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amo, il vostro orgoglio è il motore delle mie azioni.

Ai miei fratelli Elisabetta ed Edmondo, per avermi sostenuto in questo lungo arco, trat-
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Abstract
This thesis focuses on the study of a suitable figure of merit to check the quality of a Monte
Carlo set of parton distribution functions (PDFs). A Monte Carlo set consists of several
random replicas of the initial set of PDFs. The number of replicas is chosen in such a
way that this set reproduces certain features of the initial one, such as the mean value and
the uncertainties. The figure of merit is the statistical estimator χ2, the minimization of
which provides the best-fit configuration for each replica of PDFs. Following the method
used by the NNPDF collaboration, this minimization process is carried out through the
use of neural networks as an universal impartial interpolator. The χ2 of the Monte Carlo
set is then calculated by averaging over all the χ2

i of the individual replicas. The problem
involved in this work concerns the observation that the assumption of Gaussianity on the
PDF probability distributions around the central limit allowed the possibility of lower val-
ues of the χ2 of the Monte Carlo set to be found by the neural networks. This observation
implies that the central limit of the Monte Carlo set does not correspond with the PDF
best fit. In order to eliminate the possibility of obtaining better χ2 values, minimization
has been made more aggressive forcing the neural network to perform overfitting. With
this method, it was observed that the possibility of obtaining minor χ2 values did not de-
crease. Rather, a systematic increase was seen as the intensity of overlearning increased.
For this reason, it was deduced that these χ2 values were not related to the possibility of
finding better PDF fits. Using the PDFs resulting from this process, a significant loss of
Gaussianity of probability distributions was also observed. From these observations it was
possible to conclude that the possibility of χ2 minors is due to the impossibility of apply-
ing the Gaussianity hypothesis in the determination of the PDFs, which evidently follow a
different distribution pattern.
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1 Theoretical framework
Around 1960, hundreds of new particles were discovered. These were initially supposed
to be elementary, i.e. without an inner structure. This spectroscopy was possible thanks to
the study of resonances in cross-section trends of scattered particles. Protons and neutrons
were no longer considered the only hadrons: particles interacting by the strong nuclear
force. These new particles were found with different electron charges, masses, and spins.

At that time, the main goal of particle physics was sorting and classifying this chaotic
ensemble to get predictions about the spectrum and the behavior of hadrons. For this
purpose, there was the need for a theoretical structure.

1.1 from Quark model to partons
The observation of several conservation laws and symmetries, such as the independence
of strong interactions from electron charge, leads to consider protons and neutrons as the
same objects, i.e. the nucleons, elements of symmetry group SU(2) of conserved isospin
quantum number. Furthermore, when the conservation of strangeness was found, hadrons
became elements of the symmetry group SU(3).

Therefore, particles were sorted according to these numbers in multiplets, i.e. ordered
schemes that allowed discovering new particles associating them with gaps in the pattern.
In 1964 Gell-Mann ([1]) and Zweig ([2]) separately found that all occupied multiplets
could be described by a combination of at least two fundamental representations of SU(3),
each of which was associated with an elementary entity, the quark.

This scheme made it possible to consider mesons made of a quark-antiquark pair
and baryons made of three quarks. So, these new hypothetical point-like particles were
proposed with a half-integer spin and fractional charge: ±1/3,±2/3 in units of electron
charge. In the beginning, just three quark types, or flavors, were needed to reproduce every
multiplet: up, down, and strange quarks. Then, with the observation of new conservation
laws, more quarks were added.

Thus, the Quark model, built on experimentally observed conservation laws derived
by comparing hadronic initial and final states in collision experiments, was particularly
efficient in predicting hadron spectroscopy. However, it was unable to describe the strong
interaction behavior. Furthermore, the lack of experimental evidence of these entities leads
one to consider this model just as a mathematical structure and quarks were not assumed
to be real physical particles.

Two main discoveries brought these to be regarded as tangible bodies beyond reason-
able doubts. The first one was performed at SLAC (Stanford Linear Accelerator Center)
in Deep Inelastic Scattering (DIS) experiments ([3]). Here, high-energy leptons like elec-
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trons were accelerated up to colliding against hadrons. Studying the deflection angles it
was noticed that some proprieties of the cross-section could be explained assuming that
scattering was performed on free point-like particles with fractional electron charge. This
behavior was justified by the second discovery, namely Wilczek, Gross, and Politzer’s
formulation of a theory describing why strong interactions at high energy become weak
([4], [5]). This new theory goes under the name of Quantum Chromodynamics (QCD), a
renormalizable quantum field theory describing the strong nuclear interactions, no longer
experienced by hadrons but rather by their constituents, the partons. (for a more complete
historical introduction see: [6])

1.2 Quantum Chromodynamics
QCD is the state of the art in describing the internal structure of hadrons and strong inter-
actions. As a quantum field theory, this assumes that quarks interact through the exchange
of new gauge bosons called gluons, also observed experimentally ([7]). Similarly to how
the photon is the carrier of the electron charge in QED (Quantum Electrodynamics), the
gluon is assumed to be the carrier of a new charge type in QCD, the color.

By the Pauli exclusion principle, a bound state isn’t allowed to consist of three iden-
tical particles, like in the Omega baryon case. Hence, unlike the electrical charge that
can appear only in two different natures, the colored one is necessarily conjugated into
three types. So quarks now not only come in different flavors but also in different col-
ors: red, green and blue, which attract each other, ensuring the hadronic stability. QCD
furthermore, in agreement with time-energy Heisenberg’s uncertainty principle, enables
extracting the sea quarks from within the hadron, a quark-antiquark pair from the vacuum,
without altering the total quantum numbers. This behavior is responsible for observing
more flavors than the three assumed to make up the hadron, referred to as valence quarks.

In QCD, the main feature that differs from QED is that gauge bosons must have a
charge. Indeed, while photons are electrically neutral, gluons must have a color to mediate
interactions between different colored quarks. Hence, QCD allows gluons to interact with
each other too, becoming a non-Abelian gauge theory. This structure is supposed to justify
how chromodynamic force becomes stronger with increasing the observation length scale.
If studying strong interactions on small-length scales with high-energy probes, quarks
appear almost like free particles. This is known as asymptotic freedom. Instead, on the
long-length scale with low-energy probes, QCD predicts strong interacting quarks. This is
called infrared slavery.

This scale dependence is explainable assuming QCD as a renormalization theory of
color charge. Gluons allow renormalizing color charge making it stronger or weaker ac-
cording to the length scale. The impossibility of observing isolated quarks could be ex-
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plained by the fact that by reaching length scales comparable to the size of the proton, it
might be energetically convenient to extract sea quarks from the vacuum, which in turn
will bind within new hadrons.

1.3 Parton Distribution Functions
Nowadays, the benchmark for particles physics is played by collisions experiments at the
Large Hadron Collider (LHC), the largest and most powerful particles accelerator on the
Earth. Since its activation in 2012, an intensive program was performed to investigate the
Standard Model (SM) with more increasing accuracy. This way, even a small unexpected
deviation could be considered as evidence of new physics.

The main experiments are the high-energy proton-proton collisions, where measure-
ments of cross sections are carried out for the final states of initial interacting hadrons. All
the related observables are then measured using these experimental values. From QCD,
we can describe the cross-sections of two incoming hadrons h1, h2 producing a colorless,
large-mass (MX >> mp) final state X , as follows:

σX(S,M2
X) =

n f

∑
a,b

∫ 1

xmin

dx1 dx2 fa/h1(x1,M2
X) fb/h2(x2,M2

X) σ̂ab→X(x1x2S,M2
X) (1)

In (1), the cross-section depends on: S, the center-of-mass energy squared of the particles’
system

(
S ≃ 13TeV 2 at LHC

)
, and Mx is the hadrons’ mass of final state X . The convo-

lution is made over the xi variables, the momentum fractions carried by the parton a of hi

hadron. The range goes from a xmin =
M2

S to 1, the value whereby the parton carries all the
momentum of the initial hadron. Then, the summation is executed over all possible parton
interactions, so a and b run over the different n f flavors involved in the process.

The cross-section equation in (1) is the factorization theorem, it implies that the cross-
section is given by two independent contributions. The first one is σ̂ab→X , i.e. the hard
partonic cross-section due to the small-distance interactions of two incoming partons a, b
within the hadrons. With hard, we mean that there is a large physical scale such as MX , and
it implies that σ̂ is computable in QCD perturbation theory thanks to Feynman diagrams,
as in QED. On the other hand, the factors containing the long-distance information of the
proton structure are fa/hi(xi), i.e. the Parton Distribution Functions (PDFs). If the hard
partonic cross-section is computed at Leading Order (LO) of perturbation series for strong
coupling factor αs, PDFs are the probability density of extracting a parton a with fraction
momentum xi from the hadron hi. This picture breaks down at higher orders, so they are
not probability density because they can become negative.

These functions describe the non-perturbative regime of hadron interactions, and at

3



low energies, it’s not possible to use Feynman diagrams to determine their x dependence.
Since QCD doesn’t allow one to compute the proton’s wave function, PDFs cannot be
calculated from first principles, so we have to extract them from experimental data. Once
obtained the PDFs for some reference energy scale Q0, the energy dependence is com-
putable in perturbation theory with DGLAP equations:

Q2 ∂ 2 fi(x,Q2)

∂Q2 =
n f

∑
j=1

Pi, j(x,αs(Q2))⊗ f j(x,Q2) i = 1, ...,n f (2)

In (2), Pi, j are the perturbative kernels. With this set of integro-differential equations, it is
possible to evolve the known PDFs set { fi(x,Q2

0)} from Q0 to any other Q ̸= Q0.
Additionally, from QCD we have some constraints on the PDFs. The conservation of mo-
mentum:

∫ 1

0
dx x

(
n f

∑
i=1

fqi(x,Q
2)+ fq̄i(x,Q

2)+ fg(x,Q2)

)
= 1 (3)

This is due to the conservation of energy. Here, we add over all parton PDFs: quark fq,
antiquark fq̄, and gluons fg.
Two other sum rules are given by the conservation of flavor quantum numbers:∫ 1

0
dx
(

fu(x,Q2)− fū(x,Q2)
)
= 2 (4)

∫ 1

0
dx
(

fd(x,Q2)− fd̄(x,Q
2)
)
= 1 (5)

The (4) and (5) ensure that valence quarks provide a constant flavor contribution to the
proton, for any Q and x there are always two up quarks and one down quark.
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Figure 1: Parton distribution functions of proton obtained from NNPDF NNLO global
PDF analysis, at Q = 3.2GeV and αs = 0.118. (see [8] )

PDFs play a special role in proton structure determination due to their universality.
They are the same for different hadronic processes. Because of this we can separate
the experiment-dependent contribution, given by the hard partonic cross-section, and the
hadronic structure-dependent factors, the PDFs.
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2 Fitting methodology
The PDF determination was a difficult task from the very beginning because of the need
to extrapolate them from experimental data. This procedure raised several issues since
we are searching for a set of continuous output functions starting from a finite set of data
points. The impossibility to convert a finite to an infinite quantity of information can be
viewed as setting the problem into an infinite-dimensional functional space with infinite
solutions. For each PDF we search for the best fit and its uncertainties: the probability
density in this functional space.

NNPDF collaboration solves this problem by employing two different features, both
built-in the current NNPDF methodology and implemented in the NNPDF4.0 code, allow-
ing to convert the datasets into a probability functional in the PDFs space. The first one
is a Monte Carlo approach for the density probability: the datasets involved in the fit
are replicated many times randomly extracting data points around their true values with a
Gaussian probability density. Then, neural networks are used on each datasets replica for
finding acceptable solutions by minimization of a suitable figure of merit: the χ2. (for a
more general introduction see [8], [9])

Figure 2: General approach of NNPDF collaboration
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2.1 Experimental data
Before starting the fitting procedure, it is necessary to select the datasets used during
the PDF determination. A dataset typically collects measurements of differential cross-
sections, total cross-sections, or some related observables.

A fit requires comparing experimental measurements with theoretical predictions based
on the PDF parameterization, so several cuts are made to the datasets, and data points with-
out accurate enough theoretical predictions are removed, e.g. for missing higher orders in
both QCD and electroweak perturbation theory.

Different datasets could describe different features of PDFs or add information in
poorly known kinematic regions of the (x,Q2) grid, so it’s necessary to introduce re-
dundancy in the kinematic coverage with different experiments. By observing the same
features with many experiments, the peculiarities of PDFs can be freed from their initial
process-dependence.

Figure 3: Current kinematic coverage of PDFs experimental datasets

A global fit is achieved by taking into account all available datasets, and after verifying
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that they meet the characteristics described above. The experiments available for a global
fit are):

• Fixed-target neutral-current deep-inelastic scattering (NC DIS): NMC , SLAC and
BCDMS

• Fixed-target charged-current deep-inelastic scattering (CC DIS): CHORUS, NuTeV
and NOMAD.

• Collider neutral- and charged-current DIS: HERA.

• Fixed-target Drell-Yan (DY): E866 (NuSea), E605 and E906 (SeaQuest).

• Collider gauge boson production: CDF, D0, ATLAS, CMS, LHCb.

• Collider gauge boson production with jets: ATLAS, CMS.

• Z boson transverse momentum production: ATLAS, CMS.

• Single-inclusive jet and dijet production: ATLAS, CMS.

• Direct photon production: ATLAS.

• Top-quark pair production: ATLAS, CMS.

• Single top-quark production: ATLAS, CMS.

(for a complete description: [10])

2.2 Neural networks
In the very beginning, different research groups tried to cast PDFs in a fixed functional
form. This choice became doubtful when an uncertainty estimation was tried for the first
time. Indeed, the parameter uncertainties obtained through minimization of the least-
squares method and propagating errors were rather smaller then expected.([11], [12])

With the beginning of the LHC era, the PDF parametrization was expanded to ac-
commodate the features brought by the new data collected, but the uncertainties became
ever-increasing. Therefore, the choice of a fixed form seemed to be linked to this un-
desirable behavior of uncertainties, so the NNPDF collaboration tackled the problem by
employing an artificial intelligence acting as an unbiased interpolator. Neural networks
allow avoiding the introduction of arbitrariness in PDFs pattern choice.
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A neural network can be represented as a graph made by interconnected nodes: input-
output objects arranged on several layers. These are divided into input nodes or activation
nodes. The former are at the start of connections chain and are used to provide the input
value to the algorithm. The latter type has an associated activation function f (x), which
provides an output that is taken as input by the subsequently connected nodes. By consid-
ering an i activation node in a specific l layer, this gives the following output:

ξ
(l)
i = f

(
N(l−1)

∑
j=1

w(l)
i j ξ

(l−1)
j + θ

(l)
i

)
(6)

In (6), the function f (x) takes as input the weighted sum of the outputs of all nodes
in the previous layer (l − 1). In fact, each node i has its own threshold θi and each link
connecting the output of a node j with the input of a node i, has an associated weight wi j.

Training a neural network consists of optimizing all weights and thresholds, randomly
initialized at the beginning of procedure. If we are taking into account a feed-forward neu-
ral network, the architecture is structured in single layer belonging nodes, and connections
are allowed just for adjacent layers. NNPDF uses a feed-forward fully connected nodes,
where each activation node is connected to all those in the previous and next layer.

Figure 4: Old picture of a NNPDF neural network taking as input a pair (x, logx) and
reporting as output a PDF value
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2.3 Architecture and parameterization
The state-of-the-art NNPDF fitting methodology is the NNPDF4.0 code, this will be de-
scribed below.

PDFs are determined in their x dependence by neural networks at a fixed energy scale
Q0 and then evolved to higher energies via DGLAP equations. It is convenient considering
the initial set of PDFs as the basis that diagonalizes these evolution equations, so we have:

g

Σ = u++d++ s+

V = u−+d−+ s−

V3 = u−−d−

V8 = u−+d−−2s−

T3 = u+−d+

T8 = u++d+−2s+

T15 = u++d++ s++3c+

where f±i = fi ± f̄i is a symmetric or anti-symmetric combination of quark-antiquark
distributions.

Once the datasets to be used are selected, each of them is converted into a n dimen-
sional vector xgridi = {x(1)i ,x(2)i , ...,x(n)i }, made out of the single data points x(k)i in the
dataset. These vectors are taken, point by point, as input by the first layer of the neural
network. The NNPDF4.0 code uses a single densely connected network: a feed-forward
multi-layer perceptron with an architecture: 2−25−20−8. The input layer has two nodes
that take the pair: (x, logx). This choice is due to taking into account the different behavior
of PDFs in the accessible physical region 10−4 ≲ x ≲ 0.5. We have a linear regime in the
0.03 ≲ x ≲ 0.5 domain and a logarithmic regime in the 10−4 ≲ x ≲ 0.03 region. The two
hidden layers in the middle use the f (x) = tanhx activation function. The output layer,
with linear activation function f (x) = x, is made of 8 different nodes corresponding to the
8 flavor combinations of the basis, so all PDF combinations are determined at the same
time.
Each of the basis elements is parameterized as:

x fi(x,Q) = Ai x1−αi (1− x)βi NNi(x) (7)

NNi(x) is the continuous output of the i−th node in the final layer of the neural network
and corresponds to the central contribution to the unnormalized combination of PDFs. The
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constant Ai is an overall normalization factor that guarantees the validity of the conserva-
tion constraints. The x1−αi (1 − x)βi is a preprocessing factor to control the trends of
PDFs in the small and large x-regimes. The coefficients αi and βi are randomly selected
with uniform distribution in a different range for each PDF. This range is determined self-
consistently: the 68% confidence range is found for each PDFs combination, then the fit
is repeated assuming that parameters can be distributed in a range twice the previous one.
The procedure is iterated till the range stops changing.

Once all PDFs are obtained, it’s possible to get the single flavor PDF through a rotation
in their own space. To achieve the complete PDFs determination it’s necessary to describe
the minimization procedure performed by the neural network to get the NNi(x) factor.

2.4 The loss function
Unlike common A.I. (Artificial Intelligence) recognition problems, in PDFs determination
is not possible to provide an input-output pair for each data point. Data are not direct
instances of the functions, but rather each data point provides the measurement of some
observable that depends in a non-linear way on distributions through a set of convolution
integrals of all the PDFs in a range starting from a xmin.

The statistical estimator χ2 is used to check the goodness of agreement between ex-
perimental data and theoretical predictions. For a fit comprising Nd datasets, the total χ2

is given by:

χ
2 =

Nd

∑
d=1

χ
2
d (8)

Assuming a fit with Ndat data, the χ2 expressed in terms of the individual data points takes
the following explicit form:

χ
2 =

Ndat

∑
i, j

(Di −Ti) (cov−1)i j (D j −Tj) (9)

Di are the data points corresponding to the experimental measurements of different datasets.
Ti are the theoretical predictions. These are obtained through a set of convolution integrals
of neural network PDFs. These computations are greatly accelerated by employing the
FastKernel method ([13]). Considering a rank-4 luminosity tensor:

Liα j β = fiα f j β (10)

where (i , j) are the flavor indices and (α , β ) labels the x grids. We can calculate the phys-
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ical observables contracting a rank-5 FastKernel table FK for each separated datasets:

On = FKn
iα j β

Liα j β (11)

So the FastKernel tensor contains PDFs information about the convolutions with partonic
cross-section and DGLAP energy evolution. These are stored in the form of pre-computed
multiplicative factors. This process allows converting the neural network PDFs into a set
of N observables, each associated with one of the N data points of the dataset. Then, the
χ2 compares the data directly with the theoretical predictions obtained with the neural
network PDFs.

In (9) we have (cov−1)i j , this is the inverse of covariance matrix correlating data points
i and j within the same dataset or belonging to two different datasets. In NNPDF method-
ology, all the available information on uncertainties and their correlations is included. The
covariance matrix has the following form:

(cov)i j = δi j σ
uncorr
i σ

uncorr
j +

Nadd

∑
k

σ
add
i,k σ

add
j,k +

(
Nmul

∑
k

σ
mul
i,k σ

mul
j,k

)
Di D j (12)

The single data pair covariance is made by three different contributions: the first is given
by the uncorrelated errors σuncorr

i obtained by adding the statistical and systematical uncor-
related uncertainties in quadrature. The second comes from correlated additive systematic
errors σadd

i,k , and the last is the correlated systematic multiplicative errors σmul
i,k contribu-

tion.

2.5 Deterministic minimization
Having described all the parts that compose the χ2, we can introduce the learning proce-
dure. NNPDF collaboration employed the Gradient Descent (GD) method as deterministic
minimization of χ2. The Adadelta optimizer was chosen ([14]), with the glorot normal

initialization procedure ([15], [16]) for network parameters.
To allow the neural network to learn the PDFs patter while avoiding fitting noise re-

quires the so-called cross-validation method. All the data points that make up the complete
dataset used for the fit have to be divided into two subsets. The division is done in such a
way that both sets have all the information necessary to describe the different features of
the PDFs. The two subsets are the Validation and Training sets. The key idea exploited
by this method is the following: while the two sets share the same underlying truths, the
statistical fluctuations respectively associated with them are uncorrelated. For this reason
only the Training set is used as input to train the neural network, i.e. to minimize the figure
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of merit of this set: referred to as χ2
tr. During this procedure, at each training epoch, we

use the updated parameters of the network to evaluate the χ2
val of the Validation set. The

optimization of the training figure leads to an improvement of the validation one.

Figure 5: Typical trends of χ2
tr and χ2

val through learning epochs of NNPDF fitting method.

The χ2
tr keeps ever-improving during the learning procedure, while after a certain time

the χ2
val systematically starts to worsen. This behavior is a symptom of overlearning.

In fact, from this point onwards, the network starts to learn the noises associated with
the training data in addition to the common underlying truths. Since the noises of the
validation set are uncorrelated with those of the training one, the χ2

val gets worse.
To avoid overfitting, NNPDF4.0 provides the following stopping criterion: χ2

val is mon-
itored during minimization, when this stops improving, a patience algorithm is launched
waiting for several epochs before quitting the learning. The only stopping points accepted
are the ones where PDFs produce positive predictions for many experiments in different
kinematic regions.

Figure 6: Flow scheme of the NNPDF4.0 stopping criterion algorithm.
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2.6 Monte Carlo method
Here it is presented the second main feature of NNPDF4.0, which allow getting a probabil-
ity density profile in a functional space. Since these distributions are extracted from the
data, their uncertainties have to be too. NNPDF collaboration tackled this problem with a
Monte Carlo approach.

Starting from the experimental dataset {D1 ,D2 , ... ,DNdat} containing Ndat data, we
consider each data point Di as the mean value of a stochastic variable with Gaussian distri-
bution. These variables are correlated with each other via the covariance matrix (covt0)i j.
It is possible to construct a multi-Gaussian probability density in a Ndat−dimensional data
space where each point is randomly extracted and corresponds to a dataset replica. For in-
stance, the k−th point in this space is a random dataset: {D(rand)(k)

1 ,D(rand)(k)
2 , ... ,D(rand)(k)

Ndat
}.

By producing many dataset replicas, we can reproduce the mean value of multi-distribution,
i.e. our sample is statistically equivalent to the starting one, the experimental dataset.

Once a sufficiently high number of replicas Nrep has been generated (Nrep ∼ O(1000)
to a percent level accuracy), the fitting methodology is applied to each replica, so for the
k−th replica we have the following figure of merit:

χ
2(k) =

Ndat

∑
i, j

(D(rand)(k)
i −T (k)

i ) (cov−1)i j (D
(rand)(k)
j −T (k)

j ) (13)

where T (k)
i are the theoretical prediction of the k−th neural network replica. At the end of

the process there are Nrep PDFs set, so for each PDF we have a functional distribution in
the PDF space, as shown in Fig.7.

Assuming that each PDFs set replica allows to computing an observable X (k), it’s pos-
sible to get the mean value as:

< X >=
1

Nrep

Nrep

∑
k=1

X (k) (14)

While the standard deviation is given by:

σX =

√√√√ 1
Nrep −1

Nrep

∑
k=1

(
X (k)−< X >

)2 (15)

Furthermore, it can be noted in Fig.8 that a 100 replicas fit is sufficient for percent-level
accuracy on uncertainties.
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Figure 7: Comparison of the V3 PDFs for the NNPDF4.0 and NNPDF3.1 versions. Each
set is made up of 1000 Monte Carlo replicas at Q = 1.651GeV .

Figure 8: Comparison of gluon PDFs for the 1000 and 100 replicas Monte Carlo
NNPDF4.0 global fit at Q = 1.65GeV .
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2.7 Hyperoptimization
Hyperoptimization consists of hyper-scan many aspects of the fitting methodology, look-
ing for the best parameter values ([17]). Hence, the object of this special optimization is
the fitting method itself. Thanks to the great computational power brought with the intro-
duction of the NNPDF4.0, it is possible to analyze in great detail many aspects of the fitting,
e.g. the neural network structure: the number of layers, the number of nodes for each layer,
the activation functions, the initialization function, etc. The fit option can be tuned too:
the initial learning rates, the optimizer, the number of epochs during minimization, the
stopping patience algorithm, etc.

The goal of the hyper-scan is to find the best methodology configuration to get better
χ2

val during the NNPDF4.0 procedure. The minimization of χ2
val performed by the hyper-

optimization could lead to overlearning, due to the correlations between training and val-
idation sets. In this framework, quality control is needed. This task is performed by the
k-fold cross-validation. Data are divided into k partitions, each of which contains the
main features of the full dataset. The fit is performed k times, and in each of them, a dif-
ferent partition is excluded from the procedure. This allow producing many loss functions
that can be chosen for optimization, such as the mean value of the loss over the excluded
partitions.

2.8 Hessian method
The Hessian approach is another method for the determination of uncertainties in PDF
fits (see [18]). This is applied in the framework of fitting PDFs with fixed parameteriza-
tion, and allows one to study the variation of the χ2 by varying with continuity the fitting
parameters.

Let be the PDFs parameterization set {p1 , p2 , ... , pN} composed by N parameters,
this can be converted into a point p⃗ = (p1 , p2 , ... , pN) of a N−dimensional parameter
space. In this domain, we can consider the χ2 = χ2(p), a function χ2 : RN → R. Let be
p⃗0 the point corresponding to the optimized parameter set: the one which minimizes χ2,
i.e. the global minimum of χ2(p) in the parameter space. The Hessian method consists in
assuming a quadratic approximation of χ2 in a neighborhood of the p⃗0.

With a Taylor expansion truncated at second order, for a point p⃗ sufficiently close to
p⃗0, ignoring higher orders we have:

χ
2(p⃗) = χ

2(p⃗0) + ∇ χ
2(p⃗0) · (p⃗− p⃗0) +

1
2

N

∑
i, j=1

(p⃗ − p⃗0)i
∂ 2χ2

∂ pi∂ p j

∣∣∣∣
p⃗=p⃗0

(p⃗ − p⃗0) j (16)
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In the global minimum p⃗0 we have ∇ χ2(p⃗0) = 0, so rewriting the N ×N Hessian ma-
trix:

Hi, j =
1
2

∂ 2χ2

∂ pi∂ p j

∣∣∣∣
p⃗=p⃗0

(17)

Finally, the χ2 variation in a neighborhood ca be written as:

∆χ
2(p⃗) := χ

2(p⃗) − χ
2(p⃗0) =

N

∑
i, j=1

(p⃗ − p⃗0)i Hi, j (p⃗ − p⃗0) j (18)

To get standard deviations for an PDFs-dependent observable X , the Hessian method
uses error propagation:

(∆X)2 = T 2
N

∑
i, j=1

∂X
∂ pi

(H−1)i, j
∂X
∂ p j

(19)

T 2 = ∆χ2 is the tolerance parameter and was introduced after observing a systematically
under-estimation of uncertainties. By choosing T 2 = 1 we get the Gaussian variance σ2

X ,
the squared error related to the confidence interval for which we have at most ∆χ2 = 1,
with the confidence level of ∼ 68%. Hence, this parameter is used to set the confidence
interval to get the same confidence level.

The inverse of the Hessian H−1 is the covariance matrix in the parameter space. This
requires the computation of partial derivatives with respect to fitting parameters. Let be
{⃗ei}N

i a complete set of orthonormal eigenvectors for Hi j:

H ei = ei (20)

ei · e j = δi, j (21)

Expanding the difference p⃗ − p⃗0 on this vector basis:

p⃗ − p⃗0 =
Nrep

∑
k=1

ck e⃗k (22)

for some set {c1 , ..., cN} of real coefficients. By substituting in (19):

∆χ
2(p⃗) =

N

∑
i=1

c2
i (23)
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This equation defines an ellipsoid in a N−dimensional space of radius
√

∆χ2(p⃗) centered
in p⃗0, whose axes are the eigenvectors of H. By setting the T parameter, we determine
the region of acceptable fits where a variation of p⃗ can produce a ∆χ2 at most equal to
T 2. It’s possible to construct 2N eigenvectors spanning boundaries of the ellipsoid in the
parameter space:

v⃗±k = p⃗0 ± T e⃗i (24)

To each eigenvector v⃗k
±, we associate a set of parameters F±

k used to compute a set of
PDFs. Once we have found the 2N sets of PDFs, the error of a generic observable is given
by:

(∆X)2 =
1
2

N

∑
i=1

(
X(F+

k )−X(F−
k )
)2 (25)

Even if for a Gaussian error we should have T = 1, in PDF determinations much bigger
values are chosen to avoid underestimation of uncertainties. This could be due to minimiz-
ing a finite number of parameters during the fit, or perhaps to the incompatibility of PDFs
fitted with different datasets, which could be affected by unknown correlations or missing
higher-order theoretical computation.

2.9 From Monte Carlo to Hessian PDFs set
By construction, the Hessian method, with the quadratic approximation on the PDF param-
eter distribution, assumes that errors are Gaussianly distributed and calculates them with
error propagation. The Monte Carlo method instead, allows checking the non-Gaussianity
of a PDF replica set. A test of Gaussianity is for instance achieved by comparing the 1-σ
band with the confidence interval corresponding to the 68% confidence level, and verify-
ing that these two coincide. Even if the Monte Carlo method is more general, the Hessian
method is useful because of the possibility of interpreting errors in terms of continuous
parameter variations.

For this purpose, we are interested in the conversion from the initial Monte Carlo PDF
set, to the Hessian one. This is made possible thanks to the mc2hessian code ([19]).
We want to construct a multi-Gaussian covariance matrix in PDF space, where the central
value of the final Hessian set coincides with the prior one. The Monte Carlo set can be
viewed as Nrep PDFs sets:
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{ f (k)α (xi,Q)}


k ∈ {1, ... ,Nrep}
α ∈ {1, ... ,N f }
i ∈ {1 ... ,Ndat}

(26)

Nrep is the number of dataset replicas, N f is the number of PDF flavors, and Ndat is the
number of data points. Let be X the NdatN f × Nrep matrix with:

Xl(α,i),k(Q) = f (k)α (xi,Q)− f (0)α (xi,Q) (27)

where f (0)α (xi,Q) is the central value of the Nrep replicas of fα evaluated in the xi data
point. The lα,i = Ndat(α − 1)+ i, runs over the x−point and the flavors. The covariance
matrix is then built as:

cov(Q) =
1

Nrep −1
X ·XT (28)

Let be Nrep >Ndat N f , we can describe the eigenvectors of the sub-matrix Ndat N f ×Ndat N f
as linear combination of the Nrep replica. Using the Singular Value Decomposition, we can
rewrite:

X = U ΣV T (29)

Where U and V are orthogonal matrices respectively: Ndat N f ×Ndat N f and Nrep ×Nrep.
The Σ is a diagonal and positive-definite matrix Ndat N f ×Nrep. The values on the diagonal
are the square roots of the eigenvalues of X ·XT . By substituing:

X ·XT = U (Σ2)UT (30)

The columns of U are the eigenvectors of the covariance matrix. Let be Z = UΣ, then:

Z ·ZT = X ·XT (31)

and:
Z = X ·V (32)

19



The X matrix is quite large: Neig = NdatN f . However, the eigenvectors with smallest
eigenvalues give a negligible contribution, so we may consider just the Ñeig < Neig largest
eigenvalues. Now U and Σ are replaced by their submatrices u and σ with dimension
respectively: NdatN f × Ñeig and Ñeig ×Nrep. This substitution leads to considering the
principal submatrix P of V .
This allows to find the Hessian set as follow:

f̃ (k)α (xi,Q) = f (0)α (xi,Q) +
1

Nrep −1
(X P)lα,i,k k ∈ {1, ... Ñeig} (33)

The uncertainties are given by:

σα(xi,Q) =

√√√√Ñeig

∑
k=1

(
f̃ (k)α (xi,Q) − f (0)α (xi,Q)

)2
(34)

From a direct comparison between the initial PDFs Monte Carlo set and the Hessian con-
version PDFs set, we can observe that using Ñeig = 100 eigenvalues for the Hessian PDFs
set, the lack of information is negligible, as shown below:

Figure 9: Comparison of the down quark PDF between the Monte Carlo NNPDF4.0 set
with 1000 replicas and the Hessian format with Ñeig = 100, at Q = 1.65GeV .
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3 Results
Now that the theoretical framework has been presented and the different computational
methods employed in the fit have been introduced, we now focus on the main problem
tackled in this work.

In order to understand the problem that we want to study, we perform a Hessian con-
version with Ñeig = 100 eigenvectors of a 1000 replicas Monte Carlo set of the global
NNPDF4.0 fit. In Fig.10 we show the decomposition of the 100 largest eigenvalues of the
∆χ2 computed from the Hessian PDF set. It can be seen that there are directions corre-
sponding to negative eigenvalues ∆χ2 < 0. This means that the central value of the PDFs
does not correspond to the global minimum of χ2.

Figure 10: Decomposition of the 100 largest eigenvalues of the ∆χ2 for the Hessian set
converted from the 1000 replicas Monte Carlo set of the global NNPDF4.0 fit.

Actually, this might not be so surprising, in fact in section 2.5 we saw that cross-
validation stops the minimization of the χ2 for each replica to prevent the neural network
from also learning the noise associated with the data. For this reason, negative directions
could be associated with overlearning directions of the network. Despite these considera-
tions, negative eigenvalues can have different origins. The aim of this thesis is precisely to
study the cause of these negative directions.
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3.1 Overlearning
In order to test whether the negative directions correspond to overlearning, we try to in-
crease the amount of overfitting performed by the neural network and check the behavior
of the eigenvalues after the conversion to the Hessian set. To this purpose, we change the
settings of the cross-validation that controls overlearning, and in particular by varying the
fraction of data in the training and validation sets. Moving data from the validation set to
the training set, there are fewer and fewer constraints on the χ2

tr minimization. In the limit
of zero validation data, all the data are in the training set and the minimization algorithm
continues to run until the maximum number of epochs is reached.

All the computations were carried out using the last version available of NNPDF par-
ton distribution functions, the NNPDF4.0 with NNLO QCD calculations, and NLO elec-
troweak corrections and nuclear uncertainties (for more details [8]). For a preliminary
analysis, the 100 replicas Monte Carlo set of the global NNPDF4.0 fit was taken into
account and the data fraction of the sets has been varied. It is possible to verify that the
network had performed overfitting as an increase in the data fraction of training set resulted
in a systematic reduction in χ2, as shown below:

χ2 of a 100 replicas Monte Carlo set of the global NNPDF4.0 fit
Training data
fraction: 50%

Training data
fraction: 75%

Training data
fraction: 100%

1.16702 1.16223 1.15571

By converting the three fits into the Hessian format and computing the ∆χ2, in Fig.11
it can be seen that the negative directions not only do not decrease but rather increase.

This can also be observed through the eigenvalue distributions in Fig.12, in which
there is a tendency to shift towards the negative eigenvalue region as the training fraction
is increased.

In order to check that this behavior is not due to a statistical fluctuation, it is necessary
to move on to a more quantitative analysis. To do so, we change the dataset. We now
consider the DIS-only (Deep Inelastic Scattering) dataset, which being smaller requires
less computational time, allowing more fits to be made.

In addition, two other methods have been added to force overlearning. The first ex-
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50% training data 75% training data 100% training data

Figure 11: Eigenvalue decomposition of ∆χ2 for a Hessian set with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the global NNPDF4.0 fit.

50% training data 75% training data 100% training data

Figure 12: Eigenvalue distribution of ∆χ2 for a Hessian set with 100 eigenvectors con-
verted from a 100 replicas Monte Carlo set of the global NNPDF4.0 fit.

ploits the stopping algorithm of cross-validation by varying the parameter that determines
after how many epochs the minimization must be stopped once the global minimum of the
χ2

val is reached. This because as the network continues to train, it increases the possibility
that statistical fluctuations will cause the χ2

val to end in a new minimum. The variable asso-
ciated with the stop criterion will be called stop and when stop= 100% the minimization
reaches the maximum number of epochs. The last overfitting method directly affects the
parameter optimization carried out by the Gradient Descent. Specifically, when we fix the
value of the clipnorm we are setting the maximum value that the gradient can acquire
in the parameter space. Increasing this leads to a more aggressive minimization, that can
lead to local minima.

A systematic scan of the eigenvalues was carried out by combining these three over-
learning methods. Each of these is associated with a variable and during the analysis. Each
variable was sampled on three different values.
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• training data fraction (train): {50%; 75%; 100%}

• no stopping criterion (stop): {10%; 50%; 100%}

• clipnorm (clip): {6.073 ·10−6 ; 6.073 ·10−3 ; 6.073 ·10−1}

All different combinations were tried, leading to 27 Monte Carlo sets with 100 replicas
of the DIS-only NNPDF4.0 fit.

By studying the χ2 of these fits, in Fig.13 it can be seen that the joint variation of
train and stop with a fixed clip leads to a systematic decrease mainly dependent on
the train, and to a lesser extent also dependent on stop. The clip dependency is even
lower.

clip= 6.073 ·10−6 clip= 6.073 ·10−3 clip= 6.073 ·10−1

Figure 13: χ2 grids of the 27 Monte Carlo sets with 100 replicas of the DIS-only
NNPDF4.0 fit. Each grid contains 9 values of χ2 with a fixed clip.

In order to check the eigenvalue behavior, the fits with the most and least overlearning
are considered, i.e. respectively those with bigger and smaller parameter values:

• (least overfitting) smaller parameter values:
{train, stop, clip} ={50% ; 10% ;6.073 ·10−6 }

• (most overfitting) bigger parameter values:
{train, stop, clip} ={100% ; 100% ;6.073 ·10−1 }

By converting the two fits into the Hessian format with 100 eigenvectors and com-
puting the ∆χ2, it is again observed in Fig.14 that the negative directions increase by
intensifying overlearning.
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(least overfitting) smaller parameter values (most overfitting) bigger parameter values

Figure 14: Eigenvalues decomposition of ∆χ2 for a Hessian set with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit.

(least overfitting) smaller parameter values (most overfitting) bigger parameter values

Figure 15: Eigenvalues decomposition of ∆χ2 for a Hessian set with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit.

As can be seen in Fig.15, the distribution still shifts towards the region of negative
eigenvalues and is less scattered as expected, as we are getting closer and closer to the
global minimum. This analysis allows us to conclude that the negative directions are
not overlearning directions, in fact by forcing the overfitting of the neural network they
increase.
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3.2 Uncertainty distribution
In order to understand the origin of the negative directions, it is possible to carry out a
test of the hypothesis of Gaussianity of PDF probability distribution assumed by Hessian
method. Thus, for the method to be usable, the PDFs must be Gaussianly distributed
around the central limit in the PDF space. Although it is not possible to establish whether
the distribution is Gaussian, it is still possible to check whether the necessary condition is
met whereby the 1σ band around the central limit must correspond with the confidence
interval associated with the 68% confidence level.

To compare these intervals we calculate the following percentage changes of 1-σ band
with respect to the confidence interval:

ε(x) =
|1σ(x) − 68%c.i.(x)|

68%c.i.(x)
(35)

By carrying out these measurements on fits with and without overlearning, it is possible to
determine whether the approximation of the Hessian method can be valid in the overfitting
regime.

Following the same procedure as in the previous section, we initially consider the
Hessian set with 100 eigenvectors converted from a 100 replicas Monte Carlo set of the
global NNPDF4.0 fit, varying the training data fraction:

50% training data 75% training data 100% training data

Figure 16: Measurement of Gaussianity for the d̄ Hessian PDF with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the global NNPDF4.0 fit.
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50% training data 75% training data 100% training data

Figure 17: Measurement of Gaussianity for the ū Hessian PDF with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the global NNPDF4.0 fit.

50% training data 75% training data 100% training data

Figure 18: Measurement of Gaussianity for the g Hessian PDF with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the global NNPDF4.0 fit.

Some PDFs have a slight increase as the fraction of training data increases, such as the
gluon PDF. Other PDFs have no significant variations and still others have variations that
do not follow a pattern.

To try to capture more significant variations we again use the dataset composed of
the DIS-only. We again consider the two fits that were found to be overfitting and non-
overfitting in the previous section: the Hessian sets with 100 eigenvectors converted from
a 100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit, each with its own set of
parameters {train, stop, clip}.

• (least overfitting) smaller parameter values:
{train, stop, clip} ={50% ; 10% ;6.073 ·10−6 }

• (most overfitting) bigger parameter values:
{train, stop, clip} ={100% ; 100% ;6.073 ·10−1 }
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Comparing the two fits we can see that there are important deviations from the Gaus-
sian distribution.

(least overfitting) smaller parameter values (most overfitting) bigger parameter values

Figure 19: Measurement of Gaussianity for the s Hessian PDF with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit.

(least overfitting) smaller parameter values (most overfitting) bigger parameter values

Figure 20: Measurement of Gaussianity for the d Hessian PDF with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit.
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(least overfitting) smaller parameter values (most overfitting) bigger parameter values

Figure 21: Measurement of Gaussianity for the d̄ Hessian PDF with 100 eigenvectors
converted from a 100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit.

These behaviours can also be seen by direct comparison of the uncertainty intervals
corresponding to the 68% confidence level of the Monte Carlo PDF set (coinciding with
1σ ) and the Hessian PDF set, as it is shown in Fig.22:

(least overfitting) smaller parameter values (most overfitting) bigger parameter values

Figure 22: Comparison between the 1σ band with the confidence interval associated to
the 68% confidence level for the s Hessian PDF with 100 eigenvectors converted from a
100 replicas Monte Carlo set of the DIS-only NNPDF4.0 fit.

It can be seen that in the case of overlearning we have a significant loss of Gaussianity.
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4 Conclusions
The problem of the existence of negative eigenvalues of ∆χ2 was addressed by focusing
on two distinct observations. The increase in the number of negative directions with the
intensification of overfitting has made it possible to deduce that the existence of negative
variations of the χ2 is not caused by a lack of efficiency in the PDF fitting method. If
this had been the case, then optimizing the minimization would have led to ever smaller
values of χ2, so it would have been possible at the limit to approach the global minimum,
corresponding to the best fit in the PDFs space, and at that point, it would no longer be
possible to have such eigenvalues.

To describe this behavior, the Gaussianity hypothesis of the probability distributions
of PDFs, on which the Hessian method is based, was studied. By comparing the 1σ band
with the confidence interval associated to the confidence level of 68% we saw a significant
loss of Gaussianity with increasing the overfitting of the neural network.

These deviations allowed us to conclude that the presence of negative eigenvalues of
the matrix ∆χ2 was due to the forcing of the probability distribution of PDFs in an in-
appropriate Gaussian pattern. Thus, it is impossible to match the PDF best fit with the
global minimum of χ2 and we find incorrect negative directions. When we intensify the
overfitting of the neural network, we are just increasing the discrepancies between the two
distributions. That is, the point of PDF best fit moves away from the global minimum of
χ2, reaching a random point of the space. This point is completely independent of the
global minimum predicted by the Gaussian trend, and here the sign of the variations along
the various directions becomes a stochastic variable, so the negative directions increase.
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