H α0

s, i.e.

C0(N,M2
H , α

0
s, ϵ) = C0(N,M−2ϵ

H α0
s, ϵ). (3.22)

Therefore, if we substitute the relation (3.21) into eq. (3.19), and by exploiting
the facts that ZC is MH-independent and C0 depends only on M−2ϵ

H α0
s, we obtain:

γ(N,αs(M
2
H)) = −ϵα0

s

d

d lnα0
s

lnC0(N,M2
H , α

0
s, ϵ). (3.23)

We now make the hypothesis that the bare coefficient function C0 in Mellin
space factorizes in the product of two bare coefficient functions C(c)0(M2

H , α
0
s, ϵ)

and C(l)0(N,M2
H , α

0
s, ϵ), where the former represents the virtual gluons emission

contributions and the latter the real gluons emission contributions. C(c)0 does not
depend on N because the virtual contributions have Born kinematic. On the other
hand, C(l)0 must depend on N because it contains real emission contribution, and
in particular, thanks to a phase space structure argument, [13] shows that C(l)0 can
depend on MH and z only through the combination M2

H(1−z)2. It also shows that
in Mellin space the M2

H(1−z)2 dependence is converted into a M2
H/N

2 dependence.
Therefore the factorization reads as follows:

C0(N,M2
H , α0, ϵ) = C(c)0(M2

H , α0, ϵ)C
(l)0

(︃
M2

H

N2
, α0, ϵ

)︃
. (3.24)

By substituting expression (3.24) in eq. (3.23), we obtain the following equa-
tion:

γ(N,αs(M
2
H)) = γc

(︃
M2

H

µ2
, αs(µ

2), ϵ

)︃
+ γl

(︃
M2

H/N
2

µ2
, αs(µ

2), ϵ

)︃
, (3.25)

where we defined

γc
(︃
M2

H

µ2
, αs(µ

2), ϵ

)︃
:= −ϵα0

s

d

d lnα0
s

lnC(c)0(M2
H , α

0
s, ϵ) (3.26)
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and

γl
(︃
M2

H/N
2

µ2
, αs(µ

2), ϵ

)︃
:= −ϵα0

s

d

d lnα0
s

lnC(l)0

(︃
M2

H

N2
, α0

s, ϵ

)︃
. (3.27)

It is important to remark that γc and γl are not individually finite for ϵ → 0, but
their sum, i.e. γ, is by definition finite. Moreover, since γ is renormalization-group
invariant, i.e. µ-independent, by deriving both members of eq. (3.25) with respect
to µ we obtain:⎧⎨⎩limϵ→0

d
d lnµ2γ

l
(︂

M2
H

µ2 , αs(µ
2), ϵ

)︂
= −ĝ(αs(µ

2))

limϵ→0
d

d lnµ2γ
c
(︂

M2
H/N2

mu2 , αs(µ
2), ϵ

)︂
= ĝ(αs(µ

2)),
(3.28)

where ĝ(αs(µ
2)) is a finite power series in the coupling constant αs(µ

2).
Therefore, by solving the renormalization-group equations for γc and γl and by

adding the two solutions, we can now write the physical anomalous dimension γ
in terms of the series ĝ as follows:

γ(N,αs(M
2
H)) = ĝc(αs(M

2
H)) +

∫︂ M2
H/N2

M2
H

dλ2

λ2
ĝ(αs(λ

2)), (3.29)

where ĝc is a power series in the coupling constant αs(M
2
H). If we substitute this

expression for γ into eq. (3.20), we obtain the following resummation formula:

C

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
= Cc

(︃
M2

H

µ2
, αs(M

2
H)

)︃
exp

{︄∫︂ M2
H

µ2

dk2

k2

∫︂ k2/N2

k2

dλ2

λ2
ĝ(αs(λ

2))

}︄
,

(3.30)
where Cc is a power series in the coupling constant αs(M

2
H). Here we report two

equivalent forms of the resummation formula (3.30):

C

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
= Cc

(︃
M2

H

µ2
, αs(M

2
H)

)︃
exp

{︄∫︂ N2

1

dn

n

∫︂ M2
H

nµ2

dk2

k3
ĝ(αs(k

2/n))

}︄
(3.31)

and

C

(︃
N,

M2
H

µ2
, αs(µ

2)

)︃
= Cc

(︃
M2

H

µ2
, αs(M

2
H)

)︃
exp

{︄
2

∫︂ 1

0

zN−1 − 1

1− z

∫︂ M2
H(1−z)2

µ2

dk2

k2
g(αs(k

2))

}︄
, (3.32)

where g(αs(k
2)) is also a power series in the coupling constant.

3.3 The multi-scale case
In this section we generalise the argument of section 3.2 to the case of a process
with two generic hard scales and two generic soft scales in order to obtain the
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resummation formulas. The derivation is based on [15]. We consider a process
with two hard scales denoted with Q2

1 and Q2
2, two soft/collinear scales Λ2

1(Q
2
1, N)

and Λ2
2(Q

2
2, N), and we assume the factorization of the bare coefficient function in

a product of virtual emission contributions and emission contributions with respect
to the two hard scales:

C0(N,Q2
1, Q

2
2, α

0
s, ϵ) =

C(c)0(N,Q2
1, Q

2
2, α

0
s, ϵ)C

(l1)0(Λ2
1(Q

2
1, N), α0

s, ϵ)C
(l2)0(Λ2

2(Q
2
2, N), α0

s, ϵ). (3.33)

By rerunning the same argument of the previous section, we find the following
resummation formula:

C

(︃
N,

Q2
1

µ2
,
Q2

2

µ2
, αs(µ

2)

)︃
= Cc

(︃
Q2

1

µ2
,
Q2

2

µ2
, αs(µ

2)

)︃
exp

{︄∫︂ Na

1

dn

n

∫︂ Q2
1

nµ2

dk2

k2
ĝ1(αs(k

2/n)) +

∫︂ Nb

1

dn

n

∫︂ Q2
2

nµ2

dk2

k2
ĝ2(αs(k

2/n))

}︄
, (3.34)

or equivalently

C

(︃
N,

Q2
1

µ2
,
Q2

2

µ2
, αs(µ

2)

)︃
= Cc

(︃
Q2

1

µ2
,
Q2

2

µ2
, αs(µ

2)

)︃
exp

{︄∫︂ 1

0

zN−1 − 1

1− z

(︄∫︂ Λ1(Q2
1,z)

µ2

dλ2

λ2
g1(αs(λ

2)) +

∫︂ Λ2(Q2
2,z)

µ2

dλ2

λ2
g2(αs(λ

2))

)︄}︄
.

(3.35)

In [15] it is shown the application of this formalism to the case of transverse
momentum distributions. In that case, the two hard scales are Q2

1 = M2
H and

Q2
2 = MHpt and there are soft emissions with respect to the first scale, hence the

soft scale is Λ2
1(Q

2
1) = M2

H/N
2, and collinear emissions with respect to the second

scale, hence the collinear scale is Λ2
2(Q

2
2) =MHpT/N . Therefore the resummation

formula takes the following form:

C

(︃
N,

M2
H

µ2
,
MHpT
µ2

, αs(µ
2)

)︃
= Cc

(︃
M2

H

µ2
,
MHpT
µ2

, αs(µ
2)

)︃
exp

{︄∫︂ N2

1

dn

n

∫︂ M2
H

nµ2

dk2

k2
ĝ1(αs(k

2/n)) +

∫︂ N

1

dn

n

∫︂ MHpT

nµ2

dk2

k2
ĝ2(αs(k

2/n))

}︄
, (3.36)

or equivalently

C

(︃
N,

M2
H

µ2
,
MHpT
µ2

, αs(µ
2)

)︃
= Cc

(︃
M2

H

µ2
,
MHpT
µ2

, αs(µ
2)

)︃
exp

{︄∫︂ 1

0

zN−1 − 1

1− z

(︄∫︂ M2
H(1−z)2

µ2

dλ2

λ2
g1(αs(λ

2)) +

∫︂ MHpT (1−z)

µ2

dλ2

λ2
g2(αs(λ

2))

)︄}︄
.

(3.37)

In section 4.6 and 4.7 the same formalism will be applied to produce the resum-
mation formula for rapidity distributions in the singly and doubly soft limit.
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3.4 Matching procedure
In the previous sections, we proved that soft perturbative corrections must expo-
nentiate. What is still to be determined are the coefficients of the power series
in the exponent (g1 and g2 in our notation). Therefore, we can take our resum-
mation formula and compute them to a fixed order in perturbation theory: this
computation must bring us back to the fixed order computation (in Mellin space).
Obviously, the obtained expression must be equal to the fixed order computation
of the partonic cross section (in Mellin space), therefore we can get the coefficients
of our power series by comparing the 2 expression, and then substitute them back
into our all order resummation formulas. Now that we know how to obtain the
resummation formulas, but these formulas are valid only in the threshold region,
while far away from these kinematic region, we should rely on the fixed order
computation. In order to add them together, we must remember to subtract the
fixed order expansion of the resummation formula up to the maximum order of
the fixed order computation, otherwise these terms would appear twice, which is
non-physical.



Chapter 4

Rapidity distribution

In this chapter we apply the formalism introduced in chapter 3 to the case of rapid-
ity distributions. Firstly, we analyse the kinematic structure of rapidity distribu-
tions and their factorization in Mellin-Fourier and Mellin-Mellin space. Secondly,
we provide the NLO rapidity distributions for Drell-Yan and Higgs production pro-
cesses and we describe the most commonly used kinematic variables. Thirdly, we
describe the kinematic thresholds of such processes, which are the so called singly
and doubly soft limits. These are the regions that must be resummed. Then, we
study the phase space structure in order to find out the hard and soft/collinear
scales in both the singly and doubly soft cases. Once the scales are known, we will
be ready to apply the renormalization-group formalism and derive the resummation
formulas.

4.1 Kinematics
In this section we describe the distinction between the hadronic and the partonic
processes, the particles involved, the kinematic variables we choose to use and the
parametrisation of the particles’ 4-momenta. We consider the rapidity distribution
dσ
dY

for the process
h1(P1) + h2(P2) → H(pH) +XH , (4.1)

where h1 and h2 are the colliding hadrons with four-momenta P1 and P2, and H is
a massive finale state object (in our case a Higgs boson), whose four-momentum
is denoted with pH . The four-momenta of the hadrons in the hadronic frame of
reference are P1 =

√
s
2
(1, 0, 0, 1) and P2 =

√
s
2
(1, 0, 0,−1). The four-momentum pH

is parametrized as

pH = (
√︂
M2

H + |p⃗T |2 coshY, p⃗T ,
√︂
M2

H + |p⃗T |2 sinhY ), (4.2)

where M2
H is the invariant mass of H, p⃗T the transverse momentum, Y the longitu-

dinal rapidity and s = (P1 + P2)
2 the invariant mass of the colliding hadrons. We

also denote with τ =
M2

H

s
the fraction of the hadronic energy required to produce H

at rest. The choice of rapidity as a variable instead of the longitudinal momentum
itself is due to its adding property under boosts, which will be exploited in what
follows.

29
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By assuming that the collision takes place only between two partons, one ex-
tracted from each hadron, we now exploit the factorization. Therefore the partonic
process is

qi(p1) + qj(p2) → H(pH) +X, (4.3)

where we denoted with p1 = x1P1 and p2 = x2P2 the four-momenta of the partons
involved in the collision, with x1 and x2 the fractions of the four-momenta of the
hadrons that the partons carry, and with X the extra radiation emitted during
this subprocess. In the hadronic frame of reference their four-momenta are p1 =√

s
2
(x1, 0, 0, x1) and p2 =

√
s
2
(x2, 0, 0,−x2), hence the sum of their four-momenta is

p1 + p2 =
√
ŝ(cosh ξ, 0, 0, sinh ξ), (4.4)

where we denoted with ŝ = x1x2s the invariant mass of the system composed of
the 2 partons and with ξ = 1

2
ln x1

x2
the longitudinal rapidity of this system, which is

also the rapidity of the partonic centre of mass in the hadronic frame of reference.
In the partonic frame of reference (where the system of the 2 partons is at rest)
the four-momenta p1 + p2, pH and X can be written as

p1 + p2 =
√
ŝ(1, 0, 0, 0) (4.5)

pH =

(︃√︂
M2

H + p2T cosh ŷ, p⃗T ,
√︂
M2

H + p2T sinh ŷ

)︃
(4.6)

X =

(︃√︂
M2

X +M2
H sinh2 ŷ + p2T cosh2 ŷ,−p⃗T ,−

√︂
M2

H + p2T sinh ŷ

)︃
, (4.7)

where ŷ = y−ξ is the longitudinal rapidity of H in the partonic frame of reference,
thanks to the above mentioned transformation properties of the rapidity under
boosts.

4.2 Rapidity distributions factorization
In this section we explain the necessity of a double transform in order to obtain
the factorization of the rapidity distribution. Firstly, we describe how to obtain it
via a Mellin-Fourier transform, then we explain how we can alternatively obtain
factorization by means of a Mellin-Mellin transform. Finally, we make an important
remark about how the Mellin-Mellin variables must satisfy a contraint.

4.2.1 Factorization in Mellin-Fourier space

In this section we describe how to obtain factorization in Mellin-Fourier space. The
following derivation also sheds light on the choice of the rapidity as a kinematic
variable.

Defining z := M2
H

ŝ
= τ

x1x2
, the rapidity distribution reads as follows:

1

τ

dσ

dY
(τ, Y,M2

H) =
∑︂
ij

∫︂ 1

x0
1

dx1

∫︂ 1

x0
2

dx2 fi(x1)fj(x2)
dCij

dŷ
(z =

τ

x1x2
, ŷ = Y − ξ,M2

H),

(4.8)
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where it is straightforward to see that x01 =
√
τeY and x02 =

√
τe−Y are the mini-

mum values respectively of x1 and x2 in order to produce H at rest in the hadronic
frame of reference. With a little abuse of notation, we denote the rapidity distri-
butions only by their dependences, namely

σ(τ, Y,M2
H) :=

1

τ

dσ

dy
(τ, Y,M2

H) (4.9)

Cij(z, ŷ,M
2
H) :=

dCij

dŷ
(z, ŷ,M2

H). (4.10)

We can rewrite (4.8) by replacing the kinematic constraints z = τ
x1x2

and ŷ = Y −ξ
with integrals over δ functions, obtaining:

σ(τ, y,M2
H) =

∑︂
ij

∫︂∫︂∫︂ 1

0

dx1 dx2 dz

∫︂ ŷ0

−ŷ0

dŷ[︁
fi(x1)fj(x2)δ(y − ξ − ŷ)δ(τ − x1x2z)Cij(z, ŷ,M

2
H)
]︁
. (4.11)

The extremes of integration for the variable ŷ are obtained by applying the con-
ditions M2

X ≥ 0 and |p⃗T |2 ≥ 0 to the conservation of energy of the four-momenta
(4.5), (4.6), (4.7), which leads to

1√
z
≥ cosh ŷ + | sinh ŷ|. (4.12)

From the above inequality, we can derive that the domain of integration with
respect to the variable ŷ is

− ŷ0 = −1

2
ln

(︃
1

z

)︃
≤ ŷ ≤ 1

2
ln

(︃
1

z

)︃
= ŷ0. (4.13)

We now take the Fourier transform with respect to the variable Y and the Mellin
transform with respect to τ of both the lhs and rhs of (4.11) and, by defining

σ(N,M,M2
H) :=

∫︂ 1

0

dτ τN−1

∫︂ y0

−y0

dy eiMyσ(τ, y,M2
H) (4.14)

Cij(N,M,M2
H) :=

∫︂ 1

0

dz zN−1

∫︂ ŷ0

−ŷ0

dŷ eiMŷCij(z, ŷ,M
2
H) (4.15)

fi

(︃
N + i

M

2

)︃
:=

∫︂ 1

0

dx xN+iM
2
−1fi(x), (4.16)

we obtain the following factored relation:

σ(N,M,M2
H) = fi

(︃
N + i

M

2

)︃
fj

(︃
N − i

M

2

)︃
Cij(N,M,M2

H). (4.17)
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4.2.2 From Mellin-Fourier space to Mellin-Mellin space

In this section we describe the change of integration variables (z, ŷ) ↦→ (z1, z2) which
enables us to map the Mellin-Fourier transform into a Mellin-Mellin transform.
Once we derive the rapidity distribution factorization, we discuss the constraints
which the Mellin variables must satisfy.

It is then convenient to make the following change of variables in definition
(4.15): {︄

z1 =
√
zeŷ

z2 =
√
ze−ŷ

{︄
z = z1z2

ŷ = 1
2
ln
(︂

z1
z2

)︂
,

(4.18)

where we also reported the inverse relations. It is straightforward to show that the
Jacobian of this variables transformation is equal to 1 and that the extremes of
integration become

z ∈ [0, 1] , ŷ ∈ [−ŷ0(z), ŷ0(z)] −→ z1 ∈ [0, 1] , z2 ∈ [0, 1]. (4.19)

Therefore the definition (4.15) becomes

Cij(N,M,M2
H) =

∫︂∫︂ 1

0

dz1 dz2 z
N+iM

2
−1

1 z
N−iM

2
−1

2 Cij(z(z1, z2), ŷ(z1, z2),M
2
H).

(4.20)
It is evident that, by calling

N1 := N + i
M

2
(4.21)

N2 := N − i
M

2
, (4.22)

the relation (4.20) above assumes the more appealing form:

Cij(N1, N2,M
2
H) =

∫︂∫︂ 1

0

dz1 dz2 z
N1−1
1 zN2−1

2 Cij(z(z1, z2), ŷ(z1, z2),M
2
H), (4.23)

where z(z1, z2) and ŷ(z1, z2) are the relations (4.18). Moreover, the factored parton
model formula (4.17) becomes

σ(N1, N2,M
2
H) = fi(N1)fj(N2)Cij(N1, N2,M

2
H). (4.24)

It is now clear the meaning of the change of variables (4.18): we are switching
from Mellin-Fourier space to Mellin-Mellin space. The main convenience of this
switch comes from the factorization of the domain of integration of z and ŷ into
the 2 independent domains of z1 and z2 reported in (4.19). In fact, in the next
section we will show that the coefficient function can be expressed in terms of
plus distributions of the variables z1 and z2 (example (4.43)) and that the Mellin
transforms of plus distributions can be calculated in the large-N limit (see (3.15)).

It is important to make a clarification in order to avoid confusion. In Mellin-
Fourier space, since N ∈ C and M ∈ R, we have 3 degrees of freedom, whilst, at
first sight, it might seem that in Mellin-Mellin space we have 4 degrees of freedom,
because both N1 ∈ C and N2 ∈ C. Actually, N1 and N2 are defined in (4.21) and
(4.22) in terms of N and M , therefore, globally, there are still only 3 degrees of
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freedom, as it should be. The missing degree of freedom is due to the fact that N1

and N2 have the same real part, because, by expliciting the relations (4.21) and
(4.22), we obtain:

N1 = Re(N) + i[Im(N) +M/2] (4.25)

N2 = Re(N) + i[Im(N)−M/2]. (4.26)

This fact should be kept in mind in what follows.

4.3 Coefficient functions
In this section, we describe some phenomenology of rapidity distribution compu-
tations. Firstly we report two examples of NLO computations of rapidity distri-
butions in terms of z and u. These are not the kinematic variables we chose in
sections 4.1 and 4.2, because we used z and ŷ. Therefore, we describe the variable
u, its relation with z and ŷ, and with z1 and z2. Then we explain why u plus dis-
tributions are not convenient and how they can be mapped into more convenient
z1 and z2 plus distributions. Finally, we provide a brief argument which explains
how the forward-backward symmetry of the partonic cross section is mapped in
Mellin-Fourier and Mellin-Mellin space.

4.3.1 NLO Drell-Yan rapidity distribution

Here we report the partonic rapidity distribution for Drell-Yan process up to NLO
as it is presented in [18] adapted to our kinematic notation. The structure is the
following:

(1− z)
dCij

dY
= η

(0)
ij +

αs

π
η
(1)
ij +O(α3

s). (4.27)

The coefficients are:

η
(0)
ij

Q2
q

= (δiqδq̄j + δiq̄δqj)δ(1− z)[δ(u) + δ(1− u)], (4.28)

η
(1)
qq̄

Q2
q

=
8

3

z2

1 + z

{︃
[δ(u) + δ(1− u)][︃

δ(1− z)(2ζ2 − 4) + 4

[︃
ln(1− z)

1− z

]︃
+

− 2(1 + z) ln(1− z)− 1 + z2

1− z
ln z + 1− z

]︃
+

(︃
1 +

(1− z)2

z
u(1− u)

)︃[︃
1 + z2

[1− z]+

(︃
1

u+
+

1

[1− u]+

)︃
− 2(1− z)

]︃}︃
(4.29)

and

η
(1)
qg

Q2
q

=
z2

1 + z

{︃
δ(u)

[︃
[z2 + (1− z)2] ln

(1− z)2

z
+ 2x(1− z)

]︃
+

(︃
1 +

(1− z)2

z
u(1− u)

)︃[︃
[z2 + (1− z)2]

1

u+
+ 2z(1− z) + (1− z)2u

]︃
. (4.30)
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4.3.2 NLO Higgs production process rapidity distribution

Here we report the partonic rapidity distribution for Higgs production process up
to NLO as it is presented in [19]. Again, we adapted the result to our kinematic
notation. The partonic rapidity distribution has been obtained in the large top
quark approximation. The structure is the following:

dCh
ij

dY
=

(1 + z)

2(1− z) cosh2(ŷ)
σh
0

dCh
ij

du
, (4.31)

where the index h = H,A stands for the CP-even and CP-odd Langrangians. σh
0

denotes the following expressions:

σH
0 =

π

576x2

(︂αs

π

)︂2
σA
0 =

9

4 tan2 β
σH
0 , (4.32)

where v ≈ 246GeV is the void expectation value of the Higgs field, and β is a
parameter of the effective theory. dCh

ij

du
can be perturbatively expanded as follows:

dCh
ij

du
= ω

h,(0)
ij +

αs

π
ω
h,(1)
ij +O(α2

s). (4.33)

At LO, the only contribution comes from the gg channel and reads as follows:

ωH,A,(0)
gg =

1

2
δ(1− z)δ(u(1− u)). (4.34)

The NLO coefficients are:

ω
H,A,(1)
qq̄ =

16

9
(1− z)3[u2 + (1− u)2], (4.35)

1

2
ωH,A,(1)
qg +

1

2
ωH,A,(1)
gq =

= −(1− z)2 − 1

3
δ(u(1− u))

{︃
[1 + (1− z)2] ln

(︃
z

(1− z)2

)︃
− z2

}︃
+

1

3
[1 + (1− z)2]

[︃
1

u(1− u)

]︃
+

, (4.36)

ωH,(1)
gg =

1

2
δ(u(1− u))

{︃(︃
6ζ2 +

11

2

)︃
δ(1− z) + 12

[︃
ln(1− z)

1− z

]︃
+

− 6(z2 − z + 1)2
ln(z)

1− z
− 12z(z2 − z + 2) ln(1− z)

}︃
+ 3

{︃[︃
1

1− z

]︃
+

− z(z2 − z + 1)

}︃[︃
1

u(1− u)

]︃
+

− 3(1− z)3[2− u(1− u)] (4.37)

and
ωA,(1)
gg = ωH,(1)

gg +
1

4
δ(1− z)δ(u(1− u)). (4.38)
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4.3.3 Plus distributions with respect to z and u

In this section we describe the physical meaning of the variable u and the necessity
of changing from the variables (z, u) to (z1, z2) in order to obtain plus distributions
simpler to manipulate.

Usually the coefficient function is computed in terms of the variables z and u,
where z has already been defined in the previous section and

u :=
e−2ŷ − z

(1− z)(1 + e−2ŷ)
=

z2(1− z21)

(1− z1z2)(z1 + z2)
. (4.39)

In appendix B it is shown that u is nothing but (1+cos θ)/2 = 1
2
(1+Xz/X0), where

θ is the angle between an emitted radiation particle X of (4.7) and the collision
axe (in the soft limit M2

X = 0). The variable u is convenient because, since cos θ is
ranging in [0, π], the u variable is ranging in [0, 1], and the coefficient function can
be expressed in terms of plus distributions with respect to u.

In definition (4.15), we need to calculate the Mellin-Fourier transform of contri-
butions similar to the one of sections 4.3.1 and 4.3.2. We have to calculate 2 types
of terms: Mellin transforms with respect to z of z dependent plus distributions
(whose behaviour is well-known, see (3.15)) and Fourier transform with respect to
ŷ of u dependent plus distributions. The latter type of terms are not immediate
to be understood, and now we show that they can be rewritten in a form similar
to the Mellin transform with respect to t := eŷ of t dependent plus distributions.

For instance, we consider the Fourier transform of a term of (4.29):∫︂ +ŷ0

−ŷ0

dŷ eiMŷ 1

u+
= (4.40)

and we substitute the convenient form of u from (B.3), obtaining

=

∫︂ +ŷ0

−ŷ0

dŷ (eiMŷ − 1)
2(1− z)

(1− z)− (1 + z) tanh ŷ
. (4.41)

We retain only the ŷ dependent factors, because, for example the (1− z) factor is
not to be integrated and it comes out of the integral without affecting its behaviour.
We make the above mentioned change of variable ŷ ↦→ t and we get

=

∫︂ 1/
√
z

√
z

dt (tiM−1−1)
2(t2 + 1)

(1− z)(t2 + 1)− (1 + z)(t2 − 1)
=

∫︂ 1/
√
z

√
z

dt (tiM−1)
t2 + 1

1− zt2
.

(4.42)
It is then clear why the ŷ variable is not convenient. In fact we have almost obtained
the Mellin transform of a plus distribution, but with the following differences:

• the domain of integration is not [0, 1], therefore we can not apply the usual
techniques.

• the denominator 1− zt2 has a pole in t = 1 only in the limit z → 1, therefore
we should take into consideration the z dependence, too.
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4.3.4 Plus distributions with respect to z1 and z2

The answer to the problems presented in the previous section is represented by
the z1 and z2 variables. Firstly, as already pointed out in (4.19), the domains of
integration are decoupled and are equal to [0, 1]. We now discuss how to manipulate
expressions like the ones of sections 4.3.1 and 4.3.2, in order to obtain only Mellin
transforms of plus distributions. In (4.23), we need to explicit the variables z1 and
z2 in terms of z and ŷ, and it is possible to map plus distributions with respect to
z and u in plus distributions with respect to z1 and z2. Many of these relations are
computed in appendix B of [22] and here we report one example:

dz dŷ
1

[1− z]+

[︃
1

u+
+

1

[1− u]+

]︃
= dz1 dz2

{︃
ζ2δ(1− z1)δ(1− z2)−

[︃
ln(1− z1)

1− z1

]︃
+

δ(1− z2) +
1

[1− z1]+

1

[1− z2]+
− δ(1− z1)

[︃
ln(1− z2)

1− z2

]︃
+

δ(1− z2)
1

1− z2
ln

(︃
2z2

1 + z2

)︃
+ δ(1− z2)

1

1− z1
ln

(︃
2z1

1 + z1

)︃
+

1

(1 + z1)(1 + z2)

}︃
,

(4.43)

where the plus distributions with respect to z1 and z2 are intended as plus distri-
butions with respect to the z1 and z2 integration separately. To clarify, for instance
the following quantity is intended as∫︂∫︂ 1

0

dz1 dz2 z
N1−1
1 zN2−1

2

1

[1− z1]+

1

[1− z2]+
=[︃∫︂ 1

0

dz1
zN1−1
1 − 1

1− z1

]︃ [︃∫︂ 1

0

dz2
zN2−1
2 − 1

1− z2

]︃
(4.44)

4.3.5 Forward-backward symmetry

The problem is completely symmetric under interchange of the hadron coming from
the right with the hadron coming from the left along the third axe, which is parity
with respect to the third axe. This has 3 main consequences on: the coefficient
function, its Mellin-Fourier transform and its Mellin-Mellin transform. Firstly, the
parity with respect to the third axe implies that the hadronic cross section σ of
(4.8) must be symmetric under the interchange Y ↔ −Y , namely

σ(τ, Y,M2
H) = σ(τ,−Y,M2

H). (4.45)

On the one hand, if the 2 extracted partons are identical, i.e. i = j, the coefficient
function Cii is symmetric under the interchange ŷ ↔ −ŷ, too, because also the
partonic problem is symmetric under parity with respect to the third axe. On
the other hand, if i ̸= j, the coefficient function is not symmetric under ŷ ↔ −ŷ.
However, since in the hadronic cross section we are summing over all possible
extracted partons, we can redefine C̃ij := Cij +Cji, which now is symmetric under
ŷ ↔ −ŷ, too. With a little abuse of notation, from now on Cij will be intended as
C̃ij, and the some over all possible extracted partons will be intended as

∑︁
i>j.
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The forward-backward symmetry of the coefficient function implies that its
Mellin-Fourier transform is symmetric under M ↔ −M . In fact, if we consider
(4.15) and we make the change of variable ŷ ↦→ −ŷ, we get:

Cij(N,M,M2
H) =

∫︂ 1

0

dz zN−1

∫︂ +ŷ0

−ŷ0

dŷ e−iMŷCij(z, ŷ,M
2
H) = Cij(N,−M,M2

H).

(4.46)
Moreover, if we consider the definitions (4.21) and (4.22), it is straightforward to
see that the transformation M ↔ −M corresponds to N1 ↔ N2. Therefore the
following relation must hold, too:

Cij(N1, N2,M
2
H) = Cij(N2, N1,M

2
H). (4.47)

4.4 Thresholds
In this section we analyse the kinematic threshold of the considered process. Firstly,
we describe the doubly soft case, starting from the (z, ŷ) limits and obtaining
the corresponding limits in Mellin-Fourier space, i.e. (N,M) variables. Then we
describe to what limits the doubly soft region corresponds in (z1, z2) variables and
in Mellin-Mellin space, i.e. (N1, N2) variables.

Secondly, we move to the singly soft case. We start by deriving the (z1, z2)
limits in the singly soft region and then we derive the corresponding (N1, N2)
limits. Finally, we switch to (z, ŷ) variables and we describe their limits in the
singly soft region and what is the corresponding behaviour in Mellin-Fourier space,
i.e. (N,M) variables.

4.4.1 Doubly soft limit

In this section we derive that the doubly soft region corresponds to (z → 1, ŷ → 0)
and (|N | → ∞,M → ±∞), where N = ρM and ρ is a finite complex parameter.

Then we derive that the doubly soft region corresponds to (z1 → 1, z2 → 1)

and (|N1| → ∞, |N2| → ∞), where N1

N2
= ρ+i/2

ρ−i/2
is finite.

Doubly soft in (z, ŷ) variables and (N,M) Mellin-Fourier variables

Here we analyse the doubly soft region1, where the available energy ŝ is approach-
ing its minimum allowed value in order to produce a real Higgs, which is M2

H .
Therefore, by definition, ŝ → M2

H implies z → 1. It is important to keep in mind
that, for z → 1, the extremes of integration ±ŷ0 of (4.13) in expression (4.15) are
approaching 0± because

lim
z→1

ŷ0 = lim
z→1

1

2
ln

(︃
1

z

)︃
= 0, (4.48)

1the name "doubly soft" limit will be clear in section 4.4.1, where it is shown that z → 1
corresponds to z1 → 1 and z2 → 1, while the so-called "singly soft" limit, discussed in section
4.4.2, means taking the z1 and z2 one at a time.
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Figure 4.1: Domain of integration with respect to the variables z and ŷ and the
doubly soft region

therefore the set of allowed values of ŷ is becoming a narrow range centred around
0. Figure 4.1 represents the domain of integration and it clears why taking the soft
limit z → 1 implies ŷ → 0. The physical meaning of this fact is rather obvious: if
the available energy is approaching its minimum value, then there is no more left
for the longitudinal momentum of the Higgs.

Now we need to understand to which (N,M) limits the doubly soft region
corresponds. Firstly, we want to show that, by taking the limit |N | → ∞ of Mellin
transform of the coefficient function, we are restricting ourselves to the z → 1
region. To show that, we starting by considering the definition (4.15)

Cij(N,M,M2
H) =

∫︂ 1

0

dz zN−1

∫︂ +ŷ0

−ŷ0

dŷ eiMŷCij(z, ŷ,M
2
H) =

∫︂ 1

0

dz zN−1Cij(z,M,M2
H)

(4.49)
and we focus on the zN−1 factor. In fact, since z ∈ [0, 1], by taking the |N | → ∞
implies that zN−1 → 0 unless z → 1. A similar argument can be applied to
the inverse Mellin transform to show that also z → 1 implies |N | → ∞. This
mapping can be expressed more quantitatively by calculating explicitly the Mellin
transform of a typical expression of the rapidity distribution in the large-N limit
as the example (3.15), where only a finite number of terms provide non-suppressed
contributions.

Secondly, we show that M → ±∞ corresponds to the ŷ → 0 region. In fact, for
M → ±∞, the eiMŷ factor is a function, which is oscillating increasingly fast, and
the only way to obtain a finite factor eiMŷ is for ŷ → 0. A similar argument applied
to the inverse Fourier transform shows that ŷ → 0 ↔ M → ±∞. Since in section
4.3.5 we showed that the Mellin-Fourier transform of the coefficient function is
symmetric under parity with respect to the M variable, from now on we will drop
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the M → ±∞ distinction, because these 2 limits are indistinguishable.
When considering terms of the form (4.42), obtaining a quantitative relation for

this fact is a hard task, because one can not consider the Fourier transform alone,
but has to consider it inside a Mellin transform. Here we give a specific example to
get a good grasp on the emergence of big logs of M and, to do that, we consider the
following contribution to the Mellin-Fourier transform of the coefficient function:∫︂ 1

0

dz zN−1 1

[1− z]+

∫︂ +ŷ0

−ŷ0

dŷ eiMŷ 1

u+
. (4.50)

If we make the same change of variable as in 4.3.3 and we isolate one of the many
singular contributions, we get

≈
∫︂ 1

0

dz
zN−1 − 1

1− z

∫︂ 1/
√
z

√
z

dt
tiM − 1

1/
√
z − t

+ . . . . (4.51)

Then, since both the extremes of integration are approaching 1, we can approximate
the above quantity as

≈
∫︂ 1

0

dz
zN−1 − 1

1− z

1− z√
z

√
z
iM − 1
1−z√

z

≈
∫︂ 1

0

dz
zN+iM/2−1 − 1

1− z
= − ln(N + iM/2)+O(1),

(4.52)
where in the last step we dropped some suppressed terms and we used the relation
(3.15) with p = 0. In (4.52) it can be seen how logs ofM do not appear immediately
after the Fourier transform and independently of logs of N , but they are built by
the Mellin transform with the outcome of the Fourier transform.

Lastly, we focus on the relative rates of the |N | → ∞ and M → ∞ limits. We
consider again the definition (4.15), where, for z → 1, we can safely say that the
ŷ variable in the inner integral is approaching 0 at most at the same rate as its
extremes of integration |ŷ0| = 1

2
ln 1

z
, hence as a first approximation eiMŷ ≈ ziM/2

and (4.15) becomes

Cij(N,M,M2
H) ≈

∫︂ 1

0

dz zN−1

∫︂ ŷ0

−ŷ0

dŷ zi
|M|
2 Cij(z, ŷ,M

2
H). (4.53)

Therefore, if |N | is required to approach ∞ at a certain rate, then, in order to
have a non-trivial factor zi

M
2 , M must approach ∞ at the same rate of N , i.e.

M = O(|N |). We are left with the freedom of choosing the complex numeric value

ρ :=
N

M
=

|N |
M

eiϕ, (4.54)

where we decomposed N = |N |eiϕ, the modulus of ρ is determined by |ρ| = |N |/M
and it represents the relative rate of the limits, and its phase is determined by
ρ/|ρ| = N/|N |. The complex number ρ can be thought as the parametrization of
the doubly soft region in Mellin-Fourier space.
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Doubly soft in (z1, z2) variables and (N1, N2) Mellin variables

We now focus on expression (4.23) and we ask to what this doubly soft limit
corresponds with respect to the variables z1 =

√
zeŷ and z2 =

√
ze−ŷ. Taking the

limit z → 1 implies that z1 → eŷ and z2 → e−ŷ, and moreover, since both the
maximum and the minimum allowed values for ŷ are approaching 0, then z1 → 1
and z2 → 1 at the same time (hence the name "doubly soft").

We now focus on the Mellin-Mellin limits to which this (z1, z2) region corre-
sponds. As already discussed in the previous section, the z → 1 region corresponds
to the |N | → ∞ limit. In Mellin-Mellin space the situation is not different, because
we have 2 independent Mellin transforms with respect to z1 and z2, which are both
approaching 1, therefore we know that |N1| → ∞ and |N2| → ∞. Up to this point,
we are still free to take the 2 limits at different rates, but we need to do a more
careful analysis. We have already done some considerations about the rates of the
limits M → ∞ and |N | → ∞ and we came to the relation M = O(|N |). Due to
the relations N1 = N + iM/2 and N2 = N − iM/2, we are obviously constrained
to the situation where |N1| = O(|N2|) = O(|N |) = O(M) in the doubly soft limit.
The freedom we are left with is the same as in Mellin-Fourier space, which is the
complex parameter ρ. Now ρ parametrize the limits |N1| → ∞ and |N2| → ∞ as
expressed by

N1 =M(ρ+ i/2) (4.55)

N2 =M(ρ− i/2) (4.56)

Figure 4.2 represents the values M , N , N1 and N2 in the complex plane in units
of M , in order to consider only the relative rates of the limits.

Reversing the argument of the previous paragraph, we can deduce that, since
|N1| = O(|N2|), the regions in (z1, z2) space are 1 − z1 = O(1 − z2), which is
the analogue of the request for ŷ to approach 0 at rate similar to its extremes of
integration. Figure 4.3 is explanatory of the described situation, where (z1, z2) are
approaching the top right corner along every possible line, because they are of the
same order.

4.4.2 Singly soft limit

In this section we derive that the first singly soft region corresponds to (maximum
rapidity) (zfixed, ŷ → ŷ0) and (|N | → ∞,M → ±∞), where Re(N) is finite and
Im(N) = M/2. The other singly soft region corresponds to (minimum rapidity)
(zfixed, ŷ → −ŷ0) and (|N | → ∞,M → ±∞), where Re(N) is finite and Im(N) =
−M/2.

Then we derive that the first singly soft region corresponds to (z1 → 1, z2fixed)
and (|N1| → ∞, |N2|fixed), where Re(N1) is finite. The second singly soft region
can be obtained by interchanging 1 ↔ 2.

Singly soft in (z1, z2) and (N1, N2) Mellin variables

In the kinematic configuration considered in the previous section, since all the
available energy is used to produce the Higgs, the extra radiation is becoming soft
and resummation is needed. We now deal with a different kinematic configuration,
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Figure 4.2: The limits M, |N |, |N1|, |N2| → ∞ are represented in the complex
plane in units of M , and relative rates are obtained from the relations N = Mρ,
N1 =M(ρ+ i/2) and N2 =M(ρ− i/2).

Figure 4.3: Domain of integration with respect to the variables z1 and z2 and
doubly soft region
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Figure 4.4: Domain of integration with respect to the variables z1 and z2 and singly
soft regions

where z is not approaching 1, so there is extra energy available for the Higgs, but
the Higgs is using as much extra energy as possible in order to have the great-
est/smallest possible longitudinal momentum, therefore its transverse momentum
is approaching 0. In this configuration, the extra radiation allowed is of 2 types:
collinear to the Higgs, in order to compensate the longitudinal momentum of the
Higgs because of the conservation of the four-momentum, and the remaining radi-
ation has to become soft, therefore resummation is needed also in this case.

We start from relation (4.23) and we consider the case ŷ → ŷ0, because the
case ŷ → −ŷ0 is symmetric. We can immediately read why using the variables z1
and z2 is easier. Since the variables can be rewritten in the form z1 = eŷ−ŷ0 and
z2 = e−ŷ−ŷ0 , the limits above correspond to z2 < 1 fixed and z1 → 1, and z1 < 1
fixed and z2 → 1. In these limits, respectively z → z2 or z → z1, therefore it
is not approaching 1. Figure 4.4 is explanatory of the kinematic regions we are
considering in these 2 limits in (z1, z2) space.

Now we show to which limits of the Mellin variables (N1, N2) the regions z1 → 1
and z2 → 1 correspond. In analogy with the previous section, we consider (4.23)

Cij(N1, N2,M
2
H) =

∫︂ 1

0

dz1 z
N1−1
1 Cij(z1, N2,M

2
H), (4.57)

where we focus on the z1 integration. For |N1| → ∞, then the factor zN1−1
1 → 0,

unless z1 → 1. On the other hand, the variable z2 is freely ranging in its domain,
therefore it is not necessary to take any limit for N2. The case in which z1 and
z2 are playing each other’s role is completely analogous, with the only needed
substitution 1 ↔ 2.
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Figure 4.5: The limits M, |N |, |N1| → ∞ are represented in the complex plane in
units of M. Since N2 is finite, it can not be represented because it corresponds
to 0 in M units. The relative rates are obtained from the relations N = iM/2,
N1 =M(ρ+ i/2) = iM .

Since we are taking only 1 limit, there is no relative rate between N1 and N2

to reflect on, but, since N1 and N2 are not 2 independent complex numbers, there
are some important consequences when asking |N1| → ∞ and N2 finite. In fact,
by looking at (4.25) and (4.26), the fact that N1 and N2 have the same real part
implies that the real part of both of them must be finite. Therefore N1 must
approach ∞ along the imaginary axe, neglecting sub-leading contributions. The
explained situation is depicted in figure 4.5.

Singly soft in (z, ŷ) and (N,M) Mellin-Fourier variables

If we analyse the same situation with respect to the variables (z, ŷ), it is straightfor-
ward to understand to what these kinematic regions correspond. In fact, z is fixed
to a numeric value, and is not approaching 1, while the variable ŷ is approaching
±ŷ0, depending on whether we are in the z1 → 1 or in the z2 → 1 case, keeping in
mind that ŷ0(z) is z dependent. The described situation is depicted in figure 4.6.

Lastly, we explain to which limits these regions correspond in Mellin-Fourier
space. In order to do this, we exploits again the relations N1 = N + iM/2 and
N2 = N− iM/2 and we ask ourselves what they tell us about N and M if N1 → ∞
and N2 is finite. By looking at (4.25) and (4.26) we can deduce what follows. The
difference N1 −N2 of (4.25) and (4.26) must be infinite because |N1| → ∞ and N2

is finite, hence M → ∞. On the other hand, N2 must be finite, therefore both its
real and imaginary parts must be finite, hence Re(N) is finite and Im(N) → ∞
in order to compensate the divergence of M , and in particular Im(N) ∼= M/2
up to a constant. Moreover, since N is becoming increasingly imaginary, we get
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Figure 4.6: Domain of integration with respect to the variables z and ŷ and the
singly soft regions

N → i Im(N) and, by recalling the definition ρ = N/M , we obtain the following
value for ρ:

ρ→ i Im(N)

M
→ i

2
. (4.58)

This is exactly the expected result because, by dividing (4.55) by (4.56), we get

N1

N2

=
ρ+ i/2

ρ− i/2
, (4.59)

which is divergent for ρ → i/2. In figure 4.5, the explained situation is depicted,
and one can see that this is a particular case of figure 4.2, with the substitution
ρ = i/2. The symmetric result can be found for N1 finite N2 → ∞, which, at the
end, requires ρ→ −i/2.

4.5 Phase Space
In this section we analyse the phase space structure of the radiation emission.

Firstly, we reorganise the phase space integration measure by dividing it into
soft radiation and radiation collinear to the massive final state particle.

Secondly, we analyse the singly soft limit and we show that the phase space can
depend only on two combination of variables: the collinear scale M2

H(1−z1)(1−z2)
and the soft scale M2

H(1− z1)
2, where z2 is fixed and z1 → 1.

Thirdly, we analyse the doubly soft limit and we show that the phase space
depends on the same scales of the singly soft limit, but this time we are taking both
z1 → 1 and z2 → 1. We discuss the meaning of this result and its interpretation.



CHAPTER 4. RAPIDITY DISTRIBUTION 45

Figure 4.7: Phase space decomposition of the process with two incoming particles
with 4-momenta p1 and p2, a final state massive particle H, m soft gluons with
4-momenta k1, ...km and m gluons collinear to H and with 4-momenta k′1, ..., k′n.

4.5.1 Phase space for rapidity distributions

The following treatment follows a procedure similar to [15]. In this section we
manipulate the phase space in order to factor soft and collinear radiation. We
distinguish between two classes of extra radiation: soft radiation and radiation
collinear to the massive particleH. Therefore the conservation of the four-momenta
for the process (4.3) takes the form

p1 + p2 = pH + k1 + . . .+ km + k′1 + . . .+ k′n, (4.60)

where we denoted with ki a soft radiation particle and with k′i a collinear radiation
particle. The infinitesimal element of the phase space in d = 4 − 2ϵ dimensions
takes the following form:

dϕm+n+1(p1, p2; pH , k1, . . . , k
′
n) =

=
dd−1pH

(2π)d−12p0H

dd−1k1
(2π)d−12k01

. . .
dd−1k′n

(2π)d−12k′0n
(2π)dδ(d)(p1 + p2 − pH − k1 − . . .− k′n).

(4.61)

The phase space can be divided into sub-phase spaces by introducing intermediate
particles and integrating over their four-momenta squared. Our choice is to split the
phase space the way it has been done in [15] for transverse momentum distributions,
which reads:

=

∫︂
dq2

2π
dϕm+1(p1, p2; q, k1, . . . , km)

∫︂
d(k′)2

2π
dϕ2(q; pH , k

′)dϕn(k
′; k′1, . . . , k

′
n).

(4.62)
Figure 4.7 illustrates the chosen phase space decomposition.

Now, we calculate explicitly the element dϕ2(q; pH , k
′), keeping in mind that

we need to obtain a rapidity distribution, therefore we have to isolate the measure
dpzH . By definition, we know that

dϕ2(q; pH , k
′) =

dd−1pH
(2π)d−12p0H

dd−1k′

(2π)d−12k′0
(2π)dδ(d)(q − pH − k′), (4.63)



CHAPTER 4. RAPIDITY DISTRIBUTION 46

we make the spatial δ(d−1) act to cancel the integration measure dd−1k′, we choose
the frame of reference in which q is at rest and we are left with

=
dd−1pH

4(2π)d−2p0Hk
′0 δ

(1)(
√︁
q2 − p0H − k′0). (4.64)

The integration measure can be rewritten as

dd−1pH = d2p⃗T d
d−3p⃗z =

1

2
dp2T |p⃗z|d−4d|p⃗z| dΩd−2 =

π1−ϵ

Γ(1− ϵ)
dp2T |p⃗z|−2ϵ d|p⃗z|,

(4.65)
where we exploited the relation Ωd =

2πd/2

Γ(d/2)
. Substituting it into (4.64), it becomes

dϕ2(q; pH , k
′) =

(4π)ϵ|p⃗z|−2ϵ

16πΓ(1− ϵ)

dp2T d|p⃗z|
p0Hk

′0 δ(1)(
√︁
q2 − p0H − k′0). (4.66)

Then we want to make the δ(1) act on the integration measure dp2T , therefore
we the known property of the δ of a function, obtaining

δ(p0H + k′0 −
√︁
q2) =

δ(|p⃗T |2 − p̃2T )

|J(p̃2T )|
, (4.67)

where

p̃2T =
λ(M2

H , q
2, (k′)2)

4q2
−p2z, λ(x, y, z) = x2+y2+ z2−2xy−2xz−2yz. (4.68)

and

|J(p̃2T )| =
1

2

(︃
1

p0H
+

1

k′0

)︃
=

√︁
q2

2p0Hk
′0 (4.69)

Substituting (4.67) and (4.69) into (4.66) we get:

dϕ2(q; pH , k
′) =

(4π)ϵ

8πΓ(1/2− ϵ)

|p⃗z|−2ϵ√︁
q2

d|p⃗z|. (4.70)

The last step of our manipulation is transforming the d|p⃗z| differential into a d|ŷ|
rapidity differential, because we are interested in rapidity distributions. The pro-
cedure is the following:

d|p⃗z| =
√︂
M2

H + p2T cosh(ŷ)d|ŷ| =
√︂
M2

H + p2T
z1 + z2
2
√
z1z2

d|ŷ| (4.71)

and substituting this relation into (4.70), it becomes

dϕm+n+1(p1, p2; pH , k1, . . . , k
′
n) ==

(4π)ϵ|pz|−2ϵ

32π3Γ(1− ϵ)

√︂
M2

H + p2T
z1 + z2
2
√
z1z2

d|ŷ|∫︂
dq2√︁
q2

∫︂
d(k′)2 dϕn+1(p1, p2; q, k1, . . . , km)dϕm(k

′; k′1, . . . , k
′
m). (4.72)

It is important to note that we seem to have lost information about the sign
of ŷ because we found cross section differential in the modulus of the longitudinal
momentum, but actually the information about the sign is stored inside the variable
among z1 and z2 which is approaching 1 faster, both in the case of single limit and
double limit. In fact it is straightforward to prove from (4.18) that if z1 > z2 the
longitudinal momentum has a positive sign, and vice versa for the other case.



CHAPTER 4. RAPIDITY DISTRIBUTION 47

4.5.2 Singly soft limit: extremes and scales

In the section analyse the extremes of the phase space integration with respect to
soft and collinear radiation in the singly soft case. From them, we deduce the soft
and collinear scales.

We aim to understand what are the extremes of integration in (4.72) in the
situation when only one of the variables z1 and z1 is approaching 1. In this sec-
tion we assume that z1 → 1 and the other case is perfectly symmetric up to the
substitution (1 ↦→ 2).

We start by writing the conservation of four-momenta for dϕn+1, which is

p1 + p2 = q + k1 + . . .+ km, (4.73)

and, by squaring this equation, it becomes

ŝ = q2+2q0
m∑︂
i=1

|k⃗i|−2
√︁

(q0)2 − q2
m∑︂
i=1

|k⃗i| cos θi+2
m∑︂

i,j=1

|k⃗i||k⃗j|(1−cos θij). (4.74)

It is clear that the maximum value of q2 is reached in the limit of soft radiation,
i.e. |k⃗i| → 0 ∀i =⇒ q2 → ŝ.

The lower extreme of integration can be found by looking at the conservation
of energy for dϕ2(q; pH , k

′) in the frame of reference of q, which reads

q2 =

(︃√︂
M2

H + p2T + p2z +
√︂

(k′)2 + p2T + p2z

)︃2

, (4.75)

where we have identified z in the frame of reference of q with the one in the partonic
frame of reference because in the soft limit these two frames coincide. Lowering
(k′)2 and p2T down to 0, we obtain that

q2 ≥ q2min =

(︃√︂
M2

H + p2z + |pz|
)︃2

. (4.76)

We prefer to express this lower limit as a function of z1 and z2. Substituting
pz =MH sinh ŷ because of p2T = 0, and knowing (4.18), we get

q2min =
ŝ

4
(z1 + z2 + |z1 − z2|)2 = (max{z1, z2})2ŝ = z21 ŝ, (4.77)

where max{z1, z2} = z1 because we chose the configuration z1 → 1 and z2 ̸= 1.
Therefore, the integration interval is q2 ∈ [z21 ŝ, ŝ].

We choose a new dimensionless variable u instead of q2, defined by interpolating
the extremes of integration as follows

q2 = z21 ŝ+ u(ŝ− z21 ŝ) = ŝ(z21 + u(1− z21)). (4.78)

If we make this change of variable, eq. (4.72) becomes

dϕm+n+1(p1, p2, k1, . . . , k
′
n) =

(4π)ϵ|pz|−2ϵ

32π3Γ(1− ϵ)

√︂
M2

H + p2T
z1 + z2
2
√
z1z2

d|ŷ|
√
ŝ(1− z21)∫︂ 1

0

du√︁
z21 + u(1− z21)

∫︂
d(k′)2 dϕn+1(p1, p2; q, k1, . . . , km)dϕm(k

′; k′1, . . . , k
′
m).

(4.79)
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Regarding the integration over k′, the lower limit is trivially found to be 0,
while for the upper one we need to recall (4.75), which leads to

(k′)2 = q2 +M2
H − 2

√︁
q2
√︂
M2

H + p2T + p2z. (4.80)

Then the maximum value is obtained for p2T → 0, hence it reads as

(k′max)
2 = q2 +M2

H − 2
√︁
q2
√︂
M2

H + p2z. (4.81)

If we isolate a factor ŝ and we substitute q2/ŝ2 = z21 + u(1− z21), M2
H/ŝ = z = z1z2

and p2z/ŝ
2 = (z1 − z2)

2/4, it results in

= ŝ

(︃
z21 + u(1− z21) + z1z2 − (z1 + z2)

√︂
z21 + u(1− z21)

)︃
, (4.82)

which tends to 0 in the limit z1 → 1. Therefore we expand it to the lowest order
in powers of η = 1− z1, obtaining

= ŝ (1− 2η + 2uη + z2 − z2η − (1 + z2 − η)(1− η(1− u))) +O(η)

= ŝu(1− z2)η +O(η) = ŝu(1− z1)(1− z2) +O
(︁
(1− z1)

2
)︁
.

(4.83)

It is important to keep in mind that in this case the singular contribution is rep-
resented by 1 − z1, while 1 − z2 is just to be intended as a numeric constant, for
the moment.

Once again, we choose an dimensionless variable v in order to interpolate the
extremes of integration 0 and (k′max)

2, which is defined as

(k′)2 = uv(1− z1)(1− z2)ŝ. (4.84)

Finally, by applying this change of variable to (4.79), we get

(4π)ϵ|pz|−2ϵ

32π3Γ(1− ϵ)

√︂
M2

H + p2T
z1 + z2
2
√
z1z2

d|ŷ|ŝ3/2(1− z1)
2(1 + z1)(1− z2)∫︂ 1

0

udu√︁
z21 + u(1− z21)

∫︂ 1

0

dv dϕn+1(p1, p2; q, k1, . . . , km)dϕm(k
′; k′1, . . . , k

′
m). (4.85)

The formula above can be simplified by taking the limit z1 → 1 and p2T → 0 in the
non singular terms and by substituting ŝ = M2

H

z1z2
→ M2

H

z2
. Then, it becomes:

=
(4π)ϵ|pz|−2ϵ

32π3Γ(1− ϵ)
M4

H(1− z1)
2 (1− z22)

z22∫︂ 1

0

udu

∫︂ 1

0

dv dϕn+1(p1, p2; q, k1, . . . , km)dϕm(k
′; k′1, . . . , k

′
m). (4.86)

The 2 remaining phase spaces can be dealt with as in appendix A of [13]:

• dϕn+1 has the form of a Drell-Yan phase space and it depends on dimension
full variables only through the combination

(ŝ− q2)2

q2
= ŝ

[1− (z21 + u(1− z21))]
2

z21 + u(1− z21)
∼ 4(1− u)2

z2
M2

H(1− z1)
2. (4.87)
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• dϕm has the form of a DIS phase space and it depends on dimension full
variables only through the combination

(k′)2 = ŝuv(1− z1)(1− z2) ∼ uvM2
H(1− z1)

1− z2
z2

. (4.88)

From these dependences we understand that, for z1 → 1, the phase space is a
function of dimension full variables only through the 2 following combinations:

Λ2
DY =M2

H(1− z1)
2, (4.89)

which emerges as a soft scale, and

Λ2
DIS =M2

H(1− z1)(1− z2), (4.90)

which, on the other hand, emerges as a collinear scale.

4.5.3 Doubly soft limit: extremes and scales

In the section analyse the extremes of the phase space integration with respect
to soft and collinear radiation in the doubly soft case. The scales we obtain are
identical to the ones of the singly soft limit, but they have different interpretations
and behaviours.

In this case we have to find what are the extremes of integration, too. Most of
the calculations done in the previous section are still true in this case. In particular,
regarding the extremes of integration with respect to the variable q2 are the same,
because they are exact and they did not go through any approximation. It is also
true the fact that the lower limit is z21 ŝ if z1 is the variable approaching 1 faster.
In this case, the results will still be perfectly symmetric under the interchange
z1 ↔ z2.

Regarding the extremes of integration with respect to (k′)2, we should in prin-
ciple expand the upper limit in powers of 1− z1 and 1− z2, keeping in mind that
these 2 quantities are of the same order. Actually, the calculations done before have
already provided us with the result we are looking for, because we approximated
only with respect to the variable z1, therefore the result is exact with respect to
z2.

Therefore, we can resume the discussion starting from (4.85), which becomes

(4π)ϵ|pz|−2ϵ

16π3Γ(1− ϵ)
M4

H(1− z1)
2(1− z2)∫︂ 1

0

udu

∫︂ 1

0

dv dϕn+1(p1, p2; q, k1, . . . , km)dϕm(k
′; k′1, . . . , k

′
m). (4.91)

Now we can repeat the argument of the previous section about the 2 phase spaces
dependences on the dimension full variables. Therefore:

• dϕn+1 has a very similar form to the previous case, and its dependence is
found to be

(ŝ− q2)2

q2
∼ 4(1− u)2M2

H(1− z1)
2. (4.92)
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• dϕm has a very similar dependence, too, but it contains a different scale
because what was a numeric factor 1− z2 is now singular, hence

(k′)2 ∼ uvM2
H(1− z1)(1− z2). (4.93)

We can read from the above relations what the soft/collinear scales are identical
to the singly soft case: a soft scale Λ2

DY = M2
H(1 − z1)

2, and a collinear scale
Λ2

DIS = M2
H(1 − z1)(1 − z2), but in section 4.6 and 4.7 we will highlight the

differences both in their interpretations and in their behaviours. For, now, it is
important to understand that, even if we allowed the possibility for both soft
(all the components of the four-momentum are small) and collinear radiation (the
transverse components of the four-momentum are small) to be emitted, actually the
doubly soft limit case implies that also the longitudinal momentum is becoming
small, so also the longitudinal component of the collinear radiation is becoming
small, hence the extra radiation is globally becoming soft. Therefore, Λ2

DIS, which
was derived as a collinear scale, is actually a soft scale.

4.6 Doubly soft limit: the resummation formulas
In this section we apply the multi-scale resummation formulas to the hard and
soft/collinear scales obtained in the doubly soft limit. Firstly, we show that the
soft scale exponent produces only subleading contributions, therefore it can be
excluded from the resummation formula. Secondly, we prove that the collinear
scale M2

H(1− z1)(1− z2) is mapped in Mellin space in the scale M2
H

N1N2
. Finally, we

prove that the resummation formula with the remaining scale can be mapped into
the resummation formula already known in literature. We also prove that in the
doubly soft limit, the resummation formula for the rapidity distribution can be
obtained from the one of the inclusive cross section by substituting N → N1N2.

We aim to apply the relations (3.34) and (3.35) to the case of rapidity distribu-
tions in the doubly soft limit, where it is required the knowledge of the hard scales
and the soft scales. In the doubly soft limit, the only hard scale available is M2

H ,
which is the endpoint of the kinematic. In section 4.5.3 we obtained the soft scale
M2

H(1− z1)
2 (M2

H/N
2
1 in Mellin space) and the collinear scale M2

H(1− z1)(1− z2)
(M2

H/(N1N2) in Mellin space, proved in the section 4.6.2), where both z1 and z2 are
approaching 1. Therefore, in this case, the resummation formula (3.34) becomes:

C

(︃
N1, N2,

M2
H

µ2
, αs(µ

2)

)︃
= Cc

(︃
M2

H

µ2
, αs(M

2
H)

)︃
exp

{︄∫︂ N2
1

1

dn

n

∫︂ M2
H

nµ2

dk2

k2
ĝ1(αs(k

2/n), N2) +

∫︂ N1N2

1

dn

n

∫︂ M2
H

nµ2

dk2

k2
ĝ2(αs(k

2/n))

}︄
.

(4.94)
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In section 4.6.3 we will show that the above resummation formula is equivalent to:

C

(︃
N1, N2,

M2
H

µ2
, αs(µ

2)

)︃
= Cc

(︃
M2

H

µ2
, αs(M

2
H)

)︃
exp

{︃∫︂ 1

0

zN1−1
1 − 1

1− z1

∫︂ M2
H(1−z1)2

µ2

dλ2

λ2
g1(αs(λ

2))

+

∫︂ 1

0

dz1

∫︂ 1

0

dz2
zN1−1
1 zN2−1

2 − 1

(1− z1)(1− z2)
g2(αs(M

2
H(1− z1)(1− z2)))

Θ(M2
H(1− z1)− µ2)Θ(M2

H(1− z2)− µ2)

}︃
. (4.95)

4.6.1 The suppressed scale

We now show that the scale ΛDY = M2
H(1 − z1)

2 gives origin only to subleading
terms in Mellin-Mellin space. In order to do this, we calculate explicitly the Mellin-
Mellin transform of a general contribution originated from this scale, which reads
as follows:∫︂ 1

0

dz2 z
N2−1
2

∫︂ 1

0

dz1 z
N1
1

[︃
lnp(1− z1)

1− z1

]︃
+

=
1

N2

∫︂ 1

0

dz1
(︁
zN1−1
1 − 1

)︁ [︃ lnp(1− z1)

1− z1

]︃
= O

(︃
lnpN1

N2

)︃
. (4.96)

Therefore, we have just shown that every contribution coming from the soft scale
is suppressed as N2 → ∞. Therefore, in the formulas (4.117) and (4.118) the first
terms in the exponential produce subleading contributions and we are left with:

C

(︃
N1, N2,

M2
H

µ2
, αs(µ

2)

)︃
= C0

(︃
M2

H

µ2
, αs(µ

2)

)︃
exp

{︄∫︂ N1N2

1

dn

n

∫︂ M2
H

nµ2

dk2

k2
ĝ2(αs(k

2/n))

}︄
, (4.97)

and

C

(︃
N1, N2,

M2
H

µ2
, αs(µ

2)

)︃
= C0

(︃
M2

H

µ2
, αs(µ

2)

)︃
exp

{︃∫︂ 1

0

dz1

∫︂ 1

0

dz2
zN1−1
1 zN2−1

2 − 1

(1− z1)(1− z2)
g2(αs(M

2
H(1− z1)(1− z2)))

Θ(M2
H(1− z1)− µ2)Θ(M2

H(1− z2)− µ2)

}︃
. (4.98)

4.6.2 The remaining soft scale

We show that in Mellin-Mellin space the contributions coming from the scale
M2

H(1 − z1)(1 − z2) are mapped into logarithms of the form lnp(N1N2) and this
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task will be accomplished by providing a generating functional. First, we take the
double transform of the general contribution coming from the scale Λ2

DIS:

Ip =

∫︂∫︂ 1

0

dz1 dz2 z
N1−1
1 zN2−1

2

[︃
lnp((1− z1)(1− z2))

(1− z1)(1− z2)

]︃
+

=

=

∫︂∫︂ 1

0

dz1 dz2
(︁
zN1−1
1 zN2−1

2 − 1
)︁ lnp((1− z1)(1− z2))

(1− z1)(1− z2)
. (4.99)

Then, as already stated, we introduce a generating functional G(N1, N2, η), defined
as

G(N1, N2, η) :=

∫︂∫︂ 1

0

dz1 dz2
(︁
zN1−1
1 zN2−1

2 − 1
)︁
((1− z1)(1− z2))

η−1, (4.100)

from which Ip can be derived as follows:

Ip =

[︃
dp

dηp
G(N1, N2, η)

]︃
η=0

. (4.101)

We now recognise that the definition (4.100) can be written as

G(N1, N2, η) =

[︃∫︂ 1

0

dz1 z
N1−1
1 (1− z1)

η−1

]︃ [︃∫︂ 1

0

dz2 z
N2−1
2 (1− z2)

η−1

]︃
−
[︃∫︂ 1

0

dz1 (1− z1)
η−1

]︃ [︃∫︂ 1

0

dz2(1− z2)
η−1

]︃
= β(N1, η)β(N2, η)−

1

η2
, (4.102)

where we used the definition of Euler β function in the first term, and we calcu-
lated the integrals in the second term. Our case is based on the assumption the
|N1|, |N2| → ∞, therefore we can apply the following Stirling approximation

β(N, η) =
Γ(N)Γ(η)

Γ(N + η)
∼ Γ(η)

Nη
=

1

η

Γ(1 + η)

Nη
(4.103)

to (4.102), obtaining:

=
1

η2
Γ(1 + η)2

(N1N2)η
− 1

η2
=

1

η2

(︃
Γ(1 + η)2

(N1N2)η
− 1

)︃
. (4.104)

This result proves that the dependence of the partonic rapidity distribution over
dimension full variables can appear only through the combination of variablesN1N2

in Mellin-Mellin space. In fact, since the general contribution Ip is obtained as the
derivative with respect to η of G, which is a function only of N1N2, Ip itself can
be only a function of N1N2.

4.6.3 Equivalence between resummation formulas

Now we prove that formulas (4.97) and (4.98) are equivalent. The latter has already
been proved in [16] using a different method. We start by considering a generic
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power series in the running coupling constant as in the exponential of the formula
(4.98):

g2(αs(M
2
H(1− z1)(1− z2))) =

∞∑︂
i=1

g2iα
i
s(M

2
H(1− z1)(1− z2))

=
∞∑︂
p=0

g̃p(αs(M
2
H)) ln

p((1− z1)(1− z2)), (4.105)

where g2i are numeric coefficients, g̃p are functions only of αs(M
2
H) and we have

dropped the Heaviside Θ function because they only modify the domain of inte-
gration. Thanks to the linearity of the Mellin-Mellin transform, we can focus on
the transform of a single logarithmic contribution, which can be obtained as in .
Then, by looking at (4.101), we realise that we need to do some manipulations on
the generating functional. We expand the formula provided by (4.104), in powers
of η, as follows

G(N1, N1, η) =
1

η2

(︄
1

(N1N2)η

∞∑︂
k=0

(Γ2)(k)(1)

k!
ηk − 1

)︄

=
1

η2(N1N2)η
− 1

η2
+

∞∑︂
k=1

(Γ2)(k)(1)

k!

ηk

(N1N2)ηη2

=
1

η2(N1N2)η
− 1

η2
+

∞∑︂
k=1

(Γ2)(k)(1)

k!

dk

d lnk
(︂

1
N1N2

)︂ (︃ 1

η2(N1N2)η
− 1

η2

)︃

=
∞∑︂
k=0

(Γ2)(k)(1)

k!

dk

d lnk
(︂

1
N1N2

)︂ (︃ 1

η2(N1N2)η
− 1

η2

)︃
. (4.106)

In analogy with [13], we can give an integral representation of the function

1

η2(N1N2)η
− 1

η2
=

[︄∫︂ 1

1− 1
N1

dz1 (1− z1)
η−1

]︄[︄∫︂ 1

1− 1
N2

dz2 (1− z2)
η−1

]︄

−
[︃∫︂ 1

0

dz1 (1− z1)
η−1

]︃ [︃∫︂ 1

0

dz2 (1− z2)
η−1

]︃
, (4.107)

but this is not the most convenient one, because the 2 scales N1 and N2 are sepa-
rated. It is more convenient to define 2 new variables x and w, where x is playing
the equivalent of the soft variable x as in [13]. It is important to note that this
change of variables is providing us with the soft scale and it could not have been
done before the approximation (4.103) for |N1|, |N2| → ∞, because only in this
limit the 2 scales z1 and z2 are unifying into a single soft scale x. Having said that,
in the first term we define (1− z1) = (1−w)/N1 and (1− z2) = N1(1− x), whilst
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in the second term we simply choose w = z1 and x = z2. The result is

=

[︃∫︂ 1

0

dw (1− w)η−1

]︃ [︄∫︂ 1

1− 1
N1N2

dx (1− x)η−1

]︄

−
[︃∫︂ 1

0

dw (1− w)η−1

]︃ [︃∫︂ 1

0

dx (1− x)η−1

]︃
= −

[︃∫︂ 1

0

dw (1− w)η−1

]︃ [︄∫︂ 1− 1
N1N2

0

dx (1− x)η−1

]︄
, (4.108)

we substitute it into (4.106) and we obtain

G(N1, N2, η) = −
∞∑︂
k=0

(Γ2)(k)(1)

k!

dk

d lnk
(︂

1
N1N2

)︂
[︄∫︂ 1

0

dw

∫︂ 1− 1
N1N2

0

dx ((1− w)(1− x))η−1

]︄
. (4.109)

Therefore, we substitute this new relation into (4.101) and we get:

Ip = −
∞∑︂
k=0

(Γ2)(k)(1)

k!

dk

d lnk
(︂

1
N1N2

)︂
[︄∫︂ 1

0

dw

∫︂ 1− 1
N1N2

0

dx
lnp((1− w)(1− x))

(1− w)(1− x)

]︄
+O

(︃
1

Ni

)︃
. (4.110)

Our aim is to change the derivates with respect to Mellin variables into the deriva-
tives with respect to (x,w) space. We want to exploit relation 3.8 of [13]:

dk

d lnk( 1
N
)

∫︂ 1− 1
N

0

dx
lnp(1− x)

1− x
=

∫︂ 1− 1
N

0

dx

1− x

dk lnp(1− x)

d lnk(1− x)
, (4.111)

which is valid for the single variable case. Now we exploit the fact that

lnp((1− w)(1− x)) = (ln(1− w) + ln(1− x))p =

p∑︂
q=0

(︃
p

q

)︃
lnp−q(1− w) lnq(1− x)

(4.112)
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during the following manipulation of (4.110) in order to apply (4.111):

Ip = −
∞∑︂
k=0

(Γ2)(k)(1)

k!

p∑︂
q=0

(︃
p

q

)︃∫︂ 1

0

dw
lnp−q(1− w)

1− w

dk

d lnk
(︂

1
N1N2

)︂ ∫︂ 1− 1
N1N2

0

dx
lnq(1− x)

1− x

= −
∞∑︂
k=0

(Γ2)(k)(1)

k!

p∑︂
q=0

(︃
p

q

)︃∫︂ 1

0

dw
lnp−q(1− w)

1− w

∫︂ 1− 1
N1N2

0

dx

1− x

dk lnq(1− x)

d lnk(1− x)

= −
∞∑︂
k=0

(Γ2)(k)(1)

k!

∫︂ 1

0

dw

1− w

∫︂ 1− 1
N1N2

0

dx

1− x

dk lnp((1− w)(1− x))

d lnk(1− x)

= −
∞∑︂
k=0

(Γ2)(k)(1)

k!

∫︂ 1

0

dw

1− w

∫︂ 1− 1
N1N2

0

dx

1− x

dk lnp((1− w)(1− x))

d lnk((1− w)(1− x))
, (4.113)

where in the last step we realised that it is possible to substitute the k-th derivative
in the following way:

d

d ln(1− x)
=
d ln((1− w)(1− x))

d ln(1− x)

d

d ln((1− w)(1− x))
=

d

d ln((1− w)(1− x))
.

(4.114)
Now, thanks to (4.113), we are able to achieve the set goal. We start again from
the Mellin-Mellin transform of (4.105) and we get:∫︂∫︂ 1

0

dz1 dz2
zN1−1
1 zN2−1

2 − 1

(1− z1)(1− z2)
g2(αs(M

2
H(1− z1)(1− z2))) =

∞∑︂
p=0

g̃p(αs(M
2
H))Ip

= −
∞∑︂
p=0

g̃p(αs(M
2
H))

∞∑︂
k=0

(Γ2)(k)(1)

k!

∫︂ 1

0

dw

1− w∫︂ 1− 1
N1N2

0

dx

1− x

dk lnp((1− w)(1− x))

d lnk((1− w)(1− x))

=

∫︂ 1

0

dw

1− w

∫︂ 1− 1
N1N2

0

dx

1− x

dk

d lnk((1− w)(1− x))[︄
−

∞∑︂
p=0

g̃p(αs(M
2
H))

∞∑︂
k=0

(Γ2)(k)(1)

k!
lnp((1− w)(1− x))

]︄

=

∫︂ 1

0

dw

1− w

∫︂ 1− 1
N1N2

0

dx

1− x

[︄
−

∞∑︂
k=0

(Γ2)(k)(1)

k!

dkg2(αs(M
2
H(1− w)(1− x)))

d lnk((1− w)(1− x))

]︄

=

∫︂ 1

0

dw

1− w

∫︂ 1− 1
N1N2

0

dx

1− x
ĝ2(M

2
H(1− w)(1− x)), (4.115)

where in the last step we defined a new power series Â(αs(M
2
H(1−w)(1−x))) as the

squared brackets in the step before. Now the remaining steps are straightforward:
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we only need to change variables in the integral k2 =M2
H(1−w) and n = 1

1−x
and

(4.115) results in:

=

∫︂ N1N2

1

dn

n

∫︂ M2
H

0

dk2

k2
ĝ2(αs(k

2/n)) (4.116)

Therefore, we can simply use the resummation formulas for the inclusive cross
section substituting N → N1N2.

4.7 Singly soft limit: the resummation formula
As in section 4.6, we apply the relations (3.34) and (3.35) to the case of rapidity
distributions in the singly soft limit. In this case, there are 2 hard scales: M2

H and
M2

H(1− z2) (for z2 fixed and z1 → 1), or M2
H/N2 in Mellin space. In section 4.5.3

we obtained the soft scale M2
H(1− z1)

2 (M2
H/N

2
1 in Mellin space) and the collinear

scale M2
H(1−z1)(1−z2) (M2

H/(N1N2) in Mellin space, proved in the section 4.6.2),
where both z1 and z2 are approaching 1. Therefore, in this case, the resummation
formula (3.34) becomes:

C

(︃
N1,

M2
H

µ2
,
M2

H/N2

µ2
, αs(µ

2)

)︃
= C0

(︃
M2

H

µ2
, αs(µ

2)

)︃
exp

{︄∫︂ N2
1

1

dn

n

∫︂ M2
H

nµ2

dk2

k2
g1(αs(k

2/n), N2) +

∫︂ N1N2

1

dn

n

∫︂ M2
H/N2

nµ2

dk2

k2
g2(αs(k

2/n))

}︄
,

(4.117)

and formula (3.35):

C

(︃
N1, N2,

M2
H

µ2
, αs(µ

2)

)︃
= C0

(︃
M2

H

µ2
, αs(µ

2)

)︃
exp

{︃∫︂ 1

0

dz1
zN1−1
1 − 1

1− z1

∫︂ M2
H(1−z1)2

µ2

dλ2

λ2
ĝ1(αs(λ

2), N2)

+

∫︂ 1

0

dz1
zN1−1
1 − 1

1− z1

∫︂ M2
H

N2
(1−z1)

µ2

dλ2

λ2
ĝ1(αs(λ

2))}. (4.118)

Since N2 is no longer approaching ∞, the argument of section 4.6.1 can no longer
be applied, therefore there are no suppressed scales.



Conclusion

In thesis thesis we considered the rapidity distribution of a colourless massive
particle final state. In particular, we focused on the resummation of soft logarithms
in two threshold regions: the doubly soft limit, i.e. the limit where the centre of
mass energy of the collision is approaching its minimum possible value in order
to produce the final state massive particle (z → 1, or z1 → 1 and z2 → 1) and
the singly soft limit, i.e. the limit where the partonic longitudinal rapidity of the
final state massive particle is approaching its maximum possible value (z2 fixed
and z1 → 1 or z1 fixed and z2 → 1).

In order to derive the resummation formulas, we applied the general formulas
for multi-scale resummation, which require the knowledge of the hard scales and
the soft/collinear scales of the process.

We argued that in the doubly soft limit, the process has only one hard scale,
i.e. the mass of the final state particle M2

H . On the other hand, in the singly soft
limit the process has two hard scales: the mass of the final state particle M2

H , and
the longitudinal momentum endpoint, which is M2

H(1−z2) for z2 fixed and z1 → 1.
Then, thanks to an analysis of the structure of the phase space, we derived the

soft scale M2
H(1 − z1)

2 and the collinear scale M2
H(1 − z1)(1 − z2). They are the

same both in the doubly and singly soft limits, but with different behaviours and
interpretations.

Moreover, we proved that in the doubly soft limit, the soft scales produces
only subleading contributions, therefore we are left with the collinear scale, which
is actually playing the role of a soft scale because in the doubly soft limit the
collinear radiation is also becoming soft.

We proved that the doubly soft resummation formula can be rewritten in a
different form, which has already been obtained with a different method. We also
proved that the structure of the resummation formula is identical to the one of the
inclusive cross section, and can be obtained from it by substituting N ↦→ N1N2.

To summarize, the single-scale renormalization group approach, together with
the phase space structure analysis, in [13] has been used to derive the resummation
formula for the inclusive cross section. The multi-scale approach proved to be
effective in deriving both the transverse momentum resummation formulas [15]
and the rapidity distributions resummation formulas (object of this thesis). The
natural following application is the fully differential cross section, both in transverse
momentum and in rapidity, namely the one where the Higgs kinematic is completely
fixed.
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Appendix A

Mathematical tools

A.1 Mellin transform
Here we provide the definition and some properties of the mathematical objects
used in this thesis. First of all, we define the monolateral Laplace transform.
Given a function f(t) with t ∈ [0,∞], its monolateral Laplace transform is defined
as follows:

f̃(N) = L[f ](N) :=

∫︂ ∞

0

dt e−tNf(t). (A.1)

Given the Laplace transform f̃(N), f(t) can be obtained as its inverse Laplace
transform:

f(t) = L−1[f̃ ](t) =

∫︂ c+i∞

c−i∞
dN etN f̃(N), (A.2)

where c is a real number chosen to be greater to the real parts of every pole of
the function f̃(N). Sometimes, it can be useful also to define the bilateral Laplace
transform:

LB[f ](N) :=

∫︂ ∞

−∞
dt e−tNf(t). (A.3)

In definition (A.1), by changing the integrated variable t ↦→ x = − ln t, we
obtain the definition of Mellin transform, which is defined for function f(x) with
x ∈ [0, 1]:

f̃(N) = M[f ](N) :=

∫︂ 1

0

dx xN−1f(x), (A.4)

and analogously its inverse is:

f(x) = M−1[f̃ ](x) =

∫︂ c+i∞

c−i∞
dN x−N f̃(N). (A.5)

Like Fourier and Laplace transforms, it is possible to define a convolution which
factorize under Mellin transform. The convolution of 2 functions f(x) and g(x) is
defined as follows:

(f ⊗ g)(x) :=

∫︂ 1

x

dy

y
f(y)g

(︃
x

y

)︃
. (A.6)
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Through a simple manipulation, it is possible to rewrite the above definition in the
following form:

(f ⊗ g)(x) :=

∫︂ 1

0

dy

∫︂ 1

0

dz δ(x− yz)f(y)g(z). (A.7)

Expression (A.7) allows us to simply generalise the convolution of 2 functions to
the case of many functions, which reads as follows:

(f1 ⊗ ...⊗ fn)(x) :=

∫︂ 1

0

dx1 ...

∫︂ 1

0

dxn f1(x1)...fn(xn)δ(x− x1...xn). (A.8)

The factorization property of the convolution is very easy to prove, in fact:

M[(f ⊗ g)](N) =

∫︂ 1

0

dx xN−1

[︃∫︂ 1

0

dy

∫︂ 1

0

dz δ(x− yz)f(y)g(z)

]︃
[︃∫︂ 1

0

dy yN−1f(y)

]︃ [︃∫︂ 1

0

dz zN−1g(z)

]︃
= f̃(N)g̃(N), (A.9)

and, in complete analogy, in the many functions case we get

M[(f1 ⊗ ...⊗ fn)](N) = f1̃(N)...fñ(N). (A.10)

A.2 Plus distributions
Another important tool is the plus distribution, which is a distribution in the sense
that it is a map from a function space to the real numbers. Therefore it is defined
by its action on a test function of this function space:∫︂ 1

0

dx [f(x)]+g(x) :=

∫︂ 1

0

dx f(x)(g(x)− g(1)). (A.11)

It immediately follows from the definition that every constant function in [0, 1] is
mapped onto 0. Particularly useful is the following identity:∫︂ 1

0

dx [f(x)]+ = 0. (A.12)

An equivalent definition of the plus distribution can be provided by the limit of a
class of distributions as follows:

[f(x)]+ := lim
ϵ→0+

[︃
θ(1− x− ϵ)− δ(1− z)

∫︂ 1−ϵ

0

dx f(x)

]︃
. (A.13)



Appendix B

A proof that u = (1 + cos θ)/2

The partonic cross section differential in rapidity, which has been written above as
function of the variables z and ŷ, in literature is often presented in terms of the
variables z and

u =
z2(1− z21)

(1− z1z2)(z1 + z2)
(B.1)

and their plus distributions. While the meaning of the former has been already
explained, one might wonder why is that the latter is such a convenient variable.
The answer is that u is nothing but the angle at which a radiation particle is
emitted in the process we are considering.

Here we give a brief proof of this relation. To be as clear as possible, we report
the four momenta of the considered particles

p1 + p2 =
√
ŝ(1, 0, 0, 0)

pH =

(︃√︂
M2

H + p2T cosh ŷ, p⃗T ,
√︂
M2

H + p2T sinh ŷ

)︃
X =

(︃√︂
M2

H sinh2 ŷ + p2T cosh2 ŷ,−p⃗T ,−
√︂
M2

H + p2T sinh ŷ

)︃
,

and we want to recognise in the expression

u =
z2(1− z21)

(1− z1z2)(z1 + z2)
(B.2)

elements of the four-momenta above. Firstly, we substitute z1 =
√
zeŷ and z2 =√

ze−ŷ and we obtain:

u =
e−ŷ(1− ze2ŷ)

2(1− z) cosh ŷ
=

e−ŷ − zeŷ

2(1− z) cosh ŷ
(B.3)

Then, we express the exponential as eŷ = cosh ŷ + sinh ŷ and eŷ = cosh ŷ − sinh ŷ
to make the expression more similar to the four-momenta, obtaining:

u =
cosh ŷ − sinh ŷ − z(cosh ŷ + sinh ŷ)

2(1− z) cosh ŷ
=

1

2

[︃
1− (1 + z) sinh ŷ

(1− z) cosh ŷ

]︃
. (B.4)
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Thirdly, we switch from the variable z to the variables ŝ and M2
H and we get:

u =
1

2

[︃
1− ŝ+M2

H

ŝ−M2
H

sinh ŷ

cosh ŷ

]︃
. (B.5)

In (B.5) we can not immediately recognise elements of the four-momenta above,
but the simple trick is to write the conservation of energy:

√
ŝ =

√︂
M2

H + p2T cosh ŷ +
√︂
M2

H sinh2 ŷ + p2T cosh2 ŷ. (B.6)

Firstly, we square this equation firstly as(︃√
ŝ−

√︂
M2

H + p2T cosh ŷ

)︃2

=M2
H sinh2 ŷ + p2T cosh2 ŷ (B.7)

and then as (︃√
ŝ−

√︂
M2

H sinh2 ŷ + p2T cosh2 ŷ

)︃2

= (M2
H + p2T ) cosh

2 ŷ. (B.8)

Equations (B.7) and (B.8) can be rewritten as

ŝ+M2
H = 2

√
ŝ
√︂
M2

H + p2T cosh ŷ (B.9)

and
ŝ−M2

H = 2
√
ŝ
√︂
M2

H sinh2 ŷ + p2T cosh2 ŷ. (B.10)

By taking the ratio of the 2 relations above, we obtain

ŝ+M2
H

ŝ−M2
H

=

√︁
M2

H + p2T cosh ŷ√︂
M2

H sinh2 ŷ + p2T cosh2 ŷ
, (B.11)

which, once substituted in (B.5), allow us to see that u is nothing but

u =
1

2

(︃
1 +

Xz

X0

)︃
=

1 + cos θ

2
. (B.12)
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