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Abstract

In this PhD thesis we investigate several aspects of parton distribution functions (PDFs) and
jets as applicable to the physics underpinning the Large Hadron Collider (LHC) as well as future
colliders. We first discuss jet observables at the LHC, focusing on the single-jet inclusive cross
section. We introduce possible alternative definitions, which weigh the individual contributions
coming from each jet in the event and are thus unitary by construction. We also clarify the
origin of some problematic aspects of the standard definition. Secondly, within the hadronic
PDF fitting framework of the NNPDF collaboration, we investigate the inclusion of single-jet
inclusive and dijet measurements into a global PDF fit, using QCD next-to-next-to-leading order
predictions for jet processes. We field-test which observables lead to better perturbative stability,
better PDF compatibility with other data, better fit quality, and more stringent constraints on
the PDFs. Thirdly, we focus on an analytical understanding of machine learning techniques used
for quark versus gluon discrimination, a hot topic in jet substructure studies. We construct a
new version of the widely used N -subjettiness variable, which features a simpler theoretical
behaviour than the original one, while maintaining, if not exceeding, the discriminating power.
We input these new observables to the simplest possible neural network, with only one neuron,
and we study analytically the network behaviour at leading logarithmic accuracy. We also
compare our analytic findings to a more realistic neural network trained with Monte Carlo
pseudo-data. Fourthly, we compute the unpolarised electron, positron, and photon PDFs at next-
to-leading logarithmic accuracy in QED, which are crucial for high-precision predictions needed
for future e+e− colliders. We present both numerical and analytical results. The analytical
predictions, defined by means of a specific additive formula, provide a large-z analytical solution
that includes all orders in the QED coupling constant α, with a small- and intermediate-z
solution that includes terms up toO(α3). The content of this thesis is based on arXiv:1906.11850,
arXiv:1911.12040, arXiv:2005.11327, and arXiv:2007.04319.

Keywords: Particle Physics Phenomenology; Standard Model; Collider Physics; QCD; QED;
Parton Distribution Functions; Jets



SOUS-STRUCTURE AU COLLISIONNEUR DE PARTICULES
Résumé

Dans cette thèse de doctorat, nous étudions plusieurs aspects des fonctions de distribution de
partons (PDF) et des jets applicables à la physique qui sous-tend le Grand collisionneur de
hadrons (LHC) ainsi que les futurs collisionneurs. Nous discutons d’abord des jets observables
au LHC, en nous concentrant sur la section transversale inclusive d’un seul jet. Nous intro-
duisons d’autres définitions possibles, qui pèsent les contributions individuelles de chaque jet
dans l’événement et sont donc unitaires par construction. Nous clarifions également l’origine
de certains aspects problématiques de la définition standard. Deuxièmement, dans le cadre
des ajustements de PDF hadroniques de la collaboration NNPDF, nous étudions l’inclusion de
mesures de dijet et de d’un seul jet dans un ajustement global des de PDF, en utilisant des
prédictions de la QCD à l’ordre sous-sous-dominant pour les processus de jet. Nous testons les
observables qui conduisent à une meilleure stabilité perturbative, à une meilleure compatibilité
des PDF avec d’autres données, à une meilleure qualité d’ajustement et à des contraintes plus
strictes sur les PDF. Troisièmement, nous nous concentrons sur une compréhension analytique
des techniques de machine learning utilisées pour la discrimination quark contre gluon, un sujet
d’actualité dans les études de sous-structure des jets. Nous construisons une nouvelle version
de la variable N -subjettiness, largement utilisée, qui présente un comportement théorique plus
simple que l’originale, tout en conservant, voire en dépassant, le pouvoir discriminant. Nous
introduisons ces nouvelles observables dans le réseau de neurons le plus simple possible, avec
un seul neurone, et nous étudions analytiquement le comportement du réseau avec une préci-
sion logarithmique à l’ordre dominant. Nous comparons également nos résultats analytiques à
un réseau de neurons plus réaliste formé avec des pseudo-données Monte Carlo. Quatrième-
ment, nous calculons les PDF d’électrons, de positons et de photons non polarisés avec une
précision logarithmique sous-dominante dans la QED, ce qui est crucial pour les prévisions de
haute précision nécessaires aux futurs collisionneurs e+e−. Nous présentons des résultats à la
fois numériques et analytiques. Les prédictions analytiques, définies au moyen d’une formule
additive spécifique, fournissent une solution analytique à grand z qui inclut tous les ordres de
la constante de couplage de la QED α, avec une solution à petit et moyen z qui inclut des ter-
mes jusqu’à O(α3). Le contenu de cette thèse est basé sur arXiv:1906.11850, arXiv:1911.12040,
arXiv:2005.11327, et arXiv:2007.04319.

Mots clés: Phénoménologie de la physique des particules; modèle standard; physique des col-
lisionneurs; QCD; QED; fonctions de distribution de partons; jets



SOTTO-STRUTTURA AI COLLIDER DI PARTICELLE
Sintesi

In questa tesi di dottorato studiamo diversi aspetti delle funzioni di distribuzione partonica
(PDF) e di jet adronici per applicazioni alla fisica del Large Hadron Collider (LHC) e dei futuri
collisori di particelle. Per prima cosa discutiamo le osservabili di jet misurate a LHC, concentran-
doci sulla sezione d’urto di singolo jet inclusiva. Introduciamo possibili definizioni alternative,
che pesano i singoli contributi provenienti da ciascun jet in ogni evento e sono quindi unitarie
per costruzione. Chiariamo anche l’origine di alcuni aspetti problematici della definizione stan-
dard. In secondo luogo, nell’ambito dei fit delle PDF adroniche della collaborazione NNPDF,
esaminiamo l’inclusione di misure di sezioni d’urto di singolo jet e di dijet in un fit di PDF
globale, utilizzando le previsioni all’ordine next-to-next-to-leading in QCD per i processi di jet.
Questo ci permette di testare sul campo quali osservabili di jet portano a una migliore stabilità
perturbativa, a una migliore compatibilità con altri dati sperimentali, a una migliore qualità
di fit e a vincoli più rigorosi sulle PDF. In terzo luogo, ci concentriamo su una comprensione
analitica delle tecniche di machine learning utilizzate per la discriminazione tra jet originati da
quark o gluoni, un tema caldo negli studi sulle sotto-strutture dei jet. Costruiamo una nuova
versione della variabile N -subjettiness ampiamente utilizzata, che presenta un comportamento
teorico più semplice di quello originale, mantenendo, se non superando, il potere discriminante.
Usiamo queste nuove variabili come input della rete neurale più semplice possibile, con un solo
neurone, e studiamo analiticamente il comportamento della rete, mantenendo una precisione
logaritmica all’ordine leading. In seguito confrontiamo i nostri risultati analitici con una rete
neurale più complessa allenata con pseudodati Monte Carlo. In quarto luogo, calcoliamo le PDF
di elettrone, positrone e fotone non polarizzati con una precisione logaritmica next-to-leading
in QED, ingredienti cruciali per le previsioni ad alta precisione necessarie per i futuri collisori
e+e−. Presentiamo risultati sia numerici che analitici. Le previsioni analitiche, definite per
mezzo di una specifica formula additiva, forniscono una soluzione analitica a grande-z che in-
clude tutti gli ordini nella costante di accoppiamento di QED α, combinata con una soluzione a
piccolo e intermedio z, che include termini fino a O(α3). Il contenuto di questa tesi si basa su
arXiv:1906.11850, arXiv:1911.12040, arXiv:2005.11327, e arXiv:2007.04319.

Parole chiave: Fenomenologia della fisica della particelle; Modello standard; Fisica dei collider
di particelle; QCD; QED; Funzioni di distribuzione partonica; Jets





Vedi, in questi silenzi in cui le cose
s’abbandonano e sembrano vicine

a tradire il loro ultimo segreto,
talora ci si aspetta

di scoprire uno sbaglio di Natura,
il punto morto del mondo, l’anello che non tiene,

il filo da disbrogliare che finalmente ci metta
nel mezzo di una verità.

Eugenio Montale, I limoni, in Ossi di Seppia (1925)

La peste che il tribunale della sanità aveva temuto che
potesse entrar con le bande alemanne nel milanese, c’era

entrata davvero, come è noto; ed è noto parimente che non
si fermò qui, ma invase e spopolò una buona parte d’Italia.

Alessandro Manzoni, I promessi sposi, Capitolo XXXI
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Introduction

The idea is very simple: smash particles together and see what comes out. Since the first
electron-positron collider built in the 1950s near Rome, particle accelerators have played an es-
sential role both in the development and the validation of the Standard Model (SM) of particle
physics. Elaborating a theory of fundamental interaction with the right to be called “stan-
dard” required decades of outstanding ideas and powerful advances in technology. Each major
achievement in the recent history of particle physics is linked to the construction of a new parti-
cle collider: the proton-antiproton collider SPS (1981-1991) discovered the W and Z bosons; the
proton-antiproton collider Tevatron (1987-2011) discovered the top quark; the electron-positron
collider LEP (1989-2000) tested the electroweak sector of the SM. The latest milestone in the
history of particle physics has been the discovery of the Higgs boson in 2012, at the Large
Hadron Collider (LHC), a proton-proton collider at CERN.

On the theoretical side, we know that the SM is not the ultimate theory of Nature, and
several theories that account for phenomena beyond the SM have been proposed over the past
decades. Some of these models rely on the discovery of new particles at the electroweak scale.
The conspicuous absence of these new particles rules out a plethora of hypothetical scenarios, at
least in their simplest variants, thus making it increasingly difficult to find a “beautiful” theory1
that extends the SM. Ideally, such an extension would fit two main criteria: it should be able
to predict at least as well as the SM the huge amount of experimental collider data, while also
taking into account other phenomena as yet unexplained by the SM.

On the experimental side, today’s physics community is pushing the boundary of the current
intensity frontier. LHC has just finished in December 2018 its Run 2 at

√
s = 13 TeV with

140 fb−1 of accumulated luminosity. We are currently, and until summer 2021, in the middle of
the Long Shutdown 2 (LS2). At the end of the next run, 2021-2025, LHC will have triplicated
its total integrated luminosity. The LS3, which is expected from 2025 to 2027, will include a
major revision of the detectors and notably the installation of High Luminosity LHC (HL-LHC).
This upgrade will permit LHC to deliver between 5 to 7.5 times its former nominal luminosity.
As for the energy frontier, the status is much less clear: the construction of a future linear or
circular collider, with different beam configurations (e+e−, ep, or pp), is still under discussion.
CERN has just announced in the 2020 Update of the European Strategy for Particle Physics [6]
several priorities: a new e+e− collider operating as a “Higgs factory”, possibly followed by a
future hadron collider. In any case, we will most likely need to wait decades before we can see
a collider with a significant improvement in the center of mass energy.

The vast amount of data that will be collected by LHC and HL-LHC in the near future will
1Maybe we just have to change our concept of beauty [5].
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require developing novel approaches to look for signs of physics beyond the SM. Two possibilities
arise. In the first scenario, we examine the distinctive experimental signatures of new physics
signals as predicted by the proposed beyond the SM theories. In the second scenario, we run
blind analyses of the data collected by LHC in order to find a possible deviation from the SM
background without any theoretical bias.

Both strategies require a detailed analysis of the SM background. We already know that if
the LHC data contains a deviation from the SM, it would be tiny, and possibly it would only
appear with a huge amount of experimental data, as expected at the end of the HL-LHC runs.
At that point, the statistical error will certainly be small, and most likely so will the systematic
error, thanks to state-of-the-art detectors and improved analysis techniques. Accordingly, to
perform a proper comparison, we need to increase the accuracy of the SM predictions as much
as possible, thereby decreasing the associated theoretical error. Only in this way will we be able
to bring to light a possible deviation from the SM.2 The topics presented is this thesis move
within this spirit.

What level of accuracy are we talking about? At hadron colliders, relative errors on the
experimental measurements can be as small as a few percentage points. The plot in Fig. 1 shows
a summary of SM measurements performed by the ATLAS collaboration at LHC. Starting from
the top, we see that for some very inclusive cross sections the experimental error is already
smaller than the theoretical one. Moving towards the bottom of the plot, the cross sections
are less inclusive, and the associated experimental error is still quite large, but certainly going
to decrease in the near future. As Fig. 1 shows, the theoretical predictions currently have
a relative uncertainty of 5–10%. By the end of the HL-LHC runs we will need this relative
uncertainty to go down to 1% in order to properly compare with the experimental data. As
for e+e− colliders, they are strikingly different from hadron colliders: the cleaner environment
favours more precise measurements. Fig. 2 displays the projected experimental error on several
electroweak observables at two future e+e− colliders — the linear ILC and the circular FCCee
— and compares these to the LEP results. The relative error at ILC will reach 0.01% and at
FCCee will be possibly even smaller. Accordingly, we need the theory to also be that accurate.

More accurate predictions require calculating higher order terms in perturbative calculations.
Such fixed-order predictions, though necessary, are not sufficient for a comparison with the ex-
perimental data. This is due to both practical and fundamental reasons. Practical, because
fixed-order results fail to account for higher order radiative corrections, which can have a large
impact in determinate regions of the phase space, thereby spoiling the convergence of the per-
turbative series. Fundamental, because quarks and gluons, which possibly enter the fixed-order
predictions, live inside composite objects and thus are not directly observable by experiments.

In this thesis, we will focus on the study of two theoretical objects, parton distribution
functions (PDFs) and jets, introduced to complement the fixed-order predictions and solve the
two issues mentioned in the preceding paragraph. These objects enter in the computation of
almost any observable at colliders and thus are of crucial importance. Fig. 3 depicts a typical
LHC event in which two protons collide. A proper description of the initial state requires the
introduction of PDFs, whereas jets come into play in the description of strongly interacting

2Moreover, a better understanding of SM phenomena is a noble purpose in and of itself. For instance, even if
we believe we know the fundamental laws of strong interactions, some mechanisms are still unclear. For example,
why is the spin of a composite objects such as the proton the observed value?
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Figure 1: Summary of ratios with respect to best theory for several Standard Model production
cross section measurements at the LHC, corrected for branching fractions. Taken from Ref. [7]
(ATLAS collaboration).
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Figure 2: Estimated experimental uncertanties on several precision electroweak observables at
future e+e− colliders, compared with the final combined results of LEP and SLC. “ILC/GigaZ”
refers to the run of the International Linear Collider at the Z pole, while “FCCee” refers to the
Future Circolar Collider in the e+e− configuration. Taken from Ref. [8].

3



Introduction
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Gregory Soyez Event Generators LHCP 2020 5 / 18Figure 3: A pictorial representation of the theory behind a dijet collider event. Two partons
are extracted from the incoming protons, hard scatter in the question mark box and then
progressively loose energy by radiating particles. The colors code the typical energies of the
particles involved. Taken from Ref. [9].

final states.3 Loosely speaking, both PDFs and jets feature a substructure: as we increase
the resolution scale, we better resolve the internal structure of these objects. Discussing what
happens in Fig. 3 gives us the opportunity to talk about PDFs and jets, and comment on their
substructure.

Hadronic PDFs Since the parton model proposal, we know that the hard scattering process
actually occurs between two partons, quarks or gluons, extracted from the incoming protons.
In Fig. 3 the partons are depicted as blue incoming lines. Each parton carries a momentum
fraction x of the longitudinal momentum of the parent hadron; a parton distribution function
(PDF) describes this dependence on x. PDFs are an essential input for any theory prediction at
hadron colliders. However, PDFs have an intrinsic non-perturbative component and cannot be
calculated using perturbation theory. Instead, PDFs must be extracted from the experimental
data, and that can only be done by means of a fitting procedure.

Actually, a PDF is a function of two variables: the momentum fraction x and a scale Q2.
The scale may be thought of as the resolution of a magnifier. For example, let us suppose that,
at a scale Q2

0, we see a single quark with momentum fraction x coming out of the proton. If
3QCD particles, and thus jets, may also be present in the final state of e+e− collisions. Hadronic PDFs are

obviously not present when we collide leptons. However, we can still adopt the same formalism in order to take
into account some potentially large contributions, due to collinear photon emissions, to all orders in perturbation
theory. See “Electron PDFs” below.

4



Introduction

we increase the resolution of our magnifier (i.e. we increase our Q2), we can start to resolve
the quark emitting a gluon. Both partons now carry a momentum fraction less than x. Hence,
increasing Q2 reveals the substructure of the PDFs, and we see more partons with less energy.
The Q2-dependence of the PDFs — unlike their x-dependence — is entirely predictable within
perturbative QCD.

Electron PDFs In principle, e+e− colliders do not require introducing the concept of PDFs,
but it may be useful for practical purposes. Calculations of processes in QED have some large
contributions stemming from photon collinear emissions in the initial state. These contributions
appear as logarithms (possibly to some power) of some hard physical scale E over the mass of
the electronm, logk(E2/m2). These terms can be numerically large, preventing the perturbative
series from being well behaved. Using the PDF formalism allows us to collect such large terms
in a universal object, an electron (or positron) PDF, and then resum the logarithms to all order
through the Q2-evolution. In this scenario, the incoming electron is seen as a composite object
and acquires a substructure. By looking at the electron with a magnifier we can resolve a photon
emission or, at higher order, even a positron emission!

Jet physics In addition to PDFs, we are also interested in jets. When hard QCD particles
come out of the scattering region (the blue lines in Fig. 3), they start radiating and progressively
loose energy. This radiation process is depicted in red in Fig. 3, and the energy scales involved
span several order of magnitude. When they reach the non-perturbative region (∼ 1 GeV),
quarks and gluons start recombining into hadrons in the process of hadronization, depicted as a
green band in Fig. 3. The final state hadrons, the black arrows in Fig. 3, are the ones actually
detected by the experiments. Given that QCD dynamics favours emissions at small angles,
most of the detected particles will be distributed around the direction of the original parton
that originated the shower. These collimated bunches of energetic particles are called jets and
can be considered proxies for the hard scattering partons. Fig. 4 shows a typical event display
from the ATLAS collaboration at CERN. In the image, we clearly see two jets emerging from the
interaction point. In practice, however, in order to properly count the number of jets present, we
need an unambiguous jet definition. If both theory and experiment adopt the same definition,
we are in a position to systematically compare theoretical predictions with experimental data.

Jets are abundant at hadron colliders. Total cross sections for jet production at LHC (
√
s ∼

7–14 TeV) are of the order of 107 pb, two orders of magnitude more than W or Z production
and four orders of magnitude more than top pair production. In addition, observables involving
only jets are the simplest ones with a purely strongly interacting final state. Because of this
and because of the abundance of jets at LHC, jet cross sections are particularly well suited for
precision QCD studies, such as the determination of the parton distributions and of the strong
coupling constant αs. There are, however, a number of unsettled theoretical issues related to
the choice of the most appropriate setup to investigate jet events. To begin with, there are two
ways to describe an event with jets in the final state. One possibility is to describe the final state
kinematics by adopting individual jet variables (e.g. jet transverse momentum, jet rapidity) and
measuring these variables on each jet in the event. An alternative approach is to select only
the n hardest jets in the event and use variables suited for the description of the n-jets system
as a whole (e.g. dijet mass, rapidity separation). Furthermore, once we have chosen a specific
observable, we have to deal with the follow up choice of renormalization and factorization scales.
Since jet production is naturally a multiscale process, this is a complex decision.
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Figure 4: An experimental view of a collider dijet event, produced in pp collisions at
√
s =

13 TeV. The blue towers are proportional to the energy released in the detector. ATLAS
Experiment © 2020 CERN

Jet substructure Like PDFs, jets are also naturally endowed with a substructure, and by
studying their internal structure we can learn valuable information. For instance, the pattern of
radiation around a hard particle is tightly linked to the nature of that particle; the distribution
of the radiation in energy and angle is different if the particle is a quark or a gluon. Being
able to discriminate between a quark-initiated jet and a gluon-initiated jet is important for a
multitude of studies: for the isolation of specific production channels, for precision αS studies,
for PDF extraction, and for the search of new physics.

The large number of variables required for a full description of the radiation pattern around
the hard prongs in a jet naturally calls for machine learning (ML) techniques. The field of
jet substructure has recently seen an exponential growth in the adoption of these techniques.
Neural networks (NN) in particular are used to attack this quark- vs. gluon-jet classification
problem. Historically, studies have focused mainly on neural network performance. However,
we also need to ensure that the physics we obtain as an output of the ML algorithm are the
same as the physics we obtain from resummed QCD calculations.

This thesis studies several aspects of hadronic PDFs, electron PDFs, jet observables, and jet
substructure mentioned above. The concept of substructure is the real common denominator
among the different topics: as we increase the resolution, we can resolve more quarks and glu-
ons inside the colliding protons, more electrons and photons inside the colliding electrons, or
more constituents inside jets. A better understanding of these different kind of substructures
allows us to increase the precision of our predictions (PDFs and jets are crucial ingredients in
precision calculations of Standard Model cross sections) or better interpret experimental data
(jet substructure techniques are important tools for analyses of hadronic final states). We shall
conclude this introduction with a description of each chapter’s content, highlighting where per-
sonal contributions can be found.
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Chapter 1: Quantum field theories at colliders
This introductory chapter introduces the reader to the basic elements of QED and QCD relevant
for this thesis. We briefly present the running of coupling constants, the problem of infrared
divergences, collinear factorization and parton distribution functions, DGLAP equations, jets
and their substructure, structure of QCD predictions, and dependence on renormalization and
factorization scales.

Chapter 2: Theory calculations for jet processes
For the purposes of Chapter 3 and Chapter 4, we discuss the available theory predictions for
jet observables at various different perturbative orders in the QCD coupling constant. We carry
out explicit computations at leading order (LO). We then briefly present the available next-to-
leading order (NLO) calculations and report on the recent next-to-next-to-leading order (NNLO)
calculations. In particular, for single-jet inclusive cross section, we comment on the apparent
perturbative instability shown by higher order corrections.

Chapter 3: On the definition of single-jet inclusive cross section (based on M. Cacciari, S. Forte,
D. Napoletano, G. Soyez and G. Stagnitto, Single-jet inclusive cross section and its definition,
Phys. Rev. D100 (2019) 114015 [1906.11850])
We study possible alternative unitary definitions of the single-jet inclusive cross section. These
new definitions weigh the individual contributions coming from each jet in the event. The
weighted definitions are unitary by construction, whereas the usual standard definition is non-
unitary as each event is counted more than once. This chapter also clarifies the origin of some
problematic aspects of the standard definition.

Chapter 4: Impact of jet measurements on parton distributions (based on R. Abdul Khalek,
S. Forte, T. Gehrmann, A. Gehrmann-De Ridder, T. Giani, E. W. N. Glover, A. Huss, E. R.
Nocera, J. Pires, J. Rojo and G. Stagnitto, Phenomenology of NNLO jet production at the LHC
and its impact on parton distributions, Eur. Phys. J. C 80 (2020) 797 [2005.11327])
Within the PDF fitting framework of the NNPDF collaboration, we investigate the inclusion
of single-jet inclusive and dijet measurements into a global PDF fit, using QCD NNLO predic-
tion for jet processes. Jet data provide unique constraints on the gluon PDF at large values of
the momentum fraction. The fits performed allow us to field-test which observables and which
choice of scale leads to better perturbative stability, better PDF compatibility with other data,
better fit quality, and more stringent constraints on the PDFs.

Chapter 5: Towards machine learning analytics for jet substructure (based on G. Kasieczka,
S. Marzani, G. Soyez and G. Stagnitto, Towards Machine Learning Analytics for Jet Substruc-
ture, 2007.04319, accepted by JHEP)
In the context of jet substructure studies, we introduce a variant of the N -subjettiness variable,
the primary N -subjettiness TN , which is more amenable to an all-order QCD analysis. The
primary N -subjettiness is such that, if we measure a set of n variables {T1, . . . ,Tn}, at lead-
ing logarithmic accuracy a cut on the likelihood ratio — which is the optimal single-variable
discriminant — corresponds to a simple cut on Tn. This important property allows us to deter-
mine whether a neural network fed with such n primary N -subjettiness variables, after proper
training, leads to the same classifier as the one dictated by the likelihood ratio.
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Chapter 6: Electron PDFs (based on V. Bertone, M. Cacciari, S. Frixione and G. Stagnitto,
The partonic structure of the electron at the next-to-leading logarithmic accuracy in QED, JHEP
03 (2020) 135 [1911.12040])
Working within QED, we obtain the electron, positron, and photon PDFs of the unpolarised
electron at the next-to-leading logarithmic (NLL) accuracy in the MS subtraction scheme. We
present both numerical and analytical results. The analytical predictions are defined by means
of a specific additive formula. This formula matches a large-z analytical solution that includes
all orders in the QED coupling constant α, with a small- and intermediate-z solution that in-
cludes terms up to O(α3).

Finally, in the Conclusions, we summarize the main results found in the thesis and discuss
possible avenues for future studies.
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CHAPTER 1

Quantum field theories at colliders

The reason for this chapter is twofold. First, the reader not acquainted with the topics of the
thesis will find here some introduction to the main concepts covered in the manuscript. We
hope that these pages can also become useful for future graduate students taking the first steps
in this field of research. Second, we set up the notation used in the rest of the thesis, and in the
subsequent chapters we shall often refer to equations presented here.

The beauty behind quantum field theories will hardly emerge in our discussions. We just
recall the main results and comment on them, without providing (almost) any proof. For an
extensive and more detailed treatment, we refer the reader to standard textbooks on quantum
field theory [10–13], to books more focused on perturbative QED/QCD [14–18], and to specific
lecture notes [19–23].

The outline of the chapter is as follows. In Sec. 1.1 we discuss the main similarities and
differences between QED and QCD, by also showing how the coupling constant runs in both
theories. In Sec. 1.2 we present the master factorization formula for processes at hadron colliders,
and we introduce the parton distribution functions (PDFs). We then move to the problem of
infrared divergences: in Sec. 1.3 we show how matrix elements behave in the soft and collinear
limits — specifying what this nomenclature means — and in Sec. 1.4 we explain why infrared
divergences should (or not) cancel in physical results. Starting with Sec. 1.5, we concentrate
on PDFs. We first introduce the collinear factorization procedure for the absorption of initial
state collinear divergences in the PDFs. We also show how the DGLAP equations govern the
factorization scale dependence of PDFs (Sec. 1.6), and how one can practically extract the
proton PDFs from experimental data (Sec. 1.7). We then turn to jets: in Sec. 1.8 we present
the clustering algorithms usually adopted to define jets and in Sec. 1.9 we introduce the reader
to jet substructure techniques. Finally, Sec. 1.10 discusses the structure of pertubative QCD
predictions, especially in relation to the choice of the renormalization and factorization scale.
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Chapter 1. Quantum field theories at colliders

1.1 QED versus QCD

Quantum electrodynamics (QED) and quantum chromodynamics (QCD) are the gauge field
theories of electromagnetic interactions and strong interactions, respectively. As quantum field
theories, they are based on different symmetry groups. QED is based on the U(1) symmetry
group, while QCD is based on the SU(Nc) symmetry group, with Nc = 3. The charge of strong
interaction is called colour, in analogy to the three main colours: red, green and blue, which sum
up to give the “colourless” white. Only colour-singlet combinations of quarks exist in Nature1.
The Lagrangian densities of QED and QCD are reported in Appendix 1.A.

The parameter defining the strength of the interaction between coloured or charged particles
is the coupling constant. We denote with gS the QCD coupling constant, while e is the QED
coupling constant. For historical reasons, one also defines the fine structure constant αem:

αem = e2

4π , (1.1)

and, by analogy, the strong coupling constant αS:

αS = g2
S

4π . (1.2)

Note that it is customary to simply denote αem as α. Throughout this thesis, this will be clear
in the context, and in case of ambiguities we will adopt the αem notation.

Starting with the Lagrangian densities, we can derive the Feynman rules of the theory and
calculate amplitudesM, and eventually take the productM∗M to obtain the matrix element
squared |M|2 which enters in physical quantities. By doing so, in QCD one finds recurrent
expressions in colour algebra involving products of colour matrices tCab or structure constants
fABC , which can be simplified in the following way:∑

a,b

tAabt
B
ab = TRδAB ,

∑
A

tAabt
A
bc = CF δac ,

∑
A,B

fABCfABD = CAδCD , (1.3)

with
TR = 1

2 , CF = N2
c − 1
2Nc

Nc=3−−−→ 4
3 , CA = Nc

Nc=3−−−→ 3 . (1.4)

These constants have a nice physical interpretation: CF is the colour factor associated to a gluon
emission of a quark; CA is the colour factor associated to a gluon emission off a gluon; finally,
TR is the colour factor associated to a gluon splitting in a quark-antiquark pair.

By comparing the Lagrangian densities, one finds a practical recipe for obtaining QED results
starting with QCD expressions:

g2
S → e2 , TR → Q2

i , CF → Q2
i , CA → 0 , (1.5)

with Qi the electric charge of each particle in units of the positron charge. Eq. (1.5) is motivated
by the fact that Qi is the formal analogue of tAab and the QED structure constants are null by
definition. However, this prescription should be interpreted cum grano salis, notably in the case

1The confinement of quarks inside colour-singlet composite objects, even though not rigorously proven in QCD,
may be naively understood as a consequence of the behaviour of the running coupling αS at small energies, see
Sec. 1.1.2.
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1.1. QED versus QCD

of sums over quark flavours: we need to make sure to proper take into account the fractional
charge of quarks, and the fact that quarks come in three colours.

1.1.1 Renormalization procedure

As it is well known, once we go beyond the tree-level approximation, the bare Lagrangians in
Appendix 1.A suffer from divergences of ultraviolet (UV) origin i.e. coming from loop integrations
which involve arbitrarily large momenta. Is it customary to renormalize the theory by splitting
the bare Lagrangian in two terms:

Lbare = LR + Lc.t. (1.6)

where the renormalized Lagrangian LR is formally the same as Lbare, but now it contains
only physical parameters and fields, while the counterterm Lagrangian Lc.t. provides additional
Feynman graphs needed to cancel UV divergences.

In order to isolate the divergences, we need to regularize loop integrations. This is usually
done through dimensional regularization, by shifting the momentum integration from 4 to d =
4− 2ε dimensions, whereby the integral converges. This allows us to parametrize the degrees of
divergence of the loop integration as simple poles proportional to 1/ε:

g2
∫
d4q

. . .
−→ g2µ̃2ε

∫ d4−2εq

. . .
= g2µ̃2ε

[
C−1

ε
+ C0 + C1ε+O(ε2)

]
(1.7)

Note that a scale µ̃ appears, as we need to maintain the correct mass dimension of the overall
result. We usually refer to this scale as regularization scale. The final result at the end of the
renormalization procedure will not depend on this scale2.

While the cancellation of divergences between Lbare and Lc.t. fixes the divergent parts of the
counterterms, the finite terms included in Lc.t. are arbitrary. Different conventions for the finite
part of the counterterms are known as different subtractions schemes. In the minimal subtrac-
tion scheme (MS) the finite part of each counterterm is set to zero. In the modified minimal
subtraction scheme (MS) a ln 4π − γE finite term3, which usually appears in the evaluation of
integrals in d dimensions, is included in the definition of the counterterms.

The counterterms are defined at a renormalization scale µ. In the MS or MS scheme, the
renormalization scale µ and the regularization scale µ̃ are usually made to coincide. As pointed
out in Ref. [11], in dimensional regularization the scales µ̃ and µ are not in principle the same;
but we can always replace µ with µ̃ by including in the counterterms appropriate logarithms
such as ln(µ̃2/µ2).

1.1.2 Running coupling

The bare coupling g0 appearing in the bare Lagrangian Lbare must be independent of the renor-
malization scale µ introduced in the renormalization procedure. By imposing the condition

µ
d

dµ
g0 = 0 , (1.8)

2We could have alternatively regularized the infinities by introducing a parameter Λ to cutoff the integration
region of large momenta. In such a case, the regularization scale would have been Λ.

3Throughout this thesis, we will denote the natural logarithm either as ln or log. In case, decimal logarithms
will be explicitly written as log10.

11



Chapter 1. Quantum field theories at colliders

one finds that the physical coupling gR appearing in LR retains a dependence on µ. The running
of the coupling is encoded in the β-function, which is nothing but the renormalization group
equation for the coupling constant. The β-function is usually written in the following form4:

µ2 dα

dµ2 = dα

d lnµ2 = β(α) = b0α
2 + b1α

3 + . . . . (1.9)

The one-loop (two-loop) coefficient is b0 (b1), and in QCD they are given by:

bQCD
0 = −11CA − 4nFTR

12π , bQCD
1 = −17C2

A − nFTR(10CA + 6CF )
24π2 , (1.10)

whereas in QED they simplify to:

bQED
0 = 1

3π

[
Nc

nF∑
i=1

Q2
i + nL

]
, bQED

1 = 1
4π2

[
Nc

nF∑
i=1

Q4
i + nL

]
. (1.11)

nF denotes the number of quarks, while nL denotes the number of leptons. The coefficients bi
are known up to b4, and beyond two-loop they are scheme-dependent (see Ref. [24] for their
expressions in the MS scheme). If we retain only the first coefficient, a simple exact analytic
solution of Eq. (1.9) exists:

α(µ2) = α(µ2
0)

1− b0α(µ2
0) ln(µ2/µ2

0) , (1.12)

with µ2
0 and α(µ2

0) defining the initial condition for the evolution. It is also possible to write
down the equivalent of Eq. (1.12) accurate up to two loops:

α(µ2)
α(µ2

0) =
(

1− α(µ2
0)b0L+ α(µ2

0)b1
b0

ln b0 + α(µ2
0)(b1 − b20L)

b0 + α(µ2
0)b1

)−1

, (1.13)

with L = ln(µ2/µ2
0). This expression is not unique; however it guarantees the correctness of the

α(αL)k and α2(αL)k terms to all orders, whereas Eq. (1.12) resums only and solely the former
class of terms.

Let us discuss the run of the coupling constant in QED and in QCD. This discussion has
significant implications on the validity of a perturbative approach.

• The QED β-function is positive, therefore as energy increases the coupling αem becomes
larger. However, the small value of αem(m2

e) ' 1/137 at the electron mass does not
significantly increase with the evolution in the energy range usually probed at colliders.
A perturbative treatment is thus justified.

• In QCD, the sign of the β-function is negative, thus αS → 0 for µ→ +∞. This particular
behaviour is called asymptotic freedom [25,26] i.e. the fact that the strong coupling becomes
weaker for processes involving large momentum transfer.
On the other hand, we see that there exists a constant ΛQCD, such that αS → +∞ for
µ→ Λ+

QCD. The value of ΛQCD (∼ 200 MeV), is indicative of the energy range where the
4Note it is customary in QCD to collect a global minus sign on the r.h.s. of Eq. (1.9), leading to the alternative

definition of the β-function coefficients as βi = −bi.
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1.2. Hadron collisions

non-perturbative dynamics becomes relevant, and it is closely connected with the scale of
hadron masses. If we want to pursue a perturbative calculation, we need to make sure to
work far from the ΛQCD pole.

In QCD, usually one adopts as initial condition for the QCD evolution the value of the strong
coupling at the mass of the Z boson, MZ :

αS(M2
Z) ' 0.118 , MZ ' 91.188 GeV . (1.14)

When evaluating the β-function coefficients, we fix nF as the number of quark flavours considered
light, with the remaining heavier quark flavours decoupling from the theory [27]. One can then
relate the coupling for a theory with nF + 1 light flavours to that with nF flavours through
specific equations (see e.g. Ref. [24]).

For what concerns the QED evolution, one can adopt as initial condition the fine structure
constant αem at a scale equal to the electron mass, m2

e:

αem(m2
e) ' 1/137.036 , me ' 0.511 MeV . (1.15)

Quark contributions to the running of αem, usually estimated starting from e+e− low-energy
data, are also present. One may take into account such contributions coming from the light
hadronic resonances in an inclusive way. Namely, by starting from a precise determination of
α = αH that does include low-energy contributions, and that can be associated with a scale
µH (just) larger than the mass of the heaviest hadronic resonance, one can backward-evolve
αH = α(µH) from µH down to the preferred initial scale. By doing so, the possible local effects
of the resonances on the evolution are still neglected, but this is not important if the final scale
of the evolution is meant to be hard.

1.2 Hadron collisions

Since the parton model [28], we know that at sufficiently high energies the scattering between
two protons actually takes place between point-like particles, partons, extracted from the two
nucleons. Each parton comes with a certain fraction x of the longitudinal momentum of the
parent hadron. In order to obtain the cross section for a determinate process with a hadron
with momentum p in the initial state, we should write a sort of weighted mean over the possible
momentum fractions of the extracted quark. This requires the introduction of a function fi(x)
which gives the “probability”5to extract a parton of flavour i with the momentum fraction x.
This function is called parton distribution function (PDF). With two protons in the initial state,
the hadronic cross section is written as:

σ(Q, p1, p2) =
∑
i,j

∫ 1

0
dx1dx2 fi(x1)fj(x2) σ̂ij(Q, x1p1, x2p2) +O

(
Λ2

QCD

Q2

)
, (1.16)

5Strictly speaking, the PDFs admit a probabilistic interpretation only at leading order. At higher orders,
PDFs can even become negative as a consequence of the subtraction of collinear divergences. This will be clear
in the following.
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Chapter 1. Quantum field theories at colliders

where σ̂ij is called partonic or short-distance cross section, encoding the hard scattering between
partons i and j.6 Q denotes a physical scale of the hard scattering process e.g. the mass of the
produced object. Finally, the last term on the r.h.s. of Eq. (1.16) reflects the fact that the
factorization of a total hadronic cross section as a “product” of parton distrubution functions
and a partonic cross section is valid up to power corrections in Λ2

QCD/Q
2.

This factorization is based on a separation of the long-distance non-perturbative regime from
the short-distance behaviour computable in perturbative QCD. We thus need to make sure that
diagrams with lines connecting the partonic part of the process directly to the non-perturbative
hadronic part do not count. Factorization theorems have been proved at a reasonable level of
rigor for deep inelastic scattering (just one hadron in the initial state), for the Drell-Yan process
(two hadrons in the initial state, but leptons in the final state) and for other sufficiently inclusive
processes. However, factorization is often assumed to be true also in a more general context,
see Ref. [31] for a review.

Eq. (1.16) may be rewritten in a more suggestive way. If we denote with s the overall hadron-
hadron c.m. energy squared, the fraction of s available for the parton-parton collision will be
ŝ = x1 x2 s. By introducing τ = ŝ/s, we can rewrite Eq. (1.16) as:

σ =
∑
i,j

∫ 1

τ0

dτ

∫ 1

0
dx1dx2 fi(x1)fj(x2) σ̂ij(x1, x2) δ(τ − x1x2) , (1.17)

where τ0 is the minimum value of τ at which the hard process can occur. We define the
convolution of two functions g(z) and h(z) as:

f(z) = g ⊗z h =
∫ 1

0
dx dy g(x)h(y) δ(z − xy) =

∫ 1

z

dx

x
g(x)h

( z
x

)
, (1.18)

and if σ̂ij depends only on ŝ, Eq. (1.17) may be arranged as:

σ =
∑
i,j

∫ 1

τ0

dτ
τ
·
[
τ

ŝ

dLij
dτ

]
· [ŝ σ̂ij(ŝ)] (1.19)

where the differential parton luminosity, with dimensions of a cross section, is defined as

τ

ŝ

dLij
dτ

= τ

ŝ
(fi ⊗τ fj) . (1.20)

Hence, the hadronic cross section is obtained after integration over the possible values of the
c.m. energy fraction τ and sum over the possible partonic flavours i and j of the product between
the parton luminosity Lij and the short-distance cross section σ̂ij .

6In Eq. (1.16), we are neglecting that initial state partons carry transverse momentum as a consequence of
their motion inside the parent nucleon. Actually, what we call as PDFs are more properly defined as collinear
PDFs. Transverse-Momentum-Dependent PDFs (TMD PDFs) describe the distribution of partons inside the
nucleon as a function of both the intrinsic partonic transverse momentum k⊥ and the longitudinal momentum
fraction x (see e.g. [29, 30]). After integration over k⊥, we recover the standard collinear PDFs. At the current
level of experimental precision, the adoption of TMD PDFs is required for a faithful description of the cross
section in the region of total low transverse momentum of the final state system.
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1.3. Infrared divergences

1.3 Infrared divergences

The renormalization procedure provides us with a systematic way to handle the divergences of
UV origin. However, when computing matrix elements, we find other type of divergences, due
to the vanishing masses of some particles involved. These infrared (IR) divergences originate
from the integration over the region of low momenta.

Given a matter field of mass m and a gauge field of mass λ, suppose you want to compute
the matrix element for the emission of the gauge field off the matter field. It can be shown
that: if λ = 0 i.e. the gauge field is massless, the matrix element diverges when the energy of
the gauge field goes to zero (soft limit); if λ = m = 0 i.e. the matter field is also massless, the
matrix element diverges when the emission angle becomes null (collinear limit).

We will now explicitly show that these singular behaviours are universal i.e. the divergent
part factorizes from the matrix element in the soft and/or collinear limit.

1.3.1 Preludium: classical theory of radiation

Soft divergence is an effect already present in classical electrodynamics, as photon can be emit-
ted with arbitrary small energies. Suppose we have an electron in motion interacting with a
potential. Due to the presence of the potential, it will undergo acceleration and it will emit
radiation. This radiation is traditionally called bremsstrahlung, “braking radiation”, because it
was first observed with electrons stopped in a metallic target. In classical electrodynamics, the
distribution in frequency and angle of the intensity of energy radiated by an accelerated charge
is given by (Chapter 15 of [32]):

d2I

dω dΩ = e2
∣∣∣∣∫ dt

[
d

dt

(
n× (n× β(t))

1− n · β(t)

)]
exp iω(t− n · r(t))

∣∣∣∣2 , (1.21)

where r and β are the position and the velocity of the radiating particle, while n is the direction
of propagation of the radiation. In a photon description of radiation, the latter equation times
1/ω gives the number of photons emitted per unit energy interval, with Eγ = ω (in natural
units), and per unit solid angle:

d2N

dEγ dΩγ
= 1
ω

d2I

dω dΩ . (1.22)

For sufficiently long wavelengths of the emitted radiation — or small photon energies com-
pared to the total energy available — the radiation pattern won’t depend on the details of the
trajectory in the scattering region, but only on the initial and final velocities, and on the di-
rection in which radiation is observed. In fact, if we denote with β and β′ the velocity of the
electron before and after the collision, in the limit ω → 0 the exponential in Eq. (1.21) is equal
to unity, and the integrand is a perfect differential. By introducing the polarization vector ε,
lying in the plane orthogonal to n, we obtain:

lim
Eγ→0

d2N = e2
∣∣∣∣( ε · β′

1− n · β′

)
−
(

ε · β
1− n · β

)∣∣∣∣2 dEγEγ
dΩγ . (1.23)

We find that the number of photons emitted per unit energy emitted is inversely proportional to
the energy, and diverges as Eγ → 0, leading to the infrared divergence. Moreover, the radiation
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Chapter 1. Quantum field theories at colliders

is strongly peaked about the directions of β (and β′), as the denominators in Eq. (1.26) can be
rewritten as:

(1− n · β) = (1− |β| cosϑ) . (1.24)

Note that we would also have a collinear divergence for cosϑ→ 0 if it were not for the |β| = |p|/E
factor, which is different from zero for massive particles, like the electron.

Eq. (1.23) may be written in a manifestly Lorentz-invariant form by replacing the 3-dimensional
products with the analogous 4-dimensional products between:

k = Eγ(1,n) , p = E (1,β) , ε = (0, ε) , (1.25)

and by multiplying the result by [(2π)32Eγ ]−1 in order to introduce the usual Lorentz-invariant
phase space. Thus, we obtain:

lim
Eγ→0

d2N = e2
∣∣∣∣ ε · p′k · p′

− ε · p
k · p

∣∣∣∣2 d3k

(2π)32Eγ
. (1.26)

This is exactly the same expression one would get in a quantum field theory calculation. Of
course, far from the ω → 0 limit, the classical result completely fails in describing the pattern
of photon radiation. In this case we need a proper quantum description.

1.3.2 Soft limit of matrix element

M(0)
p+ k p

k

M(0)
p p− k

k

Figure 1.1: Final state (left) and initial state (right) emission of photon or gluon.

Suppose we have a diagram for a generic process, with an outgoing lepton with momentum
p + k. This lepton later emits a photon with momentum k, and it is left with momentum p

(Fig. 1.1, on the left). Feynman rules provide an expression for the complete matrix element
M(p, k), dependent both on p and k. This matrix element contains the propagator of the
fermion line, which in the limit of small k can be written as:

/p± /k
(p± k)2 −m2

k→0−−−→ /p

±(p · k) . (1.27)

It is thus straightforward to conclude that in this same limit the full matrix element factorizes
as

M(p, k) k→0−−−→ eQ
pµ
p · k

εµ(k)M(0)(p) , (1.28)

where M(0)(p) is the matrix element with an outgoing lepton with momentum p. In a similar
fashion, for a photon emission off an initial state lepton, as depicted in Fig. 1.1 on the right, we
arrive at the result

M(p− k) k→0−−−→ −eQ pµ
p · k

εµ(k)M(0)(p) . (1.29)
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1.3. Infrared divergences

The fraction pµ/(p · k) is usually called eikonal current. Note how in the limit k → 0 both
Eq. (1.28) and Eq. (1.29) diverge. As for the emissions from the internal lines of a diagram, we
do not have any problems of IR divergence.

Since we are allowed to neglect k also in the momentum conservation delta function, we
obtain a factorization of the phase space as well. Thus, supposing for instance a single charged
particle in the final and initial state, and taking into account both diagrams of Fig. 1.1, the
cross section for one photon emission in the soft limit reads

dσsoft(k, p, p′) = dσ(0)(p, p′) α

(2π)2

[
ε · p′

k · p′
− ε · p
k · p

]2
d3k

k0
, (1.30)

where dσ denotes an arbitrary fully differential cross section. Eq. (1.30) coincides with Eq. (1.26)
we obtained within a classical framework. It is possible to write down a similar result for
an arbitrary number of photon emissions, both from initial and final state fermions, see e.g.
Ref. [18]. In the limit of infinite photon emissions, the one-photon result simply exponentiates,
since emissions can be assumed as independent.

Expressions for the soft limit of matrix elements are similar in QCD, apart from a more
complex colour structure, see Ref. [33]. Colour correlations among different legs and the fact
that soft radiation can come also from hard gluons preclude a simple exponentiation of the single
emission result, see Ref. [34] and references therein.

1.3.3 Collinear limit of matrix element

Matrix elements factorize also in the collinear limit. Strictly speaking, in presence of a fermion
mass there are no collinear divergences, since the mass acts as a natural cutoff to the integration.
However, it is still useful to consider the collinear limit of matrix elements even in presence of
a finite fermion mass m, usually called quasi-collinear limit.

Consider again the final state branching depicted in Fig. 1.1 on the left, with a photon
emission off an electron. A convenient parametrization of final state momenta, suitable for a
precise definition of the collinear limit, is the Sudakov parametrization. Namely, we write the
momentum p and k as [35]:

pν = zp̃ν − kν⊥ + m2 + k2
⊥ − z2m2

z

nν

2 p̃ · n , (1.31)

kν = (1− z)p̃ν + kν⊥ + k2
⊥ − (1− z)2m2

1− z
nν

2 p̃ · n , (1.32)

where p̃ν is the momentum defining the “collinear” direction, with p2 = p̃2 = m2; nν is an
auxiliary light-like vector (n2 = 0); finally, kν⊥ denotes the transverse direction, with k⊥ · p̃ =
k⊥ · n = 0. Note that within this parametrization, the product between p and k reads:

2 p · k = k2
⊥ + (1− z)2m2

z(1− z) . (1.33)

Given Eqs. (1.31)-(1.32), the quasi-collinear limit is defined as k⊥ → 0 and m → 0, with fixed
m2/k2

⊥. If m = 0, the collinear limit is simply defined as k⊥ → 0. In this (these) limit(s), we
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Chapter 1. Quantum field theories at colliders

arrive at
|M(p, k)|2 p‖k−−→ e2

p · k
P̂ (z) |M(0)(p̃)|2 , (1.34)

where the function P̂ (z) is defined as

P̂ (z) = Q2
i

[
1 + z2

1− z −
m2

p · k

]
. (1.35)

with Q2 the charge of the lepton squared. This function is called splitting kernel: it encodes the
behaviour of the matrix element as a function of the momentum fraction z taken by one of the
two outgoing particles (in this case by the lepton). Similarly, we arrive at the factorization of
the phase space:

dΦ(p, k)→ dΦ(p̃)
z

dΦ(k) = dΦ(p̃) 1
16π2

dk2
⊥dz

z(1− z) . (1.36)

The factor 1/z takes into account the replacement p → p̃. By using Eq. (1.34) and Eq. (1.36),
we obtain for the cross section in the collinear limit:

dσ(p, k)→ dσ(0)(p̃) α2π
dk2
⊥

k2
⊥ + (1− z)2m2 P̂ (z)dz . (1.37)

Two comments are in order. First, note that the previous equation diverges as z → 1 i.e. when
the photon goes soft, see Eq. (1.35). Indeed, the collinear limit entails the soft limit (but the
opposite is not true). Second, if m = 0, the integration over the transverse momentum k2

⊥
diverges. This is the strictly collinear divergence, due to the vanishing fermion mass.

As in the case of the soft limit, the expressions presented here are also valid in QCD, upon
replacement of couplings and colour factors e.g. in Eq. (1.35), Q2 becomes CF .

1.4 Cancellation of infrared divergences

In the previous section, we have examined the IR singular behaviour of matrix elements, both
in QED and in QCD. We have found that in suitable limits the matrix elements diverge.

However, besides the real matrix elements we have studied, at the same perturbative order
there are also virtual corrections, namely diagrams where a virtual photon or gluon is emitted
and later absorbed by the fermion leg. Supposing that |M(0)|2 is of order αk, diagrams with a
virtual emission are of order αk+2, but their interference with the Born level M(0) is of order
αk+1, which is the same order of a real emission diagram. Thus we have to take into account
both contributions. Let us discuss what happens in QED and in QCD when combining real and
virtual contributions.

QED Soft divergences cancel between real and virtual terms if the observable we are calcu-
lating is sufficiently inclusive i.e. we cannot distinguish a virtual event and a real event with a
soft photon. For instance, this requirement is satisfied if we assume to not be able to detect
photons with energy less than some experimental cutoff ∆E. In this way infinities cancel and
the leftover finite terms give a perturbative correction to the tree-level cross section. Consider
for example the initial state radiation corrections to the process e+e− → µ+µ−. After summing
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1.4. Cancellation of infrared divergences

of real and virtual contributions, we obtain

σR + σV = σB

[
α

π

(
β2 + 1
β

ln 1 + β

1− β − 2
)

ln E

∆E

]
, (1.38)

where σB is the Born cross section, E is some upper limit above which the soft approximation
is no longer valid, and β is defined as:

β =
√

1− m2

s
, (1.39)

with m the electron mass and s the centre of mass energy squared. Eq. (1.38) is finite, and
we see the appearance of a typical logarithm ln(E/∆E), which is the left after the cancellation
of the soft divergence. A systematic proof of cancellation of soft divergences in QED has been
proved in 1937 by Bloch and Nordsieck [36]. In the 1960s, Yennie, Frautschi and Suura provided
the full treatment of IR divergences in QED [37], with an exponentiation of soft photon effects
to all order in perturbation theory.

As for collinear divergences, they are not present in QED, as the mass of the leptons act as
regulator. Indeed, the first logarithm in Eq. (1.38) is of collinear origin, and in the limit s� m2

(as it is the case at typical collider energies) it becomes

ln 1 + β

1− β
s�m2

−−−−→ ln s

m2 . (1.40)

Even though not divergent, this is a large number, which can spoil the convergence of the
perturbative series. It is possible to take into account the presence of these large logarithms of
collinear origin at all order in α: this will be the subject of Chapter 6.

QCD In QCD we have to deal with both soft and collinear divergences. Indeed, even if quark
masses are retained in the calculations7, gluon self-interactions are a source of intrinsic collinear
divergence. However, there exists a a theorem of cancellation even in the case of both soft and
collinear divergences. This result is called KLN theorem, proved by Kinoshita [38] and Lee and
Nauenberg [39]. Cancellation of soft and collinear divergences is guaranteed if a sum over initial
and final degenerate states is carried out. By degenerate states we mean states which cannot
be distinguished from one another e.g. a single-quark state and a quark accompanied by an
arbitrary number of collinear gluons.

In general, given a final state with n + 1 QCD particles, in the limit in which one particle
becomes soft or two particles become collinear, the observable should scale as:

On+1(k1, . . . , ki, . . . , kn) ki→0−−−→ On(k1, . . . , ki−1, ki+1, . . . , kn) , (1.41)

On+1(k1, . . . , ki, kj , . . . , kn) ki‖kj−−−→ On(k1, . . . , ki + kj , . . . , kn) , (1.42)

where On+1 and On is the value of the observable evaluated on a set of n or n + 1 particles
respectively. This property is called infrared and collinear (IRC) safety. IRC safety guarantees

7It is actually possible to keep the quark mass finite in the case of heavy quarks only (like charm or bot-
tom), since the masses of the lightest quarks are not well defined and certainly smaller than ΛQCD, therefore a
perturbative calculation is meaningless.
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Chapter 1. Quantum field theories at colliders

the cancellation of soft and collinear divergences, because in the soft and collinear limit On+1
reduces to On with the right mapping of momenta to permit the cancellation with the virtual
contributions.

However, in real situations we are not in the position to actually take the sum over initial
degenerate states. This fact can be simply understood as follows. Consider Fig. 1.2, which is
the analogue of Fig. 1.1 with a collinear splitting in the final or in the initial state.

σ(0)(p) p z p

(1−
z) p

σ(0)(z p)p z p

(1−
z) p

Figure 1.2: Final state (left) and initial state (right) collinear splitting.

In Fig. 1.2 on the left, the final state quark undergoes a collinear splitting, emitting a gluon
with momentum fraction 1 − z. We have already found the expression of the cross section in
this limit, see Eq. (1.37) and Eq. (1.35), upon replacements α → αS and Q2 → CF , and with
m = 0. This is the result for the real cross section. As said before, we need to also take into
account virtual contributions, which in the collinear limit can be found to be given by the exact
opposite of Eq. (1.37):

σV = −σ(0)(p) αS2π
dk2
⊥

k2
⊥
P̂ (z)dz . (1.43)

This implies that, when summing real and virtual contributions, and performing the integration
to get the total cross section, we obtain:

σ(1) = αSCF
2π

∫ [
σ(0)(p)− σ(0)(p)

](1 + z2

1− z

)
dk2
⊥

k2
⊥
dz = 0 . (1.44)

Hence, the divergences cancel, because the momentum entering the Born cross section is the
same in the real and in the virtual case. By now performing the same calculation in the case of
initial state splitting, as depicted in Fig. 1.2 on the right, we find:

σ(1) = αSCF
2π

∫ [
σ(0)(zp)− σ(0)(p)

](1 + z2

1− z

)
dk2
⊥

k2
⊥
dz . (1.45)

In the real emission case, the momentum entering the Born cross section is zp; instead, in the
virtual case, it is simply p, as virtual matrix elements have Born kinematics. In the soft limit
i.e. z → 1, we get the cancellation of soft divergence, since the difference in the square brackets
vanishes. Conversely, the collinear divergence does not cancel, since the integration over k2

⊥
is not bounded from below. The KLN theorem does not apply in this case, since we are not
summing over initial state potential collinear configurations.

1.5 Collinear factorization

Initial state collinear divergences can be absorbed into universal objects through the collinear
factorization procedure. The main idea is to absorb the initial state collinear divergences in the
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1.5. Collinear factorization

parton distribution functions, similarly to what we have done in Sec. 1.1, where UV divergences
were absorbed in the bare coupling. We can sketch this procedure as follows. According to
Eq. (1.16), the hadronic cross section is given by the “product” of a bare parton luminosity L0
and a parton cross section σ̂ (with collinear divergences):

σ = L0 ∗ σ̂ . (1.46)

As collinear divergences come from the integration over small transverse momenta, we introduce
a scale µF , called factorization scale8, to isolate this region and we write:

σ = L0 ∗ Γdiv(µ2
F ) ∗ σ̂(µ2

F ) , (1.47)

where Γdiv(µ2
F ) contains the singular collinear behaviour of σ̂, whereas σ̂(µ2

F ) is finite. At this
point we redefine the parton luminosity by absorbing the divergent factor:

L(µ2
F ) = L0 ∗ Γdiv(µ2

F ) , (1.48)

and in the end we obtain:
σ = L(µ2

F ) ∗ σ̂(µ2
F ) . (1.49)

Both factors are now finite, even though they both depend on an unphysical scale µ2
F . Of

course, we should make sure that the divergent part actually factorizes and it is independent
of the observable and of the process. This can be accomplished through the generalized ladder
expansion of Ref. [40]. See also Ref. [41] for a more pedagogical presentation.

We are now going to provide a concrete example of Eqs. (1.46)-(1.49). For sake of simplicity,
suppose we have only one proton in the initial state and just a single partonic flavour, say a
quark. At leading order, the momentum entering the the partonic cross section is the same as
the momentum carried by the extracted quark i.e.

σ(p) =
∫ 1

0
dx q0(x) σ̂(0)(xp) , (1.50)

with q0 denoting the bare quark PDF. At next-to-leading order, we take into account the emission
of a real gluon in the initial state, plus virtual corrections. This emission rescales the momentum
from xp ≡ p̂ to zp̂. In the collinear limit, the partonic cross section is given by Eq. (1.45). In
order to regularize the singularity, we retain the quark mass m in the calculation. By doing so,
Eq. (1.45) becomes:

αSCF
2π

∫ 1

0
dz

∫ Q2

0

dk2
⊥

k2
⊥ + (1− z)2m2

(
1 + z2

1− z

)[
σ̂(0)(zp̂)− σ̂(0)(p̂)

]
(1.51)

= αSCF
2π

∫ 1

0
dz

(
1 + z2

1− z ln Q2

(1− z)2m2 −
2z

1− z

)[
σ̂(0)(zp)− σ̂(0)(p)

]
+O

(
m2

Q2

)
(1.52)

where Q2 is some hard scale of the process, setting the upper limit of integration. As we are

8As for the renormalization scale, in the MS scheme the factorization scale is usually made to coincide with
the regularization scale µ̃ of dimensional regularization, see Sec. 1.1.1.
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interested in the terms divergent as m→ 0, we simply write:

σ̂(1)(p̂) = αSCF
2π

∫ 1

0
dz

(
1 + z2

1− z ln Q2

m2

)[
σ̂(0)(zp̂)− σ̂(0)(p̂)

]
. (1.53)

The latter equation may be further simplified by introducing the plus prescription notation,
which is a proxy for the virtual corrections in the collinear limit:∫ 1

0
dz [f(z)]+ g(z) =

∫ 1

0
f(z) [g(z)− g(1)] . (1.54)

Hence Eq. (1.53) becomes

σ̂(1)(p̂) = αS
2π ln Q2

m2

∫ 1

0
dz P (z)σ̂(0)(zp̂) , (1.55)

with P the regularized version of the quark-quark splitting kernel:

P (z) = CF

(
1 + z2

1− z

)
+
. (1.56)

At this point, according to Eq. (1.48), we split the integration over the transverse momentum
in Eq. (1.51) through the introduction of the factorization scale µ2

F . At the end this simply
amounts to splitting the logarithm in Eq. (1.55) into the sum of two pieces:

ln Q2

m2 = ln Q
2

µ2
F

+ ln µ
2
F

m2 . (1.57)

and thus Eq. (1.55) is now given by the sum of two terms:

σ̂(1)(p̂) = Γ(1)(p̂, µ2
F ) + σ̂(1)(p̂, µ2

F ) . (1.58)

In general, σ̂(1)(p̂, µ2
F ) denotes the finite part of the next-to-leading order partonic cross section,

subtracted of the initial state collinear divergence, which has been collected in Γ(1)(p̂, µ2
F ). Given

Eq. (1.58), the NLO version of Eq. (1.50) reads:

σ(p) =
∫ 1

0
dx q0(x)

[
σ̂(0)(xp) + αS

2π ln µ
2
F

m2

∫ 1

0
dz P (z)σ̂(0)(zxp) + σ̂(1)(xp, µ2

F )
]

=
∫ 1

0
dy

∫ 1

0
dx

∫ 1

0
dz q0(x) Γ(z, µ2

F ) σ̂(0)(yp) δ(y − xz) +
∫ 1

0
dx q0(x) σ̂(1)(xp, µ2

F ) (1.59)

with the distribution Γ(z, µ2
F ) defined as:

Γ(z, µ2
F ) = δ(1− z) + αS

2π ln µ
2
F

m2P (z) . (1.60)

Note that we have the freedom to include in the subtraction term of Eq. (1.60) any finite term.
Different choices are associated to different subtraction schemes.
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According to Eq. (1.48), we are now ready to redefine the parton distribution as

q(y, µ2
F ) :=

∫ 1

0
dx

∫ 1

0
dz q0(x) Γ(z, µ2

F ) δ(y − xz) (1.61)

= q0(y) + αS
2π ln µ

2
F

m2

∫ 1

y

dx

x
q0(x)P

(y
x

)
≡ q0 ⊗y Γ(µ2

F ) (1.62)

At the end we have achieved the desired factorization of Eq. (1.49):

σ(p) =
∫ 1

0
dy q(y, µ2

F )
[
σ̂(0)(yp) + σ̂(1)(yp, µ2

F )
]

(1.63)

which is equal to the starting expression, Eq. (1.59), up to terms of order O(α2
S).

In this derivation we have considered just one hadron in the initial state (and therefore
one PDF) and just one partonic flavour. By restoring two hadrons in the initial state and by
summing over partonic flavours, we arrive at the analogue of Eq. (1.16):

σ(p1, p2) =
∑
i,j

∫ 1

0
dx1dx2 fi(x1, µ

2
F )fj(x2, µ

2
F ) σ̂ij(x1p1, x2p2, µ

2
F ) . (1.64)

Note the explicit dependence on the factorization scale µ2
F . The subtracted short-distance

cross section is free of collinear divergence, and the parton distributions have been redefined
accordingly to:

fi(x, µ2
F ) = fi,0(x) + αS

2π ln µ
2
F

m2

∑
j

∫ 1

x

dξ

ξ
fj,0(ξ)Pij

(
x

ξ

)
. (1.65)

The sum in Eq. (1.65) is over the possible parton flavours j which undergo a collinear splitting,
by leaving a parton with flavour i entering the short-distance cross section. The function Pij
in Eq. (1.65) is the regularized Altarelli-Parisi splitting function for the branching i ← j. The
leading order QCD splitting functions are:

Pqq(x) = CF

[
1 + x2

1− x

]
+

(1.66)

Pgq(x) = CF

[
1 + (1− x)2

x

]
(1.67)

Pqg(x) = TR
[
x2 + (1− x)2] (1.68)

Pgg(x) = CA

[
x

(1− x)+
+ 1− x

x
+ x(1− x)

]
+ δ(1− x)11CA − 4nFTR

6 (1.69)

The splitting function P in Eq. (1.56) is the quark-quark splitting function P ≡ Pqq. Several
comments are in order. First, the regular (i.e. x < 1) part of Pqq and Pgq swaps under z ↔ (1−z),
since Pqq and Pgq refer to the same q → qg vertex with different kinematics. Second, Pqg and
Pgg are symmetric under z ↔ (1− z), since we have only quarks or only gluons in the final state
of the g → qq̄ and g → gg branching respectively. Third, the diagonal splitting functions Pqq
and Pgg are intrinsically distributions, containing both plus prescriptions and delta functions,
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in order to take into account the virtual corrections. Finally, note that Eqs. (1.66)-(1.69) are
valid also in QED with leptons and photons, upon the replacements indicated in Eq. (1.5). The
initial state splitting kernels with massive partons can be found in Ref. [42].

We conclude this section with a couple of final remarks. First, we point out that more sophis-
ticated way of regularizing mass singularities exist. In Eq. (1.51), we have simply avoided the
collinear divergence by adopting a finite quark mass m. In real cases, regularizing singularities
in QCD by giving masses to the particles is extremely complicated, and not gauge-invariant. A
more elegant approach is through dimensional regularization, already introduced in Sec. 1.1.1
in the context of UV divergences.

Secondly, in this section we have focused on initial state collinear singularities, but we men-
tion that we could handle also final state collinear singularities in the same way. Indeed, if
the observable under study is not sufficiently inclusive, i.e. we are not summing over the whole
set of possible degenerate final states, the KLN theorem does not apply. This happens when
taking into account single-hadron production cross sections, and when considering distributions
differential in the kinematical variables of the detected particle. In such cases, one is left with
final state collinear divergences, and the idea is to absorb these divergences in the final state
analogue of a PDF. Namely, a fragmentation function (FF). In practice one writes down an
equation similar to Eq. (1.50), and the same collinear factorization procedure presented in this
section for the PDFs applies for the FFs as well. Of course, as the PDFs, FFs have an intrinsic
non-perturbative component.

1.6 DGLAP equation

As with the renormalization scale µR, physical predictions have to be independent, up to higher
orders, on the factorization scale µF introduced in the factorization procedure. This requirement
leads to a renormalization group equation for the PDFs. In the context of our discussion, such
an equation can be obtained by simply taking the derivative of both members of Eq. (1.65). We
arrive at the important result:

∂fi(z, µ2
F )

∂ logµ2
F

= αS(µF )
2π [Pij ⊗ fj ] (z, µ2

F ) . (1.70)

This is the DGLAP equation, first introduced in the 1970s by Dokshitzer [43], Gribov, Lipa-
tov [44,45], Altarelli and Parisi [46]. The coupling has been evaluated at the scale µF 9, and the
splitting kernels can be expanded in a perturbative series in αS(µF ):

Pij(x, µF ) =
∞∑
k=0

(
αS(µF )

2π

)k
P

[k]
ij (x) . (1.71)

The leading order splitting functions P [0]
ij have already been introduced in Eqs. (1.66)-(1.69).

The next-to-leading order splitting functions P [1]
ij have been calculated in the 1980s by Curci,

Furmanski and Petronzio [40, 47]. In 2004 the next-to-next-to-leading order splitting functions
appeared [48,49].

9Strictly speaking, the scale in the argument of the coupling should be µR, and one should evolve αS and fi
by varying independently µR and µF . However, it is simpler to choose a single scale µ = µR = µF to solve the
DGLAP equation, and later evolve only αS by varying µR through the β-function.
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1.6. DGLAP equation

1.6.1 Non-singlet and singlet-gluon evolution

The splitting kernels Pij are not all independent. Exploiting flavour symmetry, we can split the
quark-quark and the quark-antiquark splitting functions in the following way:

Pqiqj = δijP
V
qq + P S

qq ,

Pqiq̄j = δijP
V
qq̄ + P S

qq̄ ,
(1.72)

where the superscripts stand for the singlet (S) and the valence (V) components of the splitting
functions. Furthermore, the splitting functions associated to a quark-gluon branching are flavour
independent:

Pqig ≡ Pqg, Pgqi ≡ Pgq . (1.73)

These properties allow us to rewrite the system of 2nF +1 equations in Eq. (1.70) as a system
of two coupled equations plus 2nF − 1 linear equations. We briefly illustrate how this works.
We start with introducing the singlet and the non-singlet combinations:

fS =
nF∑
i=1

fqi + fq̄i , fNS =
nF∑
i=1

fqi − fq̄i . (1.74)

The difference in the non-singlet combination cancels out the gluon PDF contribution to the
evolution. Indeed, we see that fNS evolves according to:

∂fNS

∂ logµ2 = αS
2πPNS ⊗ fNS , (1.75)

where PNS is defined as:
PNS = PV

qq − PV
qq̄ + nF (P S

qq − P S
qq̄) . (1.76)

On the other hand, the singlet combination is coupled to the gluon in the evolution:

∂

∂ logµ2

(
fS

fg

)
= αS

2πPS ⊗
(
fS

fg

)
, (1.77)

with the singlet-gluon matrix PS defined as:

PS =
(
PΣΣ PΣg
PgΣ Pgg

)
, (1.78)

where the components read as follows:

PΣΣ = PV
qq + PV

qq̄ + nF (P S
qq + P S

qq̄) , (1.79)
PΣg = 2nFPqg , (1.80)
PgΣ = Pgq . (1.81)

If nF = 1 i.e. we only have a quark flavour q with its own antiquark q̄, plus the gluon g, Eq. (1.75)
and Eq. (1.77) are sufficient, and one recovers the solutions for fq and fq̄ by trivially inverting
Eq. (1.74). Otherwise, if nF = 2, we need more independent equations. It is customary to define

25



Chapter 1. Quantum field theories at colliders

other non-singlet-like combinations such as:

f±NS,ij = fqi ± fq̄i − (fqj ± fq̄j ) (1.82)

which evolve linearly as in Eq. (1.75), with the replacement:

PNS −→ P±NS = PV
qq ± PV

qq̄ . (1.83)

1.6.2 Solving the DGLAP equations

The DGLAP equations are usually solved numerically. Because of the convolution, they are
integro-differential equations, with a non-trivial dependence on the momentum fraction x and
on the factorization scale µ2. Two main strategies have been designed in the past years to attack
this problem, both relying on the idea of transforming the convolution into a product. Let us
discuss them in turn.

• We can start with representing the PDFs on a grid i.e. write the PDF as

f(x, µ2) =
Nx∑
α=1

wα(x) f(xα, µ2) ≡
Nx∑
α=1

wα(x) fα(µ2) (1.84)

where w are some interpolation functions, and xα with α = 1, . . . , Nx are the grid nodes10.
In this way, the evolution equation becomes:

∂fα(µ2)
∂ logµ2 = αS(µ)

2π

Nx∑
α=1

[P ⊗ wβ ] (xα, µ2) fβ(µ2) ≡ αS(µ)
2π

Nx∑
α=1

Pwβα(µ2) fβ(µ2) . (1.85)

After having computed the N2
x convolutions between the interpolation weights and the

splitting kernels, one is left with a differential equation in µ2 which can be solved by means
of standard Runge-Kutta methods. Such a method is employed in tools like HOPPET [50],
QCDNUM [51] or APFEL [52]. One is able to exploit the flexibility given by the grids
to efficiently reproduce any functional form for the PDFs.

• A more radical approach is based on a fundamental property of the Mellin transform.
Given a function f(z) whose domain is [0, 1], this is defined as follows:

M [f ] ≡ fN =
∫ 1

0
dz zN−1f(z) . (1.86)

If f(z) is the convolution of two functions g(z) and h(z), then the convolution factorizes
in N -space:

M [g ⊗ h] = M [g]M [h] ⇐⇒ [g ⊗ h]N = gN hN . (1.87)

This simple result imply that the DGLAP equation, written in Mellin space, is a pure
matrix differential equation, and can be solved exactly with a closed expression, or ap-
proximately in an iterative fashion. Usually the PDFs at the initial scale are written in

10Note that it is customary to build the grid as linearly spaced in variables different from x and µ2. For
instance, variables such as ln(1/x) and lnµ2 are more natural, given the DGLAP equation and the functional
form of the PDFs.
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terms of a basis of functions with known Mellin transforms; the evolution is then carried
out in Mellin space, and eventually one numerically inverts the Mellin transform to ob-
tain the evolved PDFs in x-space. This is the method adopted in PEGASUS [53] or in
partonevolution [54].

We will give further details on the second strategy, based on the Mellin transform, in Chap-
ter 6, where we will explicitly solve the DGLAP equations in QED.

1.7 How to determine the proton PDFs

Hadronic PDFs have an intrinsic non-perturbative component: as such, they are not calculable
within perturbation theory. Unlike the Q2-dependence, predicted by the DGLAP equation of
Eq. (1.70), the x-dependence must be derived from the comparison with the experimental data,
through a PDF fit. The essence of a PDF fit is encoded in Eq. (1.64): the partonic cross
section σ̂ij can be calculated order by order in perturbation theory, the hadronic cross section
σ is measured and the PDFs fi and fj are extracted. The underlying assumption here is the
universality of parton distribution functions i.e. the PDFs found when fitting the experimental
data of a determinate process can be later applied in the calculation of another process. In other
words, the purpose of the PDFs is to allow one to express the prediction for a process in terms
of that for another process. In practice, a fitting procedure requires several elements [55]:

• a database of experimental data points (σexp) and theoretical predictions for the corre-
spondent short-distance cross sections (σ̂ij).

• a parametrization of the functions fi, through the introduction of a specific functional
form with unknown free fit parameters ~a. This parametrization is often driven by QCD
insight e.g.

fi(x,Q2
0;~a) = x−a1(1− x)a2g(a3, x) , (1.88)

where Q2
0 is a reference scale, the factor x−a1(1−x)a2 encodes the expected PDF behaviour

at small and at large x, and g is a generic function that tends to a constant for x→ 0 and
x→ 1.

• a figure of merit to minimize, usually the quadratic difference between the cross section
measured, σexp, and the cross section calculated as the result of the convolution on the
r.h.s. of Eq. (1.16), σth(~a), now depending on ~a:

χ2 ∝ (σexp − σth(~a))2 . (1.89)

The best fit set of parameters will be thus identified with the absolute minimum of this
χ2 function in the parameter space.

• a method of propagation of the experimental uncertainties associated to σexp on the PDFs.
The final result will be then given in the form:

(fi + δfi)(x,Q2
0) . (1.90)

In particular, it is essential to have a proper statistical interpretation of δfi, with an
associated confidence level.
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Chapter 1. Quantum field theories at colliders

Given the wide range of options about how to actually implement each of the above points,
each PDF fitting group adopts its own strategy. Just to mention some of the main collaborations:
MSTW [56], CTEQ-TEA [57] and NNPDF [58] (the references point to the latest global fit
of each series). We are not going to expand on this here, as Section 4.3 will introduce in more
details the NNPDF collaboration fitting methodology, based on a Monte Carlo approach for
the propagation of uncertainties and the adoption of neural networks as interpolating functions.
This is the methodology employed in Chapter 4 for the study of the impact of jet measurements
on parton distribution functions.

1.8 Jet physics

In the previous sections, we have explained in some detail what happens in the initial state of
a proton-proton collision. In a similar fashion, let us discuss what happens in the final state of
a collider event. This will naturally drive us towards the concept of jet.

1.8.1 Parton shower

Within a fixed-order computation, we obtain a final state with a handful of hard QCD partons.
This image is quite different from what one would observe in a real experiment, where detectors
around the interaction point see a great number of pions, kaons and other kind of hadrons. The
process linking the description of a final state collider event as seen by a fixed-order calculation
and as observed in experiments may be described as follows.

Given the set of energetic partons coming out from the hard scattering, they start progres-
sively loosing energy, by radiating mostly soft and collinear particles, as QCD dynamics dictates.
Unlike QED, emitted gluons carry colour charge, and they further emit, generating a cascade of
QCD particles. This parton shower can be approximately calculated in perturbative QCD, as
the most dominant terms are the ones associated to soft and collinear emissions, which factorize
from matrix elements.

One might think to describe this sequence of radiations by iterating the basic factorization
equation for one collinear emission, Eq. (1.37). For later purposes, it is useful to exploit the
z ↔ 1− z symmetry of the splitting functions and move all the soft singularities to z = 0 [59].
Namely, we define a quark splitting function Pq for the branching of a quark into a gluon with
momentum fraction z and a quark with momentum fraction 1− z:

Pq(z) = CF

[
1 + (1− z)2

z

]
, (1.91)

and a gluon splitting function Pg for the branching of a gluon into a pair of gluons or a quark-
antiquark pair:

Pg(z) = CA

[
21− z

z
+ z(1− z) + TRnF

CA
(z2 + (1− z)2)

]
. (1.92)

In the soft limit these functions read:

Pq(z)
z→0−−−→ 2CF

z
, Pg(z)

z→0−−−→ 2CA
z

, (1.93)
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with the finite part of the splitting functions describing the hard-collinear radiation. We shall
use these expressions in Chapter 3, where we study the single-jet inclusive cross section at NLO
in the collinear approximation.

However, this method of building approximate cross sections with a great number of legs
in the final state is not efficient, as it lacks flexibility and it is difficult to implement in a
computer code. An alternative way of reproducing parton showers is by means of Monte Carlo
methods. The splitting function (times the particle emitted phase space) can be interpreted
as a probability, and one is able to simulate parton emissions in the same way one simulates a
radioactive particle decay. We are not going to expand on this: the interested reader may find
more details in Ref. [60]. Thanks to Monte Carlo parton showers, starting with a handful of
hard particles, we can reconstruct the complexity of a real event, even though approximately.

However, at some point in the radiation process, when the scale of energy involved is .
1 GeV, we enter in the non-pertubative regime (see Fig. 3). During hadronization, partons
start recombining and forming bound states, baryons and mesons, which are the ones actually
detected. A precise description of the mechanisms behind hadronization is still unknown, and
numerical simulations are based only on phenomenological models.

1.8.2 Jet definition

How is possible to link the complexity of the final state (before or after hadronization) to the
picture provided by fixed-order perturbative QCD calculations, with only a few hard particles
in the final state? We would like to define an observable for the description of a final state
composed of QCD particles which is well defined in perturbation theory, is formulated in such a
way it could be straightforwardly implemented both in theoretical predictions or in experimental
analysis, and in addition does not depend too much on the hadronization process.

This leads us to the concept of jet. Naively, a jet may be thought of as a bunch of energetic
collimated particles distributed around a determinate direction. This direction would reflect the
direction of the original parton which originated the shower, since QCD dynamics encourages the
production of soft and collinear particles, and thus jets are somehow proxies for the hard partons.
The first jet definition dates back to 1977, with the article of Sterman and Weinberg [61]. It was
based on the idea of jet as a cone containing a determinate fraction of the total energy present
in the final state of the event. Over time many other definitions have been proposed, we refer
the reader to Ref. [62] for a detailed discussion. Remember that an important property that
observables involving jets (as any other observable) has to satisfy is IRC safety, see Eqs. (1.41)-
(1.42), to guarantee cancellation of divergences and therefore calculability.

Nowadays, jets are almost always defined by means of sequential recombination clustering
algorithms. Clustering is a form of unsupervised learning for classification, based on a proximity
distance between objects. For instance, the family of gen-kt algorithms can be formulated in the
following way. For a given set of QCD partons (or hadrons) in the final state of a collider event,
with each particle described by the kinematic variables (pt, y, φ) discussed in Appendix 1.B, we
define the following distances:

dij = min
(
p2n
ti , p

2n
tj

) ∆R2
ij

R2 , diB = p2n
ti , (1.94)
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Chapter 1. Quantum field theories at colliders

where the parameter R is the jet radius, and the angular distance ∆R2
ij is defined as:

∆R2
ij = (∆yij)2 + (∆φij)2 . (1.95)

We first find the minimum among the whole set of distances dij and diB . If the minimum is a
diB distance, the i-th particle is declared to be a jet and it is removed from the list of particles;
otherwise, if the minimum is a dij distance, the i-th and the j-th particles are combined to form
a new “protojet” (we usually sum the 4-momenta of the two particles to define the 4-momenta
of the protojet). The procedure is iterated until there are no more particles are left. In the end,
only the jets with pt greater than some pcutt are retained.

Let us briefly comment how the gen-kt algorithm behaves for different values for the exponent
n which appears in Eq. (1.94):

• n = 1 (kt algorithm [63–65]): in the collinear limit, the distance is proportional to the
transverse momentum of i relative to j, and the clustering sequence emulates the QCD
branching process. It tends to follows the aggregation of soft particles, thus resulting in
irregular jet borders.

• n = 0 (Cambridge/Aachen (C/A) algorithm [66,67]): in this case, the distance is purely an-
gular, and the clustering will follow the angular ordering among particles. This algorithm
is useful to study the substructure of jets.

• n = −1 (anti-kt algorithm [68]): here, the hard particles are clustered in the first steps of
the algorithm. If the distance between two hard particles is greater than R, each hard
particle will tend to accumulate soft particles, providing perfect conical shapes.

The anti-kt algorithm has been adopted as the default choice by the LHC experimental col-
laborations. This is due to different reasons. From the experimental point of view, an algorithm
which returns circular shapes in the y–φ plane is better for calibration purposes. In addition,
when adopting algorithms of the gen-kt family, computational geometry techniques allow to
reduce the number of operations for clustering of N particles from O(N3) to O(N logN) [69],
making the sequential recombination algorithms orders of magnitude faster than cone algo-
rithms. The package FastJet [70] implements the algorithms of the gen-kt family, as well as
many other tools for jet clustering and jet substructure studies.

1.9 Jet substructure

In the context of analyses involving hadronic final states, a well-behaved jet definitions is a
basic requirement. However, when collecting radiation inside jets, we lose valuable information
that can help us to better describe the event. This observation is even more true in the case
of highly boosted objects i.e. objects whose transverse momentum pt is very large compared to
the invariant mass m. For instance, suppose that we have a W boson decaying hadronically in
two jets. A back-of-the-envelope calculation shows that the angle θ between the decay products
is proportional to m/pt. For values of pt much larger than m, the two jets are not individually
resolved anymore, as they are clustered together is a single jet, and thus in the boosted regime
the 2-pronged decay structure appears as a QCD jet with the same mass.

Another typical case scenario where one may be interested in going beyond the monolithic
picture of jet is in the context of quark- versus gluon-jet discrimination. Namely, being able
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1.9. Jet substructure

to disentangle jets that can be thought of as originating by the fragmentation of a high-energy
quark from the ones originating from a gluon. In a first approximation, the radiation potential
for a gluon is greater than one for a quark, due for the different colour factor i.e. CA > CF .
Hence, by quantifying the amount of radiation around a hard prong we can — in principle at
least — discriminate between a quark- and a gluon-jet11.

Jet substructure techniques have been developed in the past decade to address these topics.
Exciting tools have been developed, successfully tested, and are currently used in experimental
analyses. Here we limit ourselves to discuss one of the most used jet substructure variables, the
N -subjettiness [73], that we will adopt in the studies of Chapter 5, and we refer the reader to a
dedicated textbook [59] for a detailed discussion about other jet substructure tools.

As its name suggests, N -subjettiness aims to identify jets with an N -prong structure. It
takes inspiration from the event-shape N -jettiness [74]. In order to achieve this, a set of axes
a1, . . . , aN is introduced and the N -subjettiness is defined as

τ
(β)
N = 1

ptJR
β
0

∑
i∈jet

ptimin(∆Rβia1
, . . . ,∆RβiaN ), (1.96)

where β is a free parameter, ptJ and R0 are the jet transverse momentum and radius respectively
and ∆Riaj is the distance between particle i and the axis aj in the azimuth-rapidity plane, see
Eq. (1.95). The axes aj can be defined in several ways (see for instance Ref. [59]). One common
choice is to re-cluster the jet with an algorithm of the gen-kt family and take ai as theN exclusive
jets. In this case, if we set the exponent p of the gen-kt algorithm to p = 1/β, we match the
distance measure used for the clustering with the one used to compute N -subjettiness. This
property can be used in analytic calculations. Indeed, IRC safety guarantees that N -subjettiness
distributions can be meaningfully calculated in perturbative QCD. These distributions have been
the subject of several theoretical investigations [75–78].

N -subjettiness has been originally introduced in the context of boosted objects phenomenol-
ogy. If ones defines the N -subjettiness ratio τ (β)

N,N−1 as

τ
(β)
N,N−1 = τ

(β)
N

τ
(β)
N−1

, (1.97)

one is provided with a good discriminating variable for N -prong signal jets against the QCD
background. Indeed, N -subjettiness quantify the amount of radiation around N prongs, then for
a structure with N prongs one expects a transition point between τN−1 (small) and τN (large).
For instance, by imposing a cut on τ21 < τcut one can differentiate W jets from QCD jets.

Since gluon jets have generally larger value of N -subjettiness compared to quark jets, distri-
butions basedN -subjettiness can be applied as well in the context of quark/gluon discrimination.
As an example, let us calculate what is the probability of having τ1 smaller than a cut τ in the
case of a quark or a gluon jet12. In other words, we would like to calculate the cumulative

11Note that the association of a single parton to a final-state jet is an intrinsically ambiguous — if not ill-
defined, operation, essentially because of higher-order corrections. It is however possible to employ operational
definitions that associate the value of a measurable quantity to an enriched sample of quarks or gluons [71,72].

12Our discussion is along the lines of Ref. [79].
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probability distribution Σ(τ1 < τ). If β = 2, τ1 is simply given by:

τ1 =
∑
i

ziθ
2
i =

∑
i

ρi = ρ , (1.98)

where zi is the momentum fraction and θi is the angle (in the unit of the jet radius) of each
gluon emission off the quark (or gluon) hard line. Note that τ1 is the same as the (normalised)
jet mass ρ = (m/ptR0)2, and each emission contributes with ρi = ziθ

2
i to the total jet mass.

For the purpose of this calculation and of Chapter 5, we introduce the radiator R(X),
calculated considering the contribution of a soft and collinear gluon carrying a fraction zi of the
hard parton transverse momentum pt, emitted at an angle θiR0 with respect to the hard parton
direction, and imposing that ρi > X. At LL accuracy it is the same for quarks and gluons and
its expression reads

R(X) = 2
∫ 1

0

dθ2
i

θ2
i

∫ 1

0

dzi
zi

αS(zθptR0)
2π Θ(ziθβi > X) = 2

β

∫ 1

X

dρi
ρi

∫ 1

ρi

dzi
zi

1
π
αS

(
z
β−1
β

i ρ
1
β

i ptR0

)
.

(1.99)

For clarity, let us neglect the running of αS. We then find:

R(X) = 2αS
βπ

∫ 1

X

dρ

ρ
log
(

1
ρ

)
= αS
βπ

log2
(

1
X

)
. (1.100)

At LL accuracy, one emission dominates the jet mass and all the others just provide tiny
corrections. This is easy to understand, as the emission probability in the soft and collinear
limit is

P (z) dθ dz = CR
αS
π
d log

(
1
θ

)
d log

(
1
z

)
(1.101)

Eq. (1.101) implies that the emissions are uniformly distributed in the log(1/θ)-log(1/z) plane,
and are thus exponentially far apart on a linear scale. This implies that we can approximate the
condition τ1 < τ as:

τ1 =
∑
i

ρi ' max
i

(ρi) < τ , (1.102)

and the last inequality is equivalent to the requirement ρi < τ ∀i. All the real emissions are thus
independent, and we have to sum over any possible number p of real emissions. Conversely, the
virtual emissions are (by definition) unconstrained, and naturally exponentiate. In the end we
obtain

Σ(τ1 < τ) =
∞∑
p=0

[
1
p!

(
CR

αS
π

∫ τ

0

dρi
ρi

ln
(

1
ρi

))p ][
exp

(
−CR

αS
π

∫ 1

0

dρ

ρ
ln
(

1
ρ

))]

= exp
(
−CR

αS
π

∫ 1

τ

dρ

ρ
ln
(

1
ρ

))
≡ exp (−CRR(τ)) . (1.103)

Hence, the cumulative distribution for quark and gluon jet at LL differs only by the colour factor
CR. This result is usually called Sudakov factor, and it has a nice physical interpretation related
to the partial cancellation of real and virtual emissions. Indeed, real and virtual emissions cancel
each other, apart from the region where τ1 > τ , where real emissions are forbidden and only
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Figure 1.3: Left: differential pi(τ1) and cumulative Σi(τ1 < τ) distributions for quark and
gluon jets. Right: ROC curves for a random classifier and the classifier corresponding to a
simple cut on τ1. In both plots an illustrative cut equal to τ = 0.2 is shown.

virtual emissions are allowed, giving rise to an exponential factor with negative sign.

We can straightforwardly derive the differential distribution p for observing a value τ1 = τ

by simply taking the derivative of Eq. (1.103):

p(τ1 = τ) = CR
2αS
βπ

log (1/τ)
τ

exp
(
−CR

αS
βπ

log2
(

1
τ

))
. (1.104)

These differential distributions for quark and gluon jets are shown in Fig. 1.3 on the left. The
cumulative distributions for an illustrative cut τ = 0.2 are also shown. It is clear from Fig. 1.3
that the less the two differential distributions overlap, the more a simple cut τ on τ1 is effective
when separating quark jets from gluon jets.

In order to assess the discriminating power of an observable, Receiver Operating Character-
istic (ROC) curves are often considered. These curves show the background (gluon) efficiency
against the signal (quark) efficiency and are remarkably useful to directly compare the perfor-
mance of different tools. In terms of the normalised cumulative distributions for quark and
gluon jets, Σq and Σg respectively, the ROC curve is defined as:

ROC(x) = Σg
(
Σ−1
q (x)

)
, (1.105)

where x is the signal (quark) efficiency. If the observable is τ1, it’s trivial to find an explicit
expression for the ROC curve:

Σg(τ) = [exp (−CFR(τ))]CA/CF ≡ [Σq(τ)]CA/CF −→ ROC(x) = xCA/CF . (1.106)

Such a ROC curve is shown in Fig. 1.3 on the right. The area under the ROC curve (AUC)
can be used as a single-number quantifier of the discrimination power. AUC = 0 corresponds
to perfect performance, whereas AUC = 1/2 to a random classifier. In this latter case the ROC
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curve is just the straight line y = x, see Fig. 1.3. The AUC for a cut on τ1 is given by:

AUC =
∫ 1

0
dxxCA/CF = CF

CF + CA
' 0.308 . (1.107)

1.10 Structure of QCD predictions

We conclude this Chapter by showing how a QCD perturbative result is organized, and explain-
ing how any fixed order prediction retains a dependence on the unphysical renormalization and
factorization scales.

1.10.1 Scale dependence

In perturbative QCD, we express the theoretical prediction as the sum of a series in αS. For
example if we consider a total cross section we can write:

σ =
∞∑
k=0

ckα
k
S = c0 + c1αS + c2α

2
S + . . . (1.108)

If we retain only some terms of the expansion, we can claim a fixed-order prediction:

σp =
p∑
k=0

ckα
k
s (1.109)

People usually refer to the p-th order as the NpLO order: leading order (LO), next-to-leading
order (NLO), next-to-next-to-leading order (NNLO) and so on. As we include further orders in
the expansion, we can reasonably hope to see systematic improvements in the accuracy of our
predictions and if we have an arbitrarily large numbers of terms we can imagine to reach the
“true sum” of the series13.

The renormalization of the theory leads αS to depend on the renormalization scale µR —
in hadronic collisions, we would have also a dependence on the factorization scale µF , but let
us neglect this dependence for a moment. In order to calculate the total cross section we need
to make a choice for µR. Suppose that we evaluate the coupling at µR = Q, and then the
coefficients refer to an expansion around αS(Q):

σ =
∑
k

ckα
k
S(Q) = c0 + c1αS(Q) + c2α

2
S(Q) + c3α

3
S(Q) + . . . (1.110)

Choosing another value for µR leads to a variation of αs and it seems that this arbitrariness
introduces a dependence on the unphysical scale µR in the physical observable σ. However it
can be shown that with a different choice of µR, given an infinite number of terms in the αs
expansion, the coefficients ck change their values in order to compensate for the variation of
αs and this cancellation leads the final result to be independent of the choice of µR. In other

13Since QCD series are usually asymptotic and not convergent, the “true sum” of the series must be defined
by an appropriate prescription.
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words, this means that Eq. (1.110) must be equivalent to:

σ =
∞∑
k=0

ck(Q,µR)αkS(µR) . (1.111)

However, when we deal with a fixed-order prediction, σp, this cancellation cannot be exact. Any
fixed order prediction has an unavoidable scale dependence: σp = σp(µR). It can be shown that
the scale dependence is always of order αp+1

S , so it is greatly reduced with an increasing of the
perturbation order. Thus, order by order we have the relation:

σp(µR) = σp(Q) +O(αp+1
S ) . (1.112)

This last relation allows us to find the expression of the ck(Q,µR) coefficients as a function of
the ck ones. For instance, by using Eq. (1.12), we find that c2(Q,µR) is constrained to be:

c2(Q,µR) = c2 − 2b0c1 ln µR
Q

. (1.113)

Similarly, for what concerns the factorization scale µF , by imposing order by order the µF -
independence of the physical prediction, one finds relations similar to Eq. (1.113), but involving
convolutions with the Altarelli-Parisi splitting kernels Pij , see Sec. 1.5. Indeed, like the β-
function of Eq. (1.9) controls the dependence on µR, the DGLAP equation of Eq. (1.70) controls
the dependence on µF .

1.10.2 Missing higher order uncertainties and scale variation

Strictly speaking, the fixed-order prediction in Eq. (1.109) is given without uncertainty, because
the coefficients ck are perfectly determined. However, it is customary to see σp as an estimation of
the infinite series of Eq. (1.108) and then we need to associate a missing higher order uncertainty
(MHOU) to any fixed-order prediction. This uncertainty is related to the fact that we are
neglecting the remainder:

∆p =
∞∑

k=p+1
ckα

k
S = cp+1α

p+1
S + cp+2α

p+2
S + . . . (1.114)

In order to estimate the presumed value of ∆p and then the uncertainty related to σp, one
typically quotes an uncertainty interval [σ−p , σ+

p ] around σp(µR = Q). One choice for such an
interval is:

[σ−p , σ+
p ] = [min{σp(Q/r), σp(rQ)},max{σp(Q/r), σp(rQ)}] (1.115)

where r is a factor (usually r = 2 or 4) fully conventional. This approach to estimate MHOUs is
referred to as scale variation procedure, because it relies on calculations of σp at renormalization
scales different from the central one.

A priori there is no reason why this interval should represent a sensible estimate of the
remainder ∆p of the series, because the former is a function of the ck coefficients for k ≤ p,
while the latter is a function of the ck coefficients for k ≥ p. It can be shown that the interval
given by scale variation and the remainder of the series are comparable under the assumption
that all the coefficient in the series share the same magnitude [80], and thus the use of scale
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variation is in some sense justified, even if this procedure has no rigorous theoretical foundation.
If our predictions depend also on the factorization scale µF , we could still use a prescription

similar to Eq. (1.115), by choosing as uncertainty interval the one obtained after a concurrent
variation of µR and µF by a factor of r around the central scale chosen. However, as suggested
in Ref. [81], during the variation of the scales it is preferable to avoid values of µR or µF which
differ by a factor greater then r. In the case r = 2, this prescription reduces to the well-known
7-point scale variation rule, see Fig. 1.4.

�F

�R

2QQQ/2

2Q

Q

Q/2

Figure 1.4: 7-point scale variation rule: the renormalization and the factorization scales are
varied around the central energy Q, but the opposite ends of the square - which imply a factor
4 of variation between the scales - are not taken into account. The uncertainty band is obtained
by taking the minimum and the maximum value of the envelope.

1.10.3 What is the right scale?

We have seen how any fixed-order prediction, due to a truncation of the perturbation series,
retains a scale dependence. One can then try to make a “good” choice for the scales, in order
to make the truncated and the all-orders prediction as similar as possible. Renormalization
scale or factorization scale µ always appears in fractions like µ/Q inside a logarithmic term,
where Q is a characteristic hard scale of the process. Thus, choosing a scale µ radically different
from Q generates large logarithms which deteriorates the convergence of the perturbative series.
The simple choice µ = Q could be a good choice for processes in which only one characteristic
energy appears e.g. usually the inclusive ones, such as e+e− → hadrons.14 The situation is quite
different for processes which naturally involve different physical scales, for example processes
with a more exclusive final state. Jet observables we shall study in Chapters 2–4 are multi-scale
processes and the choice of the proper scale is a delicate issue.

In any case, remember that, while there could be choices better than others15, there is never
a best choice, as fixing a scale does not remove the theoretical error on the prediction: for a
quantity up to order O(αpS), there will always be an error of order O(αp+1

S ).

14Actually there is no reason to have µ exactly equal to Q. If we choose for example µ = 2Q or µ = Q/2 for a
fixed order prediction at order p, there are small logarithms which appear at order O(αp+1

S ). But this does not
improve nor deteriorate the convergence of the series, because we don’t know the value of the cp+1 coefficient.

15For instance, in processes with one distinctive scale Q, the choice better than others is Q, since this choice
resums the log(µR/Q) terms to all orders.
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1.A QED and QCD Lagrangian densities

In this appendix we report explicit expressions for the Lagrangian densities in covariant gauges
in both QED and in QCD, and we compare them side by side. They are given by:

LQCD = −1
4F

A
µνFAµν (1.116)

+
∑
q

ψq,a(iγµ∂µ −mq)ψq,a

+
∑
q

ψq,a(−gSγµtCabACµ )ψq,b

+
[
LGF = − 1

2ξ
(
∂µAAµ

)2 ]

+
[
Lghost

]

LQED = −1
4FµνF

µν (1.117)

+
∑
i

ψi(iγµ∂µ −mi)ψi

+
∑
i

ψi(−eγµQiAµ)ψi

+
[
LGF = − 1

2ξ (∂µAµ)2

]

A sum over repeated indices is understood. Fermion and boson fields appear:

ψq,a is the quark field of flavour q and mass
mq, with colour index a running from 1 to
Nc = 3. The sum with index q runs over
the different flavours of quarks. Quark fields
transform under the fundamental represen-
tation of SU(3). ACµ is the gluon field, the
gauge field of SU(3), with the index C run-
ning from 1 to N2

c − 1 = 8. Gluon fields
transform under the adjoint representation
of SU(3).

ψi is a fermion field with mass mi. The sum
with index i runs over electrically charged
particles (both leptons and quarks). This
field transforms under U(1). Aµ is the pho-
ton field, the gauge field of U(1).

The second line of Eqs. (1.116)-(1.117) describes a kinetic propagation term for the fermion
fields. The third line of both Lagrangians encodes the fermion-boson interaction vertex. Such a
vertex contains:

tCab are the N2
c − 1 = 8 generators of SU(3),

whose 3-dimensional representation is pro-
vided by the eight Gell-Mann matrices, her-
mitean and traceless (see Ref. [24] for explicit
expressions).

Qi is the charge of the field ψi in units of the
positron charge e.g. the electron has charge
Q = −1.

37



Chapter 1. Quantum field theories at colliders

The first line of Eqs. (1.116)-(1.117) contains the contraction of field strength tensors:

FAµν is the QCD field strength tensor, built
as:

FAµν = ∂µAAν − ∂νAAµ − gSfABCABµACν
(1.118)

where fABC are the structure constants of
SU(3), appearing in the defining relation of
the algebra associated to the group:[

tA, tB
]

= ifABCt
C (1.119)

Fµν is the QED field strength tensor:

Fµν = ∂µAν − ∂νAµ (1.120)

Note the absence of the non-abelian term.
The structure constants of U(1) are null, and
the commutator in Eq. (1.119) is always zero.

By expanding Eq. (1.118), we find a kinetic term for the gluons and self-interaction terms
among gauge fields, namely the triple-gluon vertex (of order gS) and the four-gluon vertex
(of order g2

S). These vertices are present because the carriers of the colour force are themselves
coloured, unlike the electrically neutral photon. In fact, there are no interactions among photons
in QED, with Eq. (1.120) encoding just the propagation of the photon field.

The fourth line in both Lagrangians is related to the choice of the gauge. The class of gauges
with the given expression for LGF are called covariant gauges, and the gauge with ξ = 1 (Feyn-
man gauge) is particularly convenient, as the expression for the gluon and photon propagator
simplifies in this gauge.

As for the term on the fifth line in Eq. (1.116), Lghost, this is only present in non-abelian
theories. It is related to the Faddeev-Popov ghosts, fields with spin 0 and fermionic statistic.
Their presence is required in covariant gauges, in order to cancel the unphysical degrees of
freedom appearing in loops.

Finally, note that both in QCD and in QED the gauge fields are massless, as there is no
gauge invariant way of including a mass for them.

1.B Collider kinematics

In this appendix we introduce the variables usually adopted to study the kinematics of final state
particles at colliders. In e+e− collisions, one can choose a spherical coordinate system around the
interaction point, with individual energies Ei and angles θij between particles as good variables.
In pp collisions, as we have seen in Sec. 1.5, each parton carries only a momentum fraction x of
the parent proton momentum, and these fractions are different for the two partons. Thus the
interacting partons usually have a boost in the direction of the beam line (a longitudinal boost),
and spherical symmetry is broken under this kind of boost.

Hence, in hadronic collisions we adopt a cylindrical coordinate system. We recast the 3-
momentum p of a final state particle in the following form:

p = (px, py, pz) = (pt, |p| cos θ) , (1.121)

where θ is the angle between p and the beam axis — supposed to lie along the z direction,
while the 2-dimensional transverse momentum pt is defined as the component of p in the plane
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transverse to the beam axis. Explicitly we write:

pt = pt(cosφ, sinφ) , pt =
√
p2
x + p2

y = |p| sin θ , (1.122)

with φ an azimuthal angle. Under longitudinal boosts, ∆φ differences are invariant; however,
this is not true for ∆θ differences. Therefore, we introduce another variable, the rapidity y,
defined as:

y = 1
2 log

(
E + pz
E − pz

)
. (1.123)

often used to parametrize Lorentz transformations. Rapidity differences ∆y can be proven to
be invariant under longitudinal boost. Moreover, in the case of massless particles, for which
E = |p|, the rapidity coincides with another variable, the pseudorapidity η, defined as:

η = 1
2 log

(
|p|+ pz
|p| − pz

)
= − ln

[
tan

(
θ

2

)]
(1.124)

which is a direct proxy for the polar angle θ. Note that in general pseudorapidity differences
are not invariant under longitudinal boosts, unlike rapidity differences.

Finally note that, by using the transverse momentum pt, the rapidity y and the azimuthal
angle φ, we can write the 4-momentum of a particle with mass m as:

p =
(√

p2
t +m2 cosh y, pt cosφ, pt sinφ,

√
p2
t +m2 sinh y

)
. (1.125)

For a massless particle, the latter expression reduces to:

p = pt(cosh η, cosφ, sinφ, sinh η) . (1.126)
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CHAPTER 2

Theory calculations for jet processes

The purpose of this chapter is to introduce the reader to the available theory calculations of jet
processes at pp colliders, in increasing order of accuracy. We start in Section 2.1 by providing an
explicit derivation of leading order (LO) results. Then, in the subsequent sections, we present an
overview of QCD higher order corrections to jet processes. We first discuss the next-to-leading
order (NLO) corrections (Sec. 2.2). We then report some details about the recent computation
of next-to-next-to-leading order (NNLO) corrections (Sec. 2.3). Finally, we comment on the
issues about predictions for the single-jet inclusive observable that have emerged (Sec. 2.4).

2.1 Leading order cross sections

As a warm-up, in this section we calculate predictions for jet observables at hadron colliders at
the lowest perturbative order. These results date back to the 1970s [82] and can be found on
standard textbooks [14] or in lecture notes [83]. However, it is useful to revise them, as they
provide a good starting point for forthcoming discussions. We will first study the dynamics and
the kinematics of jet production processes, then we will present explicit results both for inclusive
jet and dijet differential cross sections.

2.1.1 Dynamics

At lowest order, all of the 2→ 2 partonic processes which involve quarks and gluons contribute.
If we denote as (pa, pb) and (p1, p2) the incoming and the outgoing momenta respectively, the
fully differential partonic cross section for a specific subprocess ij → kl (with these indices
running over quarks, antiquarks and gluon, with all the allowed quark flavours) may be written
as

dσ̂ij→kl
dΦ2

= g4
S

2(pa + pb)2

∑
|Mij→kl|2 , (2.1)

where the fraction on the r.h.s. is the flux factor, dΦ2 is the two-particle Lorentz invariant
phase space (containing the momentum conservation delta) and |Mij→kl|2 is the matrix element
squared at leading order, with the strong coupling gS factorised out.
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The symbol
∑

denotes an average (sum) over the initial (final) state spins and colours i.e.

∑
|Mij→kl|2 = 1

1 + δkl

1
Ni

1
Nj

1
4

∑
spin,colour

|Mij→kl|2
 ≡ Mij→kl(ŝ, t̂, û)

(1 + δkl)NiNj
, (2.2)

with Nq or Nq equal to Nc = 3 and Ng equal to N2
c − 1 = 8, and where we have implicitly

defined Mij→kl for later convenience. Note that we are including also a statistical factor in
the definition, necessary in the case of final state identical partons. The variables appearing in
Eq. (2.2) are the usual Mandelstam invariants, defined as

ŝ = (pa + pb)2 , t̂ = (p1 − pa)2 , û = (p1 − pb)2 (2.3)

and satisfying ŝ+ t̂+ û = 0, since our particles are all massless.
We need explicit expressions for Mij→kl. Because of crossing symmetry, which relates the

expression of a generic QCD amplitude upon exchange of an incoming particle for an outgoing
antiparticle, there are only four independent building blocks, whose representative diagrams are
depicted in Fig. 2.1. They can be read from e.g. [14], or computed directly with automatic tools
e.g. FeynCalc [84, 85]:

Mqq′→qq′ = N2
c − 1
2

(
ŝ2 + û2

t̂2

)
, (2.4)

Mqq→qq = N2
c − 1
2

(
ŝ2 + û2

t̂2
+ ŝ2 + t̂2

û2

)
− N2

c − 1
Nc

(
ŝ2

ût̂

)
, (2.5)

Mqq→gg = (N2
c − 1)2

2Nc

(
t̂2 + û2

t̂û

)
−Nc(N2

c − 1)
(
t̂2 + û2

ŝ2

)
, (2.6)

Mgg→gg = 4N2
c (N2

c − 1)
(

3− t̂û

ŝ2 −
ŝû

t̂2
− ŝt̂

û2

)
. (2.7)

In the previous equations, q denotes any quark of given flavour, q̄ the related antiquark, q′ a
quark of different flavour (with its own antiquark q′), and g is the gluon. It is possible to write
down analogous expressions for the remaining processes by switching ŝ↔ û or ŝ↔ t̂. We need
also to tune accordingly the colour and statistical factors in Eq. (2.2).

At level of matrix elements, Eq. (2.7) gives by large the dominant contribution1. The reason
is twofold: on one hand, processes with gluons are more important because of the larger colour
charge; on the other hand, diagrams with a gluon exchanged in the t̂ or û channel contribute
more than a propagator in the ŝ channel, as noted in Ref. [22]. This latter fact can be understood
by simply computing explicit expressions for the partonic Mandelstam variables:

t̂ = − ŝ2(1− cos θ̂) , û = − ŝ2(1 + cos θ̂) , (2.8)

where θ̂ is the scattering angle in the partonic center of mass frame. We clearly see that
min(|t̂|, |û|) ≤ ŝ/2, and thus terms with t̂2 and û2 dominate the amplitude.

1This does not hold anymore after convolution with the PDFs, especially at large pt, because the gluon PDF
is suppressed at large x.
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Figure 2.1: Representative Feynman diagrams for jet observables at leading order. The dia-
grams depicted in (a), (b), (c) and (d) are related to Eqs. (2.4), (2.5), (2.6) and (2.7) respectively.
Taken from Ref. [14].

2.1.2 Kinematics

The final state phase space reads as follows:

dΦ2 = d4p1

(2π)4 (2π)δ(p2
1) d

4p2

(2π)4 (2π)δ(p2
2) (2π)4δ(4)(p1 + p2 − pa − pb)

= pt dpt dy dφ

2(2π)3 (2π)δ((pa + pb − p1)2) .
(2.9)

In the second line we have first exploited the 4-dimensional delta in order to constrain the
momenta of the one of two final state partons. Then, we have rephrased the phase space of the
leftover parton with the usual kinematic collider variables, pt, y and φ, defined in Eq. (1.126).
We have chosen to work in the hadronic c.m. frame, where we have

pa = xa

(√
s

2 , 0, 0,
√
s

2

)
, pb = xb

(√
s

2 , 0, 0,−
√
s

2

)
, (2.10)

with s the c.m. energy squared and xa, xb longitudinal momentum fractions, relative to the
parent hadrons, of the scattering partons. The c.m. energy in the partonic frame ŝ, defined in
Eq. 2.3, also equal to the invariant mass of the dijet system m2

jj , is related to s as

ŝ = m2
jj = xaxbs . (2.11)

43



Chapter 2. Theory calculations for jet processes

Transverse momentum conservation implies that the final state system will be balanced in pt
and the final state partons will be back-to-back in azimuth i.e. pt2 = pt1 and φ2 = φ1 + π, see
Eq. (1.122). Energy and longitudinal momentum conservation imply:

cosh y1 + cosh y2 =
√
s

2pt
(xa + xb) ,

sinh y1 + sinh y2 =
√
s

2pt
(xa − xb) ,

(2.12)

and by exploiting hyperbolic identities, we find expressions for the average sum and difference
of final state rapidities:

Y ≡ y1 + y2

2 = 1
2 log

(
xa
xb

)
, y∗ ≡ y1 − y2

2 = cosh−1

(√
ŝ

2pt

)
, (2.13)

and thus:
y1,2 = Y ± y∗ . (2.14)

We could have derived Eq. (2.14) by means of physical considerations, as rapidity is additive
under boosts along the z direction. In fact, Y is the rapidity of the partonic system in the
hadronic c.m. frame, while y∗ (−y∗) is the rapidity of p1 (p2) in the partonic c.m. frame. Also
note that the introduction of y∗ allows one to write an alternative expression for ŝ (and m2

jj):

ŝ = m2
jj = 4p2

t cosh2(y∗) , (2.15)

and by inverting Eq. (2.13) one finds that the momentum fractions are determined to be:

xa,b = pt√
s

(
e±y1 + e±y2

)
, (2.16)

or alternatively
xa,b = 2pt√

s
cosh y∗ e±Y = mjj√

s
e±Y . (2.17)

From Eqs. (2.16)-(2.17) we can appreciate how a double differential cross section in mjj and Y ,
or a triple differential cross section in pt, y1 and y2 (or pt, Y and y∗) is able to fix the values
of the momentum fractions xa and xb, although higher order kinematics has the potential to
change this picture.

By using Eq. (2.11) and Eq. (2.15), we see that:

4p2
t

s
≤ xaxb ≤ 1 . (2.18)

For fixed pt, the smallest and the largest accessible x values are given by:

xmin = 4p2
t√
s

xmax = 1 , (2.19)
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whereas, for fixed pt and y, we have:

xmin = 2 pt√
s
e−|y| , xmax = 2 pt√

s
e+|y| , (2.20)

This corresponds to a configuration with y1 = y2 = Y and y∗ = 0 i.e. a same-side jet event,
with one large and one small x value. The configuration with y1 = −y2 = y∗ and Y = 0 would
be instead an opposite-side jet event, with the same momentum fractions xa = xb.

Finally, for later purposes, we can rearrange the phase space in Eq. (2.9) as follows:

dΦ2 = pt dpt dy dφ

2(2π)3 (2π)δ((pa + pb − p1)2) = dy

4π
p2
t

ŝ

= dy

16π cosh2(y − Y )
= dy∗

16π cosh2(y∗)
. (2.21)

We have used the delta function to constrain the pt value to be

pt =
√
sxaxb

xa exp(−y) + xb exp(y) = xa
√
s

2
1

cosh(y − Y ) exp(Y ) . (2.22)

Note that, for fixed momentum fraction xa and xb, we have only one degree of freedom in the
final state, and one can choose the rapidity of one of the two parton, y, or the rapidity difference,
y∗ as the independent variable.

2.1.3 Study of subprocesses

After having studied the dynamics and the kinematics of the partonic process, we can fold in
the parton distributions functions, as in Eq. (1.64), and write a result for the total cross section:

σ =
∑
ijkl

∫
dxadxb fi(xa)fj(xb)

∫
dΦ2

dσ̂ij→kl
dΦ2

. (2.23)

If we exploit the sum over partonic flavours in Eq. (2.23), since the matrix element does not
discriminate between up and down quarks, or between quarks of different generations, but only
between q,q, q′, q′ and g (as indicated after Eqs. (2.4)-(2.7)), we see that only the following
seven linear combination of parton distributions appear in the calculation:

Fqq(xa, xb) = D+(xa, xb) ,
Fqq(xa, xb) = D−(xa, xb) ,
Fqq′(xa, xb) = Q+(xa)Q+(xb) +Q−(xa)Q−(xb)−D+(xa, xb) ,
Fqq′(xa, xb) = Q+(xa)Q−(xb) +Q−(xa)Q+(xb)−D−(xa, xb) ,
Fqg(xa, xb) = (Q+(xa) +Q−(xa)) fg(xb) ,
Fgq(xa, xb) = fg(xa) (Q+(xb) +Q−(xb)) ,
Fgg(xa, xb) = fg(xa)fg(xb) , (2.24)
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where we have defined:

Q±(x) =
∑
i={q}

f±i(x) , D±(xa, xb) =
∑

i={q,q}

fi(xa)f±i(xb) . (2.25)

The first sum runs over the set of quark (or antiquark) PDFs, while the second sum runs over
both quark and antiquark PDFs. In addition, if fi is the PDF for the quark of flavour i, f−i is
the PDF for the antiquark of the same flavour.

Each linear combination of PDFs define a subprocess, marked by a partonic channel ij,
contributing to the total cross section in Eq. (2.23), that we can recast as:

σ =
∑
ij

∫
dxadxb Fij(xa, xb)

∫
dΦ2

dσ̂ij
dΦ2

, (2.26)

with σ̂ij summing all the contributions from matrix elements with the same initial state ij.
Note that this subdivision into subprocesses holds at any order in perturbation theory, as QCD
higher order corrections do not open new partonic channels.

2.1.4 Explicit expressions for differential cross sections

Starting with Eq. (2.23), we can find explicit expressions for cross sections double differential
in pt and y, if we are interested in studying inclusive jet cross sections, or double differential in
m2
jj and y∗, if we are interested in studying dijet cross sections.
Before proceeding, note that, at leading order, final state partons and jets are equivalent

concepts i.e. regardless of the jet radius R used to cluster the event, there is always a pair of
jets, with momenta equal to those of the partons, as there is no possibility for extra emissions.

Inclusive jets By using Eq. (2.1) and Eq. (2.21), and by rearranging the integration over xa
and xb as

dxadxb = 8ptdpt
s

cosh2(y − Y )dY , (2.27)

Eq. (2.23) becomes:

d2σLO

dptdy
= α2

S(µR)π
4p3
t

∫
dY

cosh4(y − Y )
∑
ij

xaxb Fij(xa, xb, µF )
(∑

|Mij |2
)
, (2.28)

where we have introduced αS(µR) = g2
S(µR)/4π. We have also multiplied and divided by

xaxb, since the hadronic PDFs are usually given in terms of xf(x) to kill the small-x divergent
behaviour. The limits of the Y integration can be found by using Eq. (2.16) and by imposing
that 0 < xa,b < 1. One obtains:

Y min,max = y ∓ 1
2 log

(√
s

pt
e±y − 1

)
. (2.29)

By integrating Eq. (2.28) over the rapidity, is possible to obtain a result for the pt spectrum at
leading order:

dσLO

dpt
=
∫ ȳ

−ȳ
dy

d2σLO

dptdy
, (2.30)
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with the absolute value of the maximum allowed rapidity given by Eq. (2.13) with ŝ = s:

ȳ = cosh−1
(√

s

2pt

)
. (2.31)

Dijets Here, instead, we leave the integration over xa and xb untouched, and use the last
member of Eq. (2.21) for dΦ2. We also transform the total cross section in Eq. (2.23) in
differential in m2

jj , by introducing a delta function under integration. Thus, we obtain:

dσLO

dm2
jj

=
∑
ij

∫
dxadxb fi(xa)fj(xb)δ(xaxbs−m2

jj)
∫

dy∗

32πm2
jj cosh2(y∗)

g4
S

∑
|Mij |2 , (2.32)

or if we wish to be differential also in y∗:

dσLO

dm2
jjdy

∗ = πα2
S(µR)

2m2
jj cosh2(y∗)

∑
ij

τ

s

dLij
dτ

(∑
|Mij |2

)
. (2.33)

Here τ = m2
jj/s and dLij/dτ are the differential parton luminosities introduced in Eq. (1.20).

In this case, the integration over partonic momentum fractions factorize, and m2
jj and y∗ fix

completely the Mandelstam partonic invariants, see Eq. (2.8) with cos θ̂ = tanh(y∗).

2.1.5 Analysis of the pt spectrum

Eq. (2.28) encodes the leading behaviour of jet cross sections as a function of the jet transverse
momentum. The factor p3

t at the denominator in Eq. (2.28), of kinematical origin, is magnified
by the matrix elements, and this results in a steeply falling distribution2. This naive expectation
is well confirmed by experimental data, as we can seen in Fig. 2.2, where we report the results of
two measurements from the ATLAS and CMS collaborations (these experimental data, among
others, will serve as input for the PDF fits we will present in Chapter 4).

The steepness of the pt differential distribution has great implications for what concerns the
perturbative behaviour of this observable, in that a small shift in the jet pt value has a huge
impact on the resulting contribution to the cross section. As we will discuss in Chapter 3,
higher order corrections can roughly be estimated in terms of a convolution between a tree-level
2 → 2 scattering and subsequent emissions within or outside jet boundaries. Since out of cone
radiation has the effect of altering the pt of the emitter, this displacement is magnified by the
Born scattering and results in tremendous repercussions at the level of the cross section. In fact,
for later purposes, one could split Eq. (2.30) in two terms:

dσLO

dpt
=
dσLOq
dpt

+
dσLOg
dpt

. (2.34)

dσLOi /dpt is the LO differential cross-section for producing a parton of flavour i of transverse
momentum pt, correctly normalized in such a way that the sum over i gives the total cross-
section e.g. processes like qq → gg will contribute twice to σg (and similarly for process with
two quarks in the final state), while processes like qg → qg will contribute both for σg and for

2PDFs also play a role in this context e.g the gluon PDF is suppressed at large x.
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Figure 2.2: Measurements of double differential inclusive jet cross sections at the LHC (left:
ATLAS collaboration, taken from ref. [86]; right: CMS collaboration, taken from ref. [87]).

σq, but with t̂ and û exchanged. We will refer to dσq and σg as the partonic spectrum for quark
and gluon respectively.

We conclude the section by showing the result of the LO prediction for the pt differential
cross section, obtained through an analytic code implementing the equations written in this
section (we will use and extend this code in Chapter 3). This is the blue line on the plot in
Fig. 2.3, on the left. In the same plot, the green and the red lines are the partonic spectra for
quark and gluon respectively. Finally, the dashed lines show the result of fitting the following
power function

f(pt) =
(
const
pt

)m
(2.35)

to the tails of the distributions. We see that we need an high value of the exponent m, m ∼ 6–7,
in order to reproduce the behaviour for high value of the pt.

2.2 Next-to-leading order (NLO) corrections

For precision phenomenology, LO results are totally unsatisfactory. In Fig. 2.3, on the right,
we plot the LO and the NLO cross section, computed with NLOJET++. The central scale
adopted is the individual jet pt, and the uncertainty bands are given by the usual scale variation
prescription. Two comments are in order. First, higher order corrections have the potential
to change not only the size, but also the shape of the cross section, so are essential for QCD
precision studies. Second, at LO the estimate of the effect of missing higher orders through scale
variations is completely unreliable, as the huge uncertainty band in Fig. 2.3 testifies.

In fact, LO results represent only the first term of perturbative series in αS:

dσ̂ = dσ̂(0) + dσ̂(1) + dσ̂(2) + · · · =
∞∑
k=0

dσ̂(k) (2.36)

where each term is of order α2+k
S , since the LO process is of order α2

S. In the previous section
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Figure 2.3: (Left) Upper panel: partonic spectra at leading-order and power law fits to the
tail of the distributions. Lower panel: comparison between the result of the code implementing
Eq. (2.30), a “non-averaged” version of the latter (see text) and the output of NLOJET++ at
LO. (Right) Differential cross section at LO and NLO. Uncertainty bands are obtained with the
7-point scale variation rule, see Fig. 1.4.

we have explicitly calculated dσ̂(0). In this section and in the forthcoming ones, we briefly
discuss how leading order results have been improved in the past thirty years, by first discussing
the NLO correction dσ̂(1) and, in the next section, the NNLO correction dσ̂(2). A systematic
description of the details of the different calculations goes beyond the scope of this thesis. We
limit ourselves to provide references for the interested reader.

Computation of jet processes at next-to-leading order have been made possible by the seminal
work of Ellis and Sexton [88], where they provided the matrix element squared at order α3

S, for all
2→ 2 (at one-loop virtual) and 2→ 3 (at tree-level) parton scattering subprocesses. If we have
these matrix elements at our disposal, we could imagine to perform a phase space integration,
similarly to what we did in Sec. 2.1 (modulo a more complex final space kinematics), and obtain
for NLO contribution to the channel ij of the partonic cross section

dσ̂
(1)
ij =

∫
dΦ3 dσ̂

(1),R
ij +

∫
dΦ2 dσ̂

(1),V
ij , (2.37)

where dσ̂(1),R
ij and dσ̂(1),V

ij are the real and the virtual corrections of order α3
S. We can depict

the structure of higher order corrections in a diagrams such as the one in Fig. (2.4). Both loops
in virtual diagrams or addition of legs in real diagrams increase the power of the strong coupling
constant. NLO corrections correspond to the first line of the inverted pyramid.

Unfortunately, we already know that, even if the sum in Eq. (2.37) if finite, each term
is separately divergent. Dimensional regularization offers us one way to tackle this issue, by
converting the singularities to 1/ε poles, which then cancel between the real and virtual terms.
However, the explicit 1/ε pole in the real part does not appear until we have performed the
integration, and there are no guarantees that we can actually do the integration analytically,
given also the complex integration boundaries dictated by jet algorithms.

Different strategies have been devised to overcome this problem, and a simple example (taken
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Figure 2.4: Schematic representation of higher order corrections to partonic scattering pro-
cesses. The contribution in each cell is of O(αkS) with k = k0 + loops + (legs− l0) where k0 is the
power of the Born process and l0 is the number of legs of the Born process. Higher order cor-
rections for one process act as tree-level contribution or lower order corrections for another. For
instance, on the Figure on the right, classes of matrix elements squared contributing to 2 → 2
(in red), 2→ 3 (in green) and 2→ 4 (in blue) scattering processes are explicitly highlighted.

from Ref. [89]) may help to understand how they work. Based on what we said above, the
structure of a NLO calculation is similar to the following integral:

I = lim
ε→0

{∫ 1

0

dx

x
xεF (x)− 1

ε
F (0)

}
, (2.38)

where F is a complicated function, finite in the x → 0 limit, which prevents us from actually
performing the integration. The first term in braces denotes the real correction to the matrix
element, with x the analogous of the angle between two partons or the energy of a gluon,
and therefore it would be divergent if there was no the xε term to regularize the integration.
Similarly, the second term in braces stands for the virtual correction (with Born kinematics).
In the limit ε → 0, both terms are divergent, but as their divergent behaviour is the same, the
final result for I is finite.

One first strategy may be to split the integration region in two pieces, 0 < x < δ and
δ < x < 1, with δ an arbitrary parameter. If δ � 1, under the first integration we can
approximate F (x) with F (0), and we can then write:

I = lim
ε→0

{∫ δ

0

dx

x
xεF (0) +

∫ 1

δ

dx

x
xεF (x)− 1

ε
F (0)

}

= lim
ε→0

{
1
ε
F (0) + log(δ)F (0) +

∫ 1

δ

dx

x
xεF (x)− 1

ε
F (0)

}
= log(δ)F (0) +

∫ 1

δ

dx

x
F (x) . (2.39)

The leftover integration can now be evaluated numerically. Of course, as long as δ is small,
the final result will be independent of δ. Such phase space slicing method has been adopted in
Ref. [90], where they first calculated analytical results at order α3

S for the inclusive production of
a jet at large transverse momenta, in the limit of small cone opening angle. In our example, the
term proportional to log(δ) represents exactly what the Authors of Ref. [90] has found. These
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results have been later numerically extended to fixed cone size [91]. The slicing method has
also been employed in Ref. [92], to build a Monte Carlo program for one, two and three jet
production, later used for the calculation of a dijet jet triply differential cross section [93].

A second alternative method may be the following. Instead of canceling the divergence after
integration, we can alternatively add and subtract a term which mimics the divergent limit
under integration, in such a way the integration can be computed numerically. Explicitly, in our
example, we add and subtract F (0), obtaining:

I = lim
ε→0

{∫ 1

0

dx

x
xε(F (x)− F (0))−

∫ 1

0

dx

x
xεF (0)− 1

ε
F (0)

}
=
∫ 1

0

dx

x
(F (x)− F (0)) , (2.40)

and the leftover integration can be performed numerically as before. Note how the subtraction
is carried out locally i.e. before integration, and the method has the advantage of not depending
on an arbitrary sciling parameter δ. On the other hand, it relies on the fact that the subtraction
term is simple enough to be integrated analytically. This subtraction method has been first
introduced in Ref. [94], in the context of three-jet observable in e+e− annihilation, and later
employed in Refs. [95, 96], for the calculation of the one-jet inclusive cross section at NLO. An
analogous calculations have been carried out for dijets processes [97].

The early works cited above, even if pioneering in the field, were almost always considering
predictions for specific differential distributions, lacking of a full generic differential treatment.
In addition, calculations were based on homemade jet definitions, still not standardized, leading
to difficulties when comparing predictions with the experimental data of different collaborations.

During the 1990s, different subtraction methods have been devised to tackle the calculation
of NLO QCD corrections in a fully differential way and for any generic hadronic process. Two
of such methods are the FKS formalism (so named because of the initials of the Authors of
Ref. [98], in which the method was first introduced, in the context of the calculation of three-jet
cross sections at NLO) and the Catani-Seymour dipole formalism [33].

Nowadays, one of the most used program for the calculation of order α3
S jet cross sections

is NLOJET++, developed by Z. Nagy [99, 100], based on a slightly modified version of the
Catani-Seymour subtraction method. It allows one to calculate one-, two- and three-jet cross
sections at NLO. We will use this code extensively in the next chapters.

2.3 Next-to-leading order (NNLO) corrections

The calculation of the matrix elements at order α4
S has opened the road towards next-to-next-to-

leading computations. Three pieces are needed: two-loop virtual corrections to 2→ 2 scattering
[101–103], one-loop virtual correction to 2→ 3 scattering [104], double-real 2→ 4 scattering at
tree-level [105]. The other necessary ingredient is a subtraction method at NNLO. At variance
with NLO subtraction methods, we have now to deal with a more complex infrared structure, as
two partons can become soft and/or collinear at the same time. We refer the reader to Ref. [106]
for a detailed list of NNLO infrared subtraction methods.

One of such procedures is the antenna subtraction method, first introduced in Ref. [107] in
the context of e+e− annihilation, and it has been applied to several observables, such as three-jet
cross sections [108,109] or event shapes [110] at NNLO. This method has later been generalized
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to hadronic initial-states [111,112].
In short, the antenna subtraction method works by writing down the analogous of Eq. (2.37):

dσ̂
(2)
ij =

∫
dΦ4 dσ̂

(2),RR
ij +

∫
dΦ3 dσ̂

(2),RV
ij

∫
dΦ2 dσ̂

(2),VV
ij (2.41)

and by introducing three subtraction terms:

dσ̂
(2)
ij =

∫
dΦ4

[
dσ̂

(2),RR
ij − dσ̂(2),S

ij

]
+
∫
dΦ3

[
dσ̂

(2),RV
ij − dσ̂(2),T

ij

]
+
∫
dΦ2

[
dσ̂

(2),VV
ij − dσ̂(2),U

ij

]
. (2.42)

Each of these subtraction terms is intended to reproduce the singular behaviour in the regions
of single or double unresolved phase space or to remove the explicit infrared poles in 1/ε, by
leaving the differences under square brackets well behaved in the infrared regions, in order to
yield a finite final result. Note that the functional structure of the subtraction terms is much
more complex than at NLO: for instance, dσ̂(2),T

ij contains the integration of dσ̂(2),S
ij over a

single unresolved phase space, plus an additional term for removing the remaining singularities
of dσ̂(2),RV

ij ; in turn, dσ̂(2),U
ij contains the integration of dσ̂(2),S

ij over a double unresolved phase
space, plus the integration of the additional term in dσ̂(2),T

ij over a single unresolved phase space.
Thus, the subtraction terms are deeply linked to each other.

In 2017, within the antenna method, the first computation of NNLO QCD corrections to
the single-jet inclusive cross section, including contributions from all partonic subprocesses, was
finally reported [113]. Previous calculations with only the purely gluonic channel [114] appeared
a few years before. NNLO predictions for dijet processes have been published as well [115].

In the context of these studies, the Authors of Ref. [113] and collaborators have developed
a partonic Monte Carlo generators at NNLO accuracy, NNLOJET. The code is still private
at the moment. The PDF fits to jet measurements we will present in Chapter 4 benefit from
NNLO predictions obtained with this code, provided by the Authors of NNLOJET through
K-factors.

Note that the calculation of Ref. [113] is based on on the leading-colour approximation in the
case of channels involving quarks. The Authors of Ref. [116] have reported an independent cal-
culation with exact colour at O(α4

S), using a different subtraction method (the sector-improved
residue subtraction [117, 118]). They found negligible sub-leading colour effects in phenomeno-
logical applications.

2.4 Potential issues with the single-jet inclusive cross-section

The computation of NNLO QCD corrections to jet cross sections has opened up the possibility of
doing precision phenomenology with jet observables. However, it has also settled some potential
issues related to the behaviour of the perturbative series, whose full understanding has posed a
theoretical challenge.

This is especially true for the single-jet inclusive cross section (we will comment later on the
dijets cross section). As an observable, it is defined in a deceptively simple way: count all jets
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which fall in any given kinematic bin and add them up. While this definition is remarkably
simple, a minutes’ reflection shows that it has a somewhat peculiar and perhaps undesirable
feature. Namely, it is not unitary: each event is counted more than once, so the integral of the
differential cross-section is not equal to the total cross-section. This lack of unitarity may be
cause of concern: one is used to the fact that the unitarity of the total partonic cross-section is
crucial in order to ensure its infrared finiteness, given that infrared singularities cancel between
terms with different numbers of final–state partons. On the other hand, infrared finiteness of the
N -jet cross-section is ensured by the use of a jet definition, so the question is really whether this
definition leads to a good perturbative behaviour. In addition, since the contributions to the
distribution come from individual jets rather than events, there could be a possible ambiguity
in the choice of a proper scale. What is the degree of “hardness” of the process? The hardness
of the individual jet or the hardness of the underlying Born 2→ 2 scattering process?
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Figure 2.5: Double differential NLO and NNLO predictions for single jet inclusive production,
normalised to ATLAS data [119], with reference scale choice µ = pt1 or µ = pt. (Taken from
Ref. [120])

In Fig. 2.5, we show the NLO and NNLO predictions for single jet inclusive production,
with two different commonly used scale choices: either µ = pt1 i.e. the transverse momentum
of the hardest jet in the event, or µ = pt: the transverse momentum of each jet entering the
distribution. The former is an event-based scale, in that each jet in the event is binned with
the same weight; the latter is a jet-based scale, in that each jet in the event is binned with
its own weight. The predictions are compared to ATLAS data [119], used as reference points.
This figure is taken from Ref. [120]. While at NLO data tends to prefer the choice µ = pt1,
and the prediction with µ = pt is systematically above the one with µ = pt1 for all the rapidity
slices considered, at NNLO the behaviour is exactly the opposite. The difference between the
two scale choices is particularly significant in the region of low transverse momentum, where
is more likely to find contributions from subleading jets, for which pt differs significantly from
pt1. Moreover, the scale dependence of the result is not significantly reduced and the size of the
K-factor does not significantly decrease when going from NLO to NNLO. These facts suggest a
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possible perturbative instability.
In Ref. [121] the perturbative properties of this observable were extensively studied, in par-

ticular by a numerical analysis of the contributions to individual jet bins with a variety of
computational setups (such as the choice of scale and of jet radius). The behaviour observed in
Fig. 2.5 was traced to the infrared sensitivity of the second-jet contribution, which is aggravated
by the choice µ = pt1. While at LO the contributions to the cross section coming from the two
leading jets is the same (as pt1 and pt2 are equal, see Sec. 2.1.2), at higher orders they differ
significantly (we will return in depth to this point in Chapter 3). Notably, the subleading-jet
contribution is affected by drastic shifts from LO to NLO, and even from NLO to NNLO. This
explains the contrasting behaviour seen between the left and the right plot in Fig. 2.5.

In this same paper, a detailed study of the scale dependence of the NNLO QCD predictions
for inclusive jet production was carried out. Three different scales (and their multiples) were
discussed in detail: the two scales considered above (the individual jet transverse momentum pt
and the leading jet transverse momentum pt1) and the scalar sum of the transverse momenta of
all partons in the event,

ĤT =
∑

i∈partons
pti . (2.43)

These scale choices were thus compared according to a number of criteria: perturbative conver-
gence; scale uncertainty as error estimate; perturbative convergence of the individual jet spectra;
and stability of the second jet distribution. Based on these, the event-based scale µ = ĤT and
the jet-based scale µ = 2pT were singled out as optimal choices (see Fig. 2.6).
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Figure 2.6: Jet pt spectrum at LO, NLO and NNLO, normalised to the NLO prediction, for
six different central scale choices. (Taken from ref. [121])

For sake of completeness, we conclude this section with a comment on the dijet cross section.
Even for this observable several scale choices are possible: two popular ones are the dijet invariant
mass mjj and the average transverse momentum of the two leading jets, 〈pt〉 = (pt1 + pt2)/2.
Theoretical predictions computed with either of these scale choices differ significantly at NLO.
This difference is substantially reduced at NNLO, with µ = mjj emerging as a preferred choice,
based on the criteria of perturbative convergence, and residual scale dependence of the NNLO
prediction [115,122].
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CHAPTER 3

On the definition of single-jet inclusive cross
section

Motivated by the issues about the single-jet inclusive cross section highlighted in Sec. 2.4, in
this chapter we approach the problem of understanding the behaviour of this observable from
a somewhat different point of view: namely, by trying to see how it behaves upon changes of
its definition, specifically motivated by an attempt to correct for its non-unitarity. We study
the properties of this family of new, unitary definitions both numerically, and analytically in a
simple collinear approximation.

Our analysis focuses on the general properties of the observable, of which we strive to under-
stand the main qualitative features. We thus base our discussion on NLO calculations, whose
structure is easier to handle both from a numerical and an analytic point of view, though we aim
at understanding their general properties at any perturbative order. We have explicitly checked
their robustness in several cases at NNLO, which we have been able to obtain from a NLO code
by calculating differences in which missing double-virtual contributions cancel (see Sec. 3.3).

The outline of the chapter is the following. First, in Sec. 3.1 we discuss the standard definition
of the cross section and its non-unitarity, and present a family of alternative, unitary definitions.
Then, in Sec. 3.2 we compare results obtained using various definitions at NLO. In Sec. 3.3 we test
the validity of our results at higher orders, by carrying out the test mentioned above. Afterwards,
we show how the numeric results can be understood in terms of an analytical calculation. In
Sec. 3.4 we provide general (if somewhat formal) arguments, whereas in Sec. 3.5 we perform more
explicit calculations, using a soft-collinear approximation to derive, and understand, qualitative
features of the NLO results. Finally, we provide a short summary of our results in Sec. 3.6.
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Chapter 3. On the definition of single-jet inclusive cross section

3.1 Unitary weighted definitions

The single-jet inclusive cross section is defined in terms of the differential cross section for
producing N jets (after cuts) with transverse momenta pti, as

dσ

dpt
=
∑
N

dσN jets

dpt
(3.1)

dσN jets

dpt
=
∫
dpt1 . . . dpti . . . dptN

dσN jets

dpt1 . . . dpti . . . dptN
FN [pt1, . . . , ptN ; pt] , (3.2)

where FN , for a standard definition, is given by

F std
N [pt1, . . . , ptN ; pt] =

N∑
i=1

δ(pti − pt), (3.3)

and it fills the bin with transverse momentum pt by picking all contributions from the fully
differential N -jets cross section. The sum in Eq. (3.1) runs over the number of jets in each event
that pass some kinematic cut. The sum over the total number of jets starts with N = 1 (the
N = 0 case gives of course no contribution) and goes up to two at leading order (LO), three at
NLO, and generally p+ 2 at NpLO.

It is clear that the inclusive-jet cross section defined in this way is not unitary, in that its
integral over pt does not give the total number of scattering events per unit flux per unit time
within a given fiducial region. Indeed, with this definition, when filling a histogram in pt, an
event with N jets is binned N times.

We generalize the definition of the single-jet inclusive cross section by introducing jet weights
that render the cross section unitary. Namely, we modify the definition Eq. (3.2) by introducing
weights in the definition of the function FN , Eq. (3.3):

FN [pt1, . . . , ptN ; pt] =
N∑
i=1

δ(pti − pt)w(N)(pt; pt1, . . . , ptN ) (3.4)

The choice w(N) = 1 represents the standard non unitary definition Eq. (3.3). The choice
w(N) = 1/N restores unitarity, but has undesirable discontinuities whenever the kinematics of
the final state changes in such a way that the number of jets jumps from N to N + 1. In this
chapter, we consider a set of weights defined as

w(N)(pt; pt1, . . . , ptN ) =


1 (standard)

prt∑N
j=1 p

r
tj

(weighted) (3.5)

where ptj is the transverse momentum of the j-th jet. All weighted choices lead to a unitary
definition. We consider specifically three families of definitions of these weights, according to
which jets are included when constructing the weights.

• A: jets above pcutt

Only jets with pt ≥ pcutt are included in the definitions of FN Eq. (3.4). In particular,
this implies that the sum in the denominator of Eq. (3.5) includes only jets for which
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3.1. Unitary weighted definitions

ptj ≥ pcutt . When r = 0 this reduces to the simplest unitary choice with all weights equal
to 1/N .

• B: all jets
FN includes all the jets but the numerator in the weight definition, Eq. (3.5), only includes
jets above pcutt . In particular, the denominator in Eq. (3.5) sums over all jets. This
definition is infrared safe only for r > 0. While this definition may seem unphysical, in
practice it corresponds to having a pcutt that is small compared to the pt value of the first
bin one is interested in.

• C: two leading jets
Only the first two leading jets in pt are included in the definition of both FN and the
weights, so N = 2 in both Eqs. (3.4) and (3.5). In this case we consider the two leading
jets independently on whether their pt is larger or smaller than a possible pcutt .

These definitions are “unitary” in the sense that the weights add up to one. This implies
that, with the first definition, integrating over pt gives the total cross section to have at least
one jet above pcutt . For the second definition (with pcutt → 0 or an explicit underflow bin) and for
the third definition, one instead gets the total pp cross section. To keep the discussion simple,
we do not impose any rapidity cut in the studies carried on in this thesis. Nevertheless each
of the previous definitions could be extended to the case in which a rapidity cut is introduced.
Note that in the case of the third definition, a rapidity cut could change what the leading jets
are. To avoid potential issues, in particular for r < 0 which is more sensitive to small pt, one
might have in practice to impose an additional dijet selection cut (similar to what is already
done when studying e.g. the dijet invariant mass).

To highlight the various features we are interested in studying, it is useful to consider different
ways of organizing the perturbative calculation of the single-jet inclusive cross section at NpLO
accuracy. This can, in fact, be written as a sum of contributions, each of order α2+k

s , k = 0, . . . , p,
assuming that the leading-order (LO) process is of order α2

s:

dσN
pLO

dpt
=

p∑
k=0

dσ(k)

dpt
. (3.6)

It is useful to think about the order αk+2
s contribution in two different ways. The first is as

a sum of contributions with a different number of jets, as we have done in Eq. (3.2). In such
a case, the k-th order contribution to the cross section is built out of terms containing at most
k + 2 jets i.e. two at LO (k = 0), three at NLO (k = 1) and so forth:

dσ(k)

dpt
=

k+2∑
N=1

dσ
(k)
N jets

dpt
. (3.7)

Eq. (3.7) is the same as Eq. (3.1), but for the k-th order contribution only. However, in order
to understand the perturbative behaviour of the cross section it also useful to break it up into
the contribution from the jet with the largest pt (leading, or first jet), the jet with the second
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Chapter 3. On the definition of single-jet inclusive cross section

largest pt (subleading, or second jet), and so on:

dσ(k)

dpt
=

k+2∑
n=1

dσ
(k)
n-th jet

dpt
. (3.8)

In Eq. (3.7), dσ(k)
N jets/dpt is the contribution to the cross section coming from configurations

with N jets, while in Eq. (3.8) dσ(k)
n-th jet/dpt is the contribution coming from the n-th leading

jet. The range of the sum is the same in both cases and it is equal to the maximum number of
jets that can be produced at a given perturbative order k.

3.2 Comparing definitions of the cross section

In order to study the effects of the various unitary definitions, Eq. (3.5), we start by simply
comparing results obtained in each case. We focus on two observables: the total NLO K factor,
and the individual n-th-leading jet NLO K factor as a function of pt,

K =
3∑

n=1
Kn , with Kn =

dσNLOn-th jet

dσLO
. (3.9)

This way, we can see how imposing unitarity affects the pt distribution of the single-jet inclusive
cross section. In Section 3.4 we then turn to analytic arguments, both in general and in a
collinear approximation.

All results presented in this section are obtained using the following setup. Computations
up to NLO are performed using NLOJET++ (v4.1.3) for pp collisions, with center of mass
energy

√
s = 13 TeV. Parton distribution functions are taken from the NNPDF3.1 [58] set at

NNLO, with αs(MZ) = 0.118., and interfaced using the LHAPDF library (v6.1.6) [123]. Jets
are clustered using the anti-kt algorithm [68], as implemented in FastJet (v3.3.2) [70], with
R = 0.4, unless otherwise specified.

The dependence on the choice of central factorization and renormalization scale is studied
by considering three options: (i) the average dijet scale,

p
(avg)
t = p

(R=1)
t1 + p

(R=1)
t2

2 , (3.10)

where p(R=1)
t1,2 are the transverse momenta of the two leading jets clustered with a radius R = 1,

(ii) the partonic scalar kt halved,

ĤT

2 = 1
2

n-partons∑
i=1

kti, (3.11)

suggested as an optimal1scale choice in Ref. [121], and (iii) the leading jet pt, p(max)
t , defined as

p
(max)
t = p

(R=1)
t1 . (3.12)

1Actually, as we report in Sec. 2.4, the scale suggested in Ref. [121] is ĤT . The reason why here we are
considering ĤT /2 is to guarantee the same LO result with our three scale options.
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Figure 3.1: Left: Contributions from the leading, subleading, and third-leading jet to the NLO
inclusive cross section, with central scale choice µR = µF = p

(avg)
t Eq. (3.10). Right: Inclusive

NLO K factors, with three different central scale choices (see text).

Note the unusual choice to evaluate the pti values entering the expression of the scales in
Eqs. (3.10)-(3.12) using jets with radius R = 1. This was suggested in ref. [124], in order to
disentangle the scale of the hard scattering from the jet reconstruction process, and then obtain
a choice independent of R.

3.2.1 Standard (non-unitary) definition

We start by discussing results for the standard definition, shown in Fig. 3.1. Three main features
are apparent.

1. While the total NLO K factor is quite close to one (see the right plot in Fig. 3.1), the
individual Kn for the leading and subleading jet deviate from their leading order value,
1/2, by sizable amounts (see the left plot in Fig. 3.1). However, they almost exactly
compensate when added up into the total cross section, yielding a total NLO K factor
close to 1, as well as a scale uncertainty much smaller than those of the individual Kn.
This almost exact compensation is largely accidental as it depends on the value of the jet
radius. This can be seen in Fig. 3.2, where we plot the K factor for the total cross section
as a function of R: the leading and the second leading jet K factors only compensate (up
to a residual ∼ 10% effect) in the region R ∼ 0.3–0.6. This effect has also been noticed in
Refs. [124,125].

The behaviour of the individual jetK factors can be explained in a simple fashion. At NLO,
theK factor of the leading jetK1 is substantially larger than one, most likely a consequence
of recoil effects from initial state radiation that lift the born level pt degeneracy. This has
the effect of increasing the pt of a jet that then becomes the leading one, and it is amplified
by the fact that the LO cross section is steeply falling in pt, as already noted in Sec. 2.1.5.
Furthermore, at NLO, K1 does not depend on R, as explicitly visible in Fig. 3.2 and as
we show analytically in Sec. 3.4 below. However K2 decreases at small R since out-of-cone
final state radiation depends on the jet radius and has the effect of lowering the pt of the
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Figure 3.2: The NLO K factor for the single-inclusive total jet cross section as a function of
the radius R of the jet (black). The contributions from the leading jet (red) and the subleading
jet (blue) are also shown. Results are plotted both with a logarithmic (left) and linear (right)
scale.

emitter. This effect is again drastically enhanced by the steeply-falling nature of the LO
differential cross section in pt.
It can be seen from the logarithmic scale that the dependence of the cross section on
lnR becomes linear only for R ∼< 0.2: hence, the logarithmic contribution dominates the
cross section only in the very small R region, and indeed resummation was shown to be
necessary in this region in Refs. [124, 126, 127]. For larger R the lnR term is still sizable,
but the bulk of the lnR effects is captured by the exact NLO result, and for R ∼> 0.4 there
is a modest benefit in resumming them, as also shown in previous cited References, where
this resummation was performed explicitly.

2. While the leading and second jet account for most of the cross section, the contribution of
the third jet to the total K factor is much smaller (giving a correction of less than 2% of
the LO cross section) and almost completely negligible. The dominance of the first two jets
as pt grows is important in determining the qualitative features of the standard definition
and also plays a role for the various other definitions that we consider below. It persists
at NNLO, as shown in Ref. [121], and it is in fact to be expected to persist to all orders,
as a consequence of the dominance of soft radiation which, combined with the transverse-
momentum conservation, favors configurations in which two hard jets are back-to-back
while all the others are softer. This is based on the observation that the multi-differential
cross section, by dimensional analysis and transverse momentum conservation, must scale
like

dσ

dpt1 . . . dptn
∝ 1
pt1 . . . ptn

δ(pt1 + · · ·+ ptn) , (3.13)

which in turn implies that the cross section is the largest when there is a back-to-back
configuration with all the other jets being very soft.

3. By inspecting the uncertainty bands shown in Fig. 3.1, one can see that scale variation
bands for R = 0.4 for different central scale choices do not overlap in the small pt region.
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3.2. Comparing definitions of the cross section

As we have mentioned in Sec. 2.4, an in-depth discussion of this problem and how this
changes when including even higher order QCD corrections is given in Ref. [121]. It
is however clear that this is a consequence of the accidental compensation of the two
leading jets discussed above, which then propagates onto the scale variation. It follows
that theoretical uncertainties obtained by performing standard scale variation for fixed
R ∼ 0.4 are unrealistically small. A more reliable estimate can be obtained performing
uncorrelated scale variation (see Section 3.2.3 below).

All this shows that the putative perturbative instability of the standard definition is in fact a
byproduct of an entirely accidental cancellation which happens only at NLO in a given R range.
Because this cancellation is not protected by a symmetry, one should not expect it to persist
with a different definition or at higher perturbative orders.

3.2.2 Weighted (unitary) definitions

We now turn to the study of the weighted (unitary) definitions of the single inclusive-jet cross
section introduced in Sec. 3.1. We start our discussion with case (A), in which a pcutt is adopted,
and we show that in fact this unitary definition appears to display a somewhat problematic
behaviour, whose origin is discussed analytically in Sec. 3.4. We then turn to cases (B) and (C)
which provide a natural way to alleviate this problematic behaviour.

A. Jets above pcut
t . In Fig. 3.3 we show again the individual jet contributions and K factor,

now using weighted definitions of type (A), with a positive (r = 2) and a negative (r = −4)
value for the exponent in the weights. Note that the Kn, and hence the total K factor, are
normalized to the LO weighted jet cross section which is exactly half of the LO jet cross section
obtained with the standard definition. Indeed, at LO we have w1 = w2 = 1/2, by kinematic
constraint, for the weighted definition, independently of r.

We first discuss the behaviour for pt far above pcutt . Broadly speaking, positive weights
enhance the difference between leading and second leading jets, with features that resemble
those of the standard definition for the individual Kn factors. This is also true, in particular,
for the total K factor for pt sufficiently larger than pcutt (top row of Fig. 3.3). Negative values of
r, on the other hand, have the effect of balancing the difference between leading and subleading
jets. This results in more similar individual Kn factors, at the price of an overall larger total K
factor (bottom row of Fig. 3.3). At very large pt this effect becomes very large, which can be
easily understood as follows: whenever we have three jets passing the pt cut with pt1,2 � pt3
we have

w
(3)
1,2(r < 0) =

prt1,2
prt1 + prt2 + prt3

∼
(
pt3
pt1,2

)|r|
� 1 , (3.14)

w
(3)
3 (r < 0) = prt3

prt1 + prt2 + prt3
∼ 1 . (3.15)

The contributions of the two leading jets to the inclusive cross section, which are strongly
dominating the NLO cross section for the standard definition (or for the weighted definition
with r ≥ 0), are now power suppressed by the weights. Furthermore, corresponding virtual
corrections have two jets in the final state with w(2)

1,2(r < 0) = 1/2. At large pt real and virtual
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Figure 3.3: Same as Fig. 3.1 but using the weighted definitions of type A (see text: jets above
pcutt ) for r = 2 (top) and r = −4 (bottom).

corrections with pcutt � pt3 � pt1,2 ∼ pt therefore yield, after integration over pt3, a negative
contribution enhanced by log(pt/pcutt ), corresponding to the large corrections seen in Fig. 3.3.

Now turning to the region where pt → pcutt , we see from Fig. 3.3 that this weighted definition
(for both positive and negative r) develops a singular behaviour. The origin of this behaviour is
explained analytically in Section 3.4. For the time being, we note that these singularities, both
for pt � pcutt and for pt → pcutt , are of logarithmic origin and could in principle be dealt with
resummation.

In summary, the weighted definitions of type (A) (with pcutt ) have the undesirable feature
of developing problematically unstable behaviours for pt close to the pt cut as well as at large
pt for r < 0. In the other pt regions their perturbative behaviour now shows large K factors
also at NLO since the accidental cancellation of the standard definition is spoiled; while this is
perhaps more natural, it does not suggest an improvement in perturbative behaviour over the
standard definition.

B. All jets. A natural way of curing the logarithmic divergence observed when pt → pcutt

using weights of type (A) is to include all jets down to a pt much smaller than the first bin of
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Figure 3.4: Same as Fig. 3.1, but using a weighted definition of type B (all jets) for r = 2.

the distribution. Based on Fig. 3.3, taking a pcutt two or three times smaller than the first bin of
the distribution would already get rid of most of the sensitivity to pcutt , e.g. without any need for
an additional resummation. One can view the weighted definition of type (B) as simply taking
the limit pcutt → 0 and one should not expect our conclusions to change as long as pcutt remains
much smaller than the first bin of the distribution, say pcutt ∼ 20 − 30 GeV. This possibility is
only sensible for positive weights, for which the low pt part of the spectrum is suppressed. For
negative weights this choice is infrared unsafe.

Results are shown in Fig. 3.4 for r = 2. As expected, the singular behaviour of the K factor
for pt close to pcutt is now absent, and features similar to those of the standard definition are now
recovered. Specifically, non-overlapping scale variation bands are observed in the low pt region,
though to a smaller extent than in the standard case. As a last comment, we have checked that
this definition does not suffer from large non-perturbative corrections, such as those coming
from underlying events, despite involving low-pt jets. In a practical experimental context, one
would still need to make sure that this remains true with realistic pileup conditions.

C. Two leading jets. An alternative choice, motivated by the observation that the contribu-
tion of the third jet to the inclusive jet cross section is much smaller than that of the first two
jets (see Fig. 3.1) is to switch to definitions of type (C), in which only the two leading jets are
included in the weights, whether or not they pass a given pcutt . Clearly this should also remove
the problem of the behaviour for pt ∼ pcutt of definitions of type (A). This approach is similar in
spirit to what is done when looking at the dijet cross section. Results in this case are presented
in Fig. 3.5 for the individual K factors Kn and the total K factor. The situation for positive r
is again similar to what we observe for the standard definition: in particular there seems to be
a large compensation between the leading and subleading jets, leading to a rather flat K factor,
though larger than in the standard case.

As explained above, negative values of r have the effect of normalizing the individual Kn

factors for the leading and subleading jets, reducing the effect of the compensation seen in the
standard case. Furthermore, the uncertainty bands obtained for the three different scale choices
now overlap. Nevertheless, the inclusive K factor is relatively larger than for the standard
definition and shows a somewhat strong pt dependence.
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Figure 3.5: Same as Fig. 3.1, but using the weighted definitions of type C (two leading jets)
for r = 2 (top) and r = −4 (bottom).

Comparing these results to the other weighted definitions, we see that the logarithmic diver-
gence for pt close to pcutt which is observed in Fig. 3.3 when using the jets above pcutt has now
disappeared for both positive and negative r. This, as discussed above, is expected: the weights
do not depend on whether one or two of the two leading jets passes the pcutt , so the definition
becomes independent of the cut. Furthermore, the issue with large K factors at large pt for
negative r when including jets above pcutt has also disappeared. This is simply because the third
jet no longer contributes to the weights and therefore the large contribution seen in Eq. (3.14)
is absent.

In summary, weighted definitions of type (C) behave similarly to the standard definition for
positive r. The perturbative behaviour for negative r changes, with some desirable features (the
individual K factors K1 and K2 are similar, and the scale uncertainty bands for different scale
choices overlap), and some undesirable ones (the overall K factor is larger).

3.2.3 Uncorrelated scale variations

An alternative way of estimating missing higher order uncertainties, through an uncorrelated
scale variation procedure, has been suggested in Ref. [124], in the context of small-R resumma-
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tion. This prescription arises from the observation that we can rearrange the NLO cross section
at radius R as follows:

σNLO(R) = σ(0) + σ(1)(R)
= σ(0) + σ(1)(R0)− σ(1)(R0) + σ(1)(R)

=
[
σ(0) + σ(1)(R0)

] [
1 + σ(1)(R)− σ(1)(R0)

σ(0)

]
+O(α4

S) , (3.16)

where we have introduced σ(1)(R0), the NLO correction evaluated with a (larger) value of jet
radius R0 ∼ 1. Thus we see that

σNLO,mult(R) = σNLO(R0)×
(

1 + ∆(1)(R,R0)
)

(3.17)

differs from σNLO(R) only by higher order terms, with

∆(1)(R,R0) = σ(1)(R)− σ(1)(R0)
σ(0) . (3.18)

It is possible to see Eq. (3.17) as the fixed order version of a multiplicative matching between the
exact NLO result and the leading-logarithmic resummation of the αnS lnnR2 terms, performed in
Ref. [124]. However, even at fixed order Eq. (3.17) has a nice physical interpretation: the cross
section for production of jets with radius R is obtained as a product between the cross section
for the production of partons (which can be though of as jets with a larger radius R0 ∼ 1) and
their fragmentation into jets, with ∆(1)(R,R0) accounting for the different radius value.

The uncertainty bands around the NLO prediction are thus unnaturally small because of
an unphysical cancellations in scale dependence between these two processes. A more reliable
estimate could be obtained starting with eq. (3.17), considering separately the uncertainties of
the two factors — adopting the standard 7-point rule or another prescription — and eventually
summing them in quadrature.

We can check the effects of decorrelated scale variation both on the standard and on the
weighted definitions. This study is performed in Fig. 3.6. We now note overlapping scale uncer-
tainties across the whole pt spectrum, notably for the standard definition and for the weighted
definition of type B. This is analogous to what happens in the context of jet vetoing, where
decorrelated scale variation also leads to more realistic uncertainty estimates in the presence of
cancellations [128].

As a final remark, note that it is possible to write down an equation similar to Eq. (3.17) at
NNLO. By using the fixed order NNLO results, the option of uncorrelated scale variations has
been recently studied in great details in [125]. In particular, the Authors of Ref. [125] propose
alternative choices about the actual implementation of the factorization in eq. (3.17), such as

σ(N)NLO,mult(R) = σ(N)NLO(R0)× σ(N)NLO(R)
σ(N)NLO(R0) (3.19)

i.e. a non-expanded version of Eq. (3.17). This prescription has the potential advantage of
conserving the central value of the original (N)NLO prediction.
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Figure 3.6: Same as Fig. 3.1, but with uncertainty bands determined by uncorrelated scale
variation procedure.

3.3 Hints on NNLO results

While the discussion presented in the previous sections is mostly at NLO, in this section we
would like to comment on the validity of our results at higher orders. This is to some extent
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possible, as we are able to evaluate some specific difference between cross sections at NNLO by
using public NLO codes. For instance, the following relation holds:

dσNNLO, 2j
1-st jet

dpt
−
dσNNLO, 2j

2-nd jet

dpt
=
dσNLO, 3j

1-st jet

dpt
−
dσNLO, 3j

2-nd jet

dpt
. (3.20)

This is due to the fact that virtual corrections to 2-jet production process cancel in the difference,
just because pt1 = pt2, yielding the same result as the difference between NLO corrections to the
3-jet production process. This cancellation is easy to understand given Fig. 2.4 on the right. If
we take difference between two red triangles (corrections to 2→ 2 scattering), the contributions
coming from the “loop row” on the left cancel each other, and we are left with exactly the
difference between two green triangles (corrections to 2→ 3 scattering).

In practice, we use NLOJET++ to generate 3-jet events at NLO. For each event, we bin
directly the difference between the weights associated to the leading and the subleading jet. Note
that we are not imposing any cut on the presence of a third jet in the event: this is necessary
to ensure the validity of Eq. (3.20).

In this way, we can explicitly check if some of our results persist through NNLO. In Fig. 3.7
we compare such a difference at NLO and at NNLO. For instance, the red curves in Fig. 3.7
as simply obtained as the difference between the red and the blue curve in the left plot of
Figs. 3.1, 3.3, 3.5 respectively. We see that at NNLO there is still a cancellation between the
two contributions, although it is less pronounced than at NLO. This attenuation seems to be
independent of the definition, and therefore to be due to a pure dynamic NNLO effect. In the
end, we conclude that the features observed at NLO are still there at NNLO, though slightly
reduced.

3.4 Analytic arguments at NLO

We now show how several features of the results presented in the previous sections can be
understood on the basis of simple analytic arguments. Specifically, we show that the behaviour in
the vicinity of pcutt is strongly tied to the unitarity, or lack thereof, of the various definitions. Here
we provide some general, exploiting the fact that at NLO the jet functions used for partitioning
the phase-space have a compact and manageable form.

In order to understand the behaviour of various definitions we need an explicit expression
for the contribution to the N -jet cross section of Eq. (3.7) and to the n-th jet cross section of
Eq. (3.8). These can be constructed in terms of parton-level cross sections by introducing explicit
jet functions that cluster final-state partons into jets, in the latter case further supplemented
by a function that selects the n-th leading jet, and bins the result into a fixed pt bin. In order
to cancel infrared singularities, the k-th order contribution must be constructed by adding up
contributions coming from final states with a number of final-state partons that goes from two
(with k virtual loops), up to k+ 2 (with k real emissions on top of the Born level). For instance
the NLO k = 1 term receives contributions both from a two-parton final state with one loop,
and from a real emission three-parton state, and so on.

Explicitly, we can write the N -exclusive jets contribution, Eq. (3.7), as a sum of terms where
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Figure 3.7: Summary of tests carried out at NNLO (O(α4
S)) by taking the difference between

the leading and the second leading jets. Respectively: top left is for the standard definition, top
right for definition (B) with r = 2, bottom left for definition (C) with r = 2, and bottom right
for definition (C) with r = −4.

the N jets are produced from an m parton final-state, dΦm,

dσ(k)
N jets

dpt
=

k+2∑
m=2

∫
dΦm

dσ̂(k)
m

dΦm
Gm→N jets(Φm, pt) . (3.21)

where Gm→N jets is the jet function which cluster m partons into N jets. Gm→N jets contains
the function FN , Eq. (3.4), which in turn includes the possible weights. The jet function thus
depends on the jet momentum pt, and on the partonic phase space variables dΦm.

We can give an explicit expression of Gm→N at NLO (k = 1). For this, let us denote by kti
the parton transverse momenta, with kt1 ≥ kt2 ≥ kt3. Using the anti-kt [68] jet clustering with
R < π/2, one has

G2→1 = G2→3 = 0 (3.22)
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G2→2 = Θ(pt > pcutt )
{

2w(2)(pt; pt, pt) δ(pt − kt1)
}

(3.23)

G3→1 = Θ(∆R23 > R) Θ(kt1 > pcutt > kt2 > kt3)
{
w(1)(pt; pt) δ(pt − kt1)

}
(3.24)

G3→2 = Θ(∆R23 > R) Θ(kt1 > kt2 > pcutt > kt3)
{ 2∑
i=1

w(2)(pt; kt1, kt2) δ(pt − kti)
}

+ Θ(∆R23 < R) Θ(pt > pcutt )
{

2w(2)(pt; pt, pt) δ(pt − kt1)
}

(3.25)

G3→3 = Θ(∆R23 > R) Θ(kt1 > kt2 > kt3 > pcutt )
{ 3∑
i=1

w(3)(pt; kt1, kt2, kt3)δ(pt − kti)
}
, (3.26)

where we have defined, as is customary, ∆Rij =
√

(∆φij)2 + (∆yij)2, as the distance between
parton i and parton j in the rapidity-azimuth plane, with y and φ the rapidity and the azimuthal
angle respectively. Note also that, due to momentum conservation, it is sufficient to consider
the recombination of the two softest partons. The second line of Eq. (3.25) corresponds to the
case where the two softest partons cluster, yielding two back-to-back jets of momentum kt1.

Using Eqs. (3.22)-(3.26), the issue of unitarity vs. cancellation of the dependence on pt is
easily understood. On the one hand, it is clear that the standard definition is not unitary and
only the weighted definitions are unitary because∫

d ptG3→1 +G3→2 +G3→3
∣∣
wgt = Θ(kt1 > pcutt ) . (3.27)

This result, valid for any r, means that integrating the single-jet cross section over pt yields the
total cross section for producing (at least) one jet above pcutt (with definitions of type (A) in the
sense of Sec. 3.1) or the total cross section (for definitions of type (B) or of type (C)). Hence
these choices are unitary, and thus the standard choice cannot be.

On the other hand, it is clear that the inclusive cross section is independent of pcutt when
using the standard definition. Indeed, in this case one has

G3→1 +G3→2 +G3→3
∣∣
std = Θ(pt > pcutt )

{
Θ(∆R23 > R)

[ 3∑
i

δ(pt − kti)
]

+ Θ(∆R23 < R)2 δ(pt − kt1)
}
, (3.28)

where now the subscript “std” denotes that in the definition of FN , Eq. (3.4), the standard case
in Eq. (3.5) has been selected. The result Eq. (3.28) is manifestly independent of pcutt since all
the dependence on pcutt is factored in an overall Θ function which is always satisfied as long
as one has at least one jet in the event. In practice, the dependence on pcutt disappears since,
when integrating over the partonic transverse momenta, the N -jet contribution has pcutt as a
lower bound of integration while the N − 1-jet contribution has pcutt as an upper bound. When
summing both contributions, the pcutt dependence cancels.

When one instead uses a unitary definition which explicitly introduces a pcutt dependence,
such as definition (A), this cancellation is spoiled: whether a jet passes a cut or not changes
the weights of all the other jets, thereby introducing a cutoff dependence of the observable. The
lack of cancellation then propagates into the individual n-th jet cross sections, thus explaining
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Chapter 3. On the definition of single-jet inclusive cross section

the singular behaviour observed in Fig. 3.3 when pt ∼ pcutt . Of course this cutoff dependence
is not present for the two other weighted definitions, (B) and (C), even if the weight associated
to a jet still depends on the other jets in the event, which is needed to eventually ensure the
unitarity of the cross section.

We can similarly understand the R dependence or lack thereof of the leading jet contribution,
which as discussed in Sec. 3.2.1 controls the behaviour of the NLO K factor, by introducing
explicit expressions for individual jet functions. We now need to consider the n-th leading jet
contribution, Eq. (3.8)

dσ(k)
n-th jet

dpt
=

k+2∑
m=2

∫
dΦm

dσ̂(k)
m

dΦm
Sm→n-th jet(Φm, pt) , (3.29)

where the functions Sm→n-th jet are defined summing the contributions coming from the n-th
jet in the functions G given above. By direct calculation, we find

S2→pt1 = S2→pt2 = 1
2 G2→2 (3.30)

S3→pt1 = Θ(pt > pcutt ) δ(pt − kt1)

×
{

Θ(∆R23 > R)
[
Θ(pcutt > kt2 > kt3)w(1)(pt; kt1)

+ Θ(kt2 > pcutt > kt3)w(2)(pt; kt1, kt2)

+ Θ(kt2 > kt3 > pcutt )w(3)(pt; kt1, kt2, kt3)
]

+ Θ(∆R23 < R)w(2)(pt; pt, pt)
}

(3.31)

S3→pt2 = Θ(kt1 > pt > pcutt )

×
{

Θ(∆R23 > R) δ(pt − kt2)
[
Θ(pcutt > kt3)w(2)(pt; kt1, kt2)

+ Θ(kt3 > pcutt )w(3)(pt; kt1, kt2, kt3)
]

+ Θ(∆R23 < R) δ(pt − kt1)w(2)(pt; pt, pt)
}

(3.32)

S3→pt3 = Θ(kt1 > kt2 > pt > pcutt ) δ(pt − kt3) Θ(∆R23 > R)w(3)(pt; kt1, kt2, kt3) . (3.33)

If now one sets all weights w = 1, Eq. (3.31) takes the form

S3→pt1
∣∣
std = Θ(pt > pcutt ) δ(pt − kt1) = S2→pt1

∣∣
std , (3.34)

where the subscript “std” again denotes that in the definition of FN , Eq. (3.4), the standard
case in Eq. (3.5) has been selected. This means that all the Θ functions simplify, leading to
an overall factor providing a condition that is always satisfied if at least one jet in the event
is above pcutt . At NLO, the leading jet contribution is therefore always given by the transverse
momentum of the hardest parton (this is valid for both the real contribution with three partons
in the final state and the virtual corrections with two partons), independently of the jet radius
R. Note that, one can similarly see that for any weighted definition, at NLO, corrections to the
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3.5. Soft-collinear approximation to NLO cross section

leading jet are R-dependent for the same reason that the weighted definitions depend on pcutt :
the value of the weights depend on how many partons have ∆Rij > R. Furthermore, the NLO
corrections for the subleading and third-leading jet also depend on R. This is trivial for the
latter which shows an explicit R dependence in (3.33). For the subleading jet, this is due to the
fact that the pt of the jet changes (between kt1 and kt2) depending on how ∆R23 compares to
R.

3.5 Soft-collinear approximation to NLO cross section

The arguments outlined in the previous section may seem somewhat formal. To gain further
analytic insight, it is useful to take a soft-collinear approximation in which case Eqs. (3.21),(3.29)
simplify considerably. Indeed, if one considers a collinear splitting at a small angle ϑ, the NLO
contribution from a real emission can be written in simple form by parametrising the final-state
momenta as

pµ1 = p̃µa +O(k2
⊥), pµ2 = (1− z)p̃µb + kµ⊥ +O(k2

⊥), pµ3 = z p̃µb − k
µ
⊥ +O(k2

⊥), (3.35)

where p̃µa and p̃µb are the Born final-state hard directions, z is the longitudinal momentum fraction
of the splitting, and the transverse momentum k⊥ satisfies k⊥ · p̃a = k⊥ · p̃b = 0; k⊥ can then be
parametrized by the angle ϑ between p2 and p3 and an azimuthal angle ϕ. Including only terms
that produce a logarithmic enhancement in the limit ϑ→ 0, the real emission contribution takes
the form

dΦ3
dσ̂

(1)
3

dΦ3
=
∑
i=q,g

[
dσLOi
dpt

(p̃t)
] [

αsCi
π

Pi(z)
]

dp̃t dzdϑ2

ϑ2
dϕ

2π . (3.36)

Note that within this approximation recoil effects on p1 become negligible. They could be
addressed using a similar formalism but going beyond the small-angle approximation that we
adopt here.

In Eq. (3.36) dσLOi /dpt, with i = q, g, is the LO partonic spectrum for producing a quark
or a gluon of transverse momentum p̃t, already introduced in Eq. (2.34). Pi(z) corresponds to
the Altarelli-Parisi splitting function in Eqs. (1.91)-(1.92), with z the momentum fraction of
the collinear splitting. Note that we have explicitly factored out a colour factor 2Ci (Ci = CF
for quarks and Ci = CA for gluons). At this accuracy, the NLO one-loop virtual correction
has exactly the same form as Eq. (3.36) integrated over the full phase-space of the extra real
emission, but with the opposite sign. In what follows, we further assume that the extra emission
is soft so we can approximate Pi(z) ≈ 1/z, as in Eq. (1.93). This soft approximation is made
for the sake of simplicity and can easily be lifted to include the full splitting function.

The soft-collinear approximation is sufficient to obtain results in fair agreement with the full
calculation, and specifically reproduce three important aspects discussed in Sec. 3.2. First, we
can see explicitly how the cancellation of the pcutt dependence which happens in the standard
case is spoiled for the weighted definition (A) and restored with definitions (B) and (C). Second,
we are able to identify the R dependence of the second leading jet with out-of-cone radiation.
Third, we can further study the impact of weighted definitions at large pt. Conversely, working
in a soft-collinear approximation, we are neglecting all recoil effects. This means in particular
that the calculation below will not reproduce the large K1 factor for the leading jet. The text
below outlines the structure of the calculation and our main results, deferring additional details
to Appendix 3.A.
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Chapter 3. On the definition of single-jet inclusive cross section

The fact that the real and virtual contributions have the opposite sign implies that the N -jet
contribution Eq. (3.21) and the n-th jet contribution Eq. (3.29) take respectively the simple form

dσ
(1)
N jets

dpt
≈
∑
i=q,g

Ci
π

∫
dp̃t dzdϑ2

ϑ2

[
dσLOi
dpt

(p̃t)
]
αs Pi(z) {G3→N jets −G2→N jets} (3.37)

≡
∑
i=q,g

[
dσLOi
dpt

(pt)
]
Ci
π

ln
(
R2
max
R2

)
IN (3.38)

and

dσ
(1)
n -th jet

dpt
≈
∑
i=q,g

Ci
π

∫
dp̃t dzdϑ2

ϑ2

[
dσLOi
dpt

(p̃t)
]
αs Pi(z) {S3→n -th jet − S2→n -th jet} (3.39)

≡
∑
i=q,g

[
dσLOi
dpt

(pt)
]
Ci
π

ln
(
R2
max
R2

)
Jn , (3.40)

where in both cases Rmax is the upper limit of the ϑ integration. The functions IN and Jn can
be cast in a simple closed analytic form by writing the LO cross section as a power law

dσLOi
dpt

(p̃t) ∼ p̃−mit , (3.41)

where mi is, in general, different for the quark and gluon case (see end of Sec. 2.1.5). In
Appendix 3.A explicit analytic expressions are given for the standard definition, with the general
definitions easily amenable to numerical treatment.

We can now use Eqs. (3.38),(3.40) to address the issues mentioned above. We start by
investigating the behaviour in the pt → pcutt limit and focus on the leading jet. J1 receives real
contributions from S3→pt1 , Eq. (3.31), and virtual corrections from S2→pt1 , Eq. (3.30). The
latter contribution cancels against the real one in the region ∆R23 ≡ ϑ < R. Up to power
corrections in z, we can set kt2 = (1− z)kt1 and kt3 = zkt1. For pt → pcutt we can then assume
kt3 < pcutt and we are left with two terms:

J1
pt→pcut

t∼
∫ pcut

t /pt

1−pcut
t /pt

dz P (z)w(1)(pt; pt)−
∫ pcut

t /pt

1−pcut
t /pt

dz P (z)w(2)(pt; pt, pt). (3.42)

The first term corresponds to kt2 < pcutt while the second term includes the real emissions with
kt2 > pcutt as well as the remaining virtual corrections. After integration over z, we thus find

J1 = log
(

pcutt

pt − pcutt

)
− ω log

(
pcutt

pt − pcutt

)
=
{

0 [standard]
− 1

2 log
(
pt−pcut

t

pcut
t

)
[weighted (A)]

, (3.43)

where ω = 1 for the standard definition and ω = 1
2 for the weighted definition (A), independently

of the exponent r which enters the definition of the weights, Eq. (3.4). In the same limit it turns
out that J2 and J3 are non-singular. This explains our findings from Sec. 3.2: the unitary
definition suffers from a logarithmic divergence close to pcutt while the standard definition is
independent of the value of pcutt . Furthermore, this behaviour (see Fig. 3.3), only affects the
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leading jet, whose properties are encoded in J1. Of course it also follows from Eq. (3.43) that
when pcutt � pt, corresponding to using definitions of the weights of type (B), the singular
behaviour disappears. A similar conclusion can be reached for the definition of type (C).

Next, we can also use Eq. (3.40) to predict the small-R behaviour of the second and third
leading jet contributions. In both cases one would get a logarithmic enhancement at small R.
Note that at first sight Eq. (3.40) seems to imply that the leading jet contribution also has a
logarithmic R dependence in the standard case, in contradiction to the behaviour observed in
Fig. 3.2, and to our previous general conclusion based on Eq. (3.34). However, one should realize
that, in the small-R limit where Eq. (3.40) holds, Eq. (3.43) implies that J1 is zero, and thus
obviously R-independent in the standard case. In all weighted cases J1 is non-vanishing, and
thus the leading jet contribution becomes R-dependent in agreement with our previous analytic
and numerical arguments, with a logarithmic dependence on R in the small-R limit.

Finally, we can study the limit of the functions Jn when pt � pcutt , in the weighted case
with r negative and |r| ∼ |mi|. In this case, we find that the contributions from the leading
and the subleading jet are comparable (see Eqs. (3.67)-(3.68)), partially solving the problem of
the large compensation seen in the standard definition or for positive values of r, as observed in
Sec. 3.2.2, Fig. 3.3.

Results obtained for the leading, subleading and third-leading jet contributions using the
approximation Eqs. (3.38),(3.40) are shown in Fig. 3.8 for a representative set of cases, to be
compared to Figs. 3.1,3.3-3.5. All plots have been produced implementing Eq. (3.39), with
Eq. (3.41) and m = 5. Note that this parametrization of the LO pt spectrum already includes
initial state PDFs. We have checked that using the exact LO partonic cross section and the full
Altarelli-Parisi splitting functions yields similar results. We choose Rmax = 1 and use R = 0.4
to allow for a comparison with the full results presented in Section 3.2. Tests of consistency
between the the full NLO result in a proper collinear limit and our code implementing Eq. (3.36)
are carried out in Appendix 3.B. Finally, we set αs(pt1). As anticipated, it is clear that the main
qualitative features of the exact results are reproduced by the soft-collinear approximation.

3.6 Summary of results

In this chapter we have addressed the potential issue of the non-unitarity of the single-jet inclu-
sive cross section, by introducing a series of alternative weighted definitions of this observable
which are unitary in the sense that upon integration they lead to the total cross section. The
main features of the various definitions we have considered are summarised in Table 3.1.

Our conclusion is that a naive weighted approach [type (A) of Sec. 3.1] in which one simply
introduces a weighting of all jets above a certain pcutt is flawed, in the sense that it develops
logarithmic singularities associated with the transverse momentum cut on jets, pcutt . More so-
phisticated definitions avoid this problem by setting pcutt to zero [type (B)] or by considering only
the two leading jets [type (C)]. Both these definitions could be more challenging to implement
in a practical (experimental) environment.

Additionally, even leaving aside practical considerations, there does not seems to be any
real advantage in adopting these definitions in term of perturbative stability. In particular, all
weighted definitions with positive r show features at best similar to the standard definition.
Furthermore, the apparent perturbative instability of the conventional definition appears in fact
to be the manifestation of an unnatural smallness of the NLO K factors which only happens
for a limited range of jet radius R ∼ 0.4. It is a consequence of an accidental cancellation
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Figure 3.8: Contributions from the leading, subleading, and third-leading jets to the NLO
inclusive K factors in the soft-collinear approximation. The standard definition (top left) is
compared to weighted definition of type (B) (no pcutt ) with r = 2 (top right), weighted definitions
of type (A) (with pcutt ) with r = −4 (middle left) and r = 2 (middle right) and of type (C) (two
jets) also with with r = −4 (bottom left) and r = 2 (bottom right).
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3.A. Explicit analytic expressions

Definition standard weighted
(A) > pcutt (B) all jets (C) two lead.

Reference plot Fig. 3.1 Fig. 3.3 Fig. 3.4 Fig. 3.5
unitarity no yes yes yes
no large logs

X 7 X Xclose to pcutt

no large logs
X

X for r > 0
X Xat large pt 7 for r < 0

overlapping scale 7
X X Xvariation bands X uncer. as [124]

no large cancellations
7 7 7

7 for r > 0
between K1 and K2 X for r < 0

Table 3.1: Summary of the main properties of the various single-inclusive jet definitions studied
in this chapter.

which makes standard scale variation unreliable as a means of estimating missing higher order
corrections. This apparent issue for example disappears with more conservative estimates of the
perturbative uncertainties. One possible case of interest is the definition of type (C), focusing
on the two leading jets, with r < 0. Compared to the standard definition, it has the potential
advantage of reducing the large difference between the K factor of the leading and subleading
jets, at the cost of having a larger overall NLO K factor.

Our final conclusion is both negative, and positive. On the negative side, we conclude that
unitary definitions of the jet inclusive cross section are at best as good as the standard definition,
while being rather more contrived. On the positive side, we conclude that the standard definition
shows no critical sign of pathological features or problems, other than its unitarity, which however
is per se not causing any perturbative problem.

To return to the question we asked ourselves in the introduction of the thesis, on what is the
best observable between single-jet or dijet processes, the findings of this chapter give clues for
a possible answer. Among the unitary definitions, the weighted definitions based on including
only the two leading jets appear to be particularly well-behaved. After all, these definitions are
a way to study the dijet system as a function of the pt and rapidity of the individual jets, rather
than adopting event-wide variables. This is in agreement with previous studies [121] in which
dijet observables are also found to have better perturbative stability, see end of Sec. 2.4. The
PDF fits in the next chapter will add an extra piece of information to this debate.

3.A Explicit analytic expressions

The N -jet contribution and the n-th jet contribution to the differential cross section at NLO
in the soft-collinear approximation are given by Eq. (3.37) and Eq. (3.39) respectively. Using
an explicit expression for the splitting functions Pi, Eqs. (1.91)-(1.92), and for the G or the S
functions in the collinear limit we can perform the phase-space integration explicitly.

By adopting the parametrization of the final-state given in Eq. (3.35), the jet functions G
and S can be rewritten in the collinear and small R limit, i.e. ∆R23 = ϑ� 1. For the weighted
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Chapter 3. On the definition of single-jet inclusive cross section

definition with jets above pcutt we have:

G2→1 = G2→3 = 0 (3.44)
G2→2 = Θ(p̃t > pcutt )w(2)(pt|p̃t, p̃t)[δ(pt − p̃t) + δ(pt − p̃t)] (3.45)
G3→1 = Θ(ϑ2 > R2)Θ(p̃t > pcutt ; zp̃t < pcutt ; (1− z)p̃t < pcutt )w(1)(pt|p̃t)[δ(pt − p̃t)] (3.46)
G3→2 = Θ(ϑ2 < R2)Θ(p̃t > pcutt )w(2)(pt|p̃t, p̃t)[δ(pt − p̃t) + δ(pt − p̃t)]

+ Θ(ϑ2 > R2)Θ(p̃t > pcutt ){
Θ(zp̃t < pcutt ; (1− z)p̃t > pcutt )w(2)(pt|p̃t, (1− z)p̃t)

× [δ(pt − p̃t) + δ(pt − (1− z)p̃t)]

+ Θ(zp̃t > pcutt ; (1− z)p̃t < pcutt )w(2)(pt|p̃t, zp̃t)[δ(pt − p̃t) + δ(pt − zp̃t)]
}

(3.47)

G3→3 = Θ(ϑ2 > R2)Θ(p̃t > pcutt ; zp̃t > pcutt ; (1− z)p̃t > pcutt )
× w(3)(pt|p̃t, zp̃t, (1− z)p̃t)[δ(pt − p̃t) + δ(pt − zp̃t) + δ(pt − (1− z)p̃t)]. (3.48)

and

S2→pt1 = S2→pt2 = Θ(p̃t > pcutt )w(2)(pt|p̃t, p̃t)δ(pt − p̃t) (3.49)
S3→pt1 = Θ(ϑ2 < R2)Θ(p̃t > pcutt )w(2)(pt|p̃t, p̃t)δ(pt − p̃t) + Θ(ϑ2 > R2) (3.50)

×
[
Θ(p̃t > pcutt ; zp̃t < pcutt ; (1− z)p̃t < pcutt )w(1)(pt|p̃t)δ(pt − p̃t)

+ Θ(p̃t > pcutt ; zp̃t > pcutt ; (1− z)p̃t < pcutt )w(2)(pt|p̃t, zp̃t)δ(pt − p̃t)

+ Θ(p̃t > pcutt ; zp̃t < pcutt ; (1− z)p̃t > pcutt )w(2)(pt|p̃t, (1− z)p̃t)δ(pt − p̃t)

+ Θ(p̃t > pcutt ; zp̃t > pcutt ; (1− z)p̃t > pcutt )

× w(3)(pt|p̃t, zp̃t, (1− z)p̃t)δ(pt − p̃t)
]

S3→pt2 = Θ(ϑ2 < R2)Θ(p̃t > pcutt )w(2)(pt|p̃t, p̃t)δ(pt − p̃t) + Θ(ϑ2 > R2) (3.51)

×
{

Θ(p̃t > pcutt ; zp̃t > pcutt ; (1− z)p̃t < pcutt )w(2)(pt|p̃t, zp̃t)δ(pt − zp̃t)

+ Θ(p̃t > pcutt ; zp̃t < pcutt ; (1− z)p̃t > pcutt )

× w(2)(pt|p̃t, (1− z)p̃t)δ(pt − (1− z)p̃t)

+ Θ(p̃t > pcutt ; zp̃t > pcutt ; (1− z)p̃t > pcutt )w(3)(pt|p̃t, zp̃t, (1− z)p̃t)

× [Θ(z > 1/2)δ(pt − zp̃t) + Θ(z < 1/2)δ(pt − (1− z)p̃t)]
}

S3→pt3 = Θ(ϑ2 > R2)Θ(p̃t > pcutt ; zp̃t > pcutt ; (1− z)p̃t > pcutt )w(3)(pt|p̃t, zp̃t, (1− z)p̃t)
× [Θ(z < 1/2)δ(pt − zp̃t) + Θ(z > 1/2)δ(pt − (1− z)p̃t)] (3.52)

The standard definition can trivially be recovered by setting the weights to 1, while the case of
the weighted definition including all jets can be obtained by taking the limit pcutt → 0. Similarly,
the weighted definition with 2 leading jets is instead obtained by firstly taking the limit pcutt → 0
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and by then keeping the terms proportional to δ(pt − p̃t) as well as the terms proportional to
either δ(pt − zp̃t) if z > 1/2, or δ(pt − (1− z)p̃t) if z < 1/2, modifying the weights accordingly.

The p̃t integration in Eqs. (3.37)-(3.39) can be simplified using the delta functions δ(pt− p̃t),
δ(pt − zp̃t) and δ(pt − (1 − z)p̃t). The ϑ integration leads to a logarithmic dependence on the
jet radius R. The only nontrivial integral is over z, thereby leading to a final result of the form
of Eqs. (3.38),(3.40). Explicitly, IN and Jn there present are given by:

I1 = Θ(pt < 2pcutt )
∫ pcut

t /pt

1−pcut
t /pt

dz P (z) [1] σ̃(pt) (3.53)

I2 = Θ(pt < 2pcutt )
[∫ 1

pcut
t /pt

dz P (z)
[

1
1 + zr

]
σ̃(pt) (3.54)

+
∫ 1−pcut

t /pt

0
dz P (z)

([
1

1 + (1− z)r

]
σ̃(pt)−

[
1
2

]
σ̃(pt)

)

−
∫ 1

1−pcut
t /pt

dz P (z)
[

1
2

]
σ̃(pt)

]

+ Θ(pt > 2pcutt )
[∫ 1

1−pcut
t /pt

dz P (z)
[

1
1 + zr

]
σ̃(pt)

+
∫ pcut

t /pt

0
dz P (z)

([
1

1 + (1− z)r

]
σ̃(pt)−

[
1
2

]
σ̃(pt)

)

−
∫ 1

pcut
t /pt

dz P (z)
[

1
2

]
σ̃(pt)

]

+
∫ 1

pt/(pt+pcut
t )

dz P (z)
[

zr

1 + zr

]
1
z
σ̃
(pt
z

)
+
∫ pcut

t /(pt+pcut
t )

0
dz P (z)

([
(1− z)r

1 + (1− z)r

]
1

1− z σ̃
(

pt
1− z

)
−
[

1
2

]
σ̃(pt)

)
−
∫ 1

pcut
t /(pt+pcut

t )
dz P (z)

[
1
2

]
σ̃(pt)

I3 = Θ(pt > 2pcutt )
∫ 1−pcut

t /pt

pcut
t /pt

dz P (z)
[

1
1 + zr + (1− z)r

]
σ̃(pt) (3.55)

+
∫ pt/(pt+pcut

t )

0
dz P (z)

[
zr

1 + zr + (1− z)r

]
1
z
σ̃
(pt
z

)
+
∫ 1

pcut
t /(pt+pcut

t )
dz P (z)

[
(1− z)r

1 + zr + (1− z)r

]
1

1− z σ̃
(

pt
1− z

)

J1 = Θ(pt < 2pcutt )
[∫ pcut

t /pt

1−pcut
t /pt

dz P (z) [1] σ̃(pt)−
∫ 1

1−pcut
t /pt

dz P (z)
[

1
2

]
σ̃(pt) (3.56)

+
∫ 1−pcut

t /pt

0
dz P (z)

([
1

1 + (1− z)r

]
σ̃(pt)−

[
1
2

]
σ̃(pt)

)
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+
∫ 1

pcut
t /pt

dz P (z)
[

1
1 + zr

]
σ̃(pt)

]

+ Θ(pt > 2pcutt )
[∫ 1−pcut

t /pt

pcut
t /pt

dz P (z)
[

1
1 + zr + (1− z)r

]
σ̃(pt)

−
∫ 1

pcut
t /pt

dz P (z)
[

1
2

]
σ̃(pt)

+
∫ pcut

t /pt

0
dz P (z)

([
1

1 + (1− z)r

]
σ̃(pt)−

[
1
2

]
σ̃(pt)

)

+
∫ 1

1−pcut
t /pt

dz P (z)
[

1
1 + zr

]
σ̃(pt)

]

J2 =
∫ 1

pt/(pt+pcut
t )

dz P (z)
[

zr

1 + zr

]
1
z
σ̃
(pt
z

)
−
∫ 1

pcut
t /(pt+pcut

t )
dz P (z)

[
1
2

]
σ̃(pt) (3.57)

+
∫ pcut

t /(pt+pcut
t )

0
dz P (z)

([
(1− z)r

1 + (1− z)r

]
1

1− z σ̃
(

pt
1− z

)
−
[

1
2

]
σ̃(pt)

)
+
∫ pt/(pt+pcut

t )

1/2
dz P (z)

[
zr

1 + zr + (1− z)r

]
1
z
σ̃
(pt
z

)
+
∫ 1/2

pcut
t /(pt+pcut

t )
dz P (z)

[
(1− z)r

1 + zr + (1− z)r

]
1

1− z σ̃
(

pt
1− z

)
J3 =

∫ 1/2

0
dz P (z)

[
zr

1 + zr + (1− z)r

]
1
z
σ̃
(pt
z

)
(3.58)

+
∫ 1

1/2
dz P (z)

[
(1− z)r

1 + zr + (1− z)r

]
1

1− z σ̃
(

pt
1− z

)

where the terms in squared brackets correspond to the weights, here given for a definition of
type (A), and we have set the running coupling scale to pmax

t ≡ pt1 = p̃t and introduced

σ̃(x) ≡ dσLO

dpt
(x)αs(x). (3.59)

In the fixed coupling approximation or if we take αs(pt), the coupling can be factorized out of
the integration and directly moved to Eq. (3.38) or Eq. (3.40). Note that the above expressions
do not assume z � 1. Keeping the full z dependence of the splitting functions would therefore
account for hard-collinear splittings.

In the general weighted case, these integrals can only be computed numerically. Results for
the standard (unweighted) definition are found by simply removing all terms in square brackets.
In this case, by using Eq. (3.41) for the Born cross section and the soft approximation of the
splitting functions these integrals can be computed exactly in the fixed coupling approximation
and their expressions are

I
(std)
1 = Θ(pt < 2pcutt ) ln

(
pcutt

pt − pcutt

)
(3.60)
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I
(std)
2 = Θ(pt > 2pcutt ) ln

(
pcutt

pt − pcutt

)
−Θ(pt < 2pcutt ) ln

(
pcutt

pt − pcutt

)
(3.61)

+ ln
(

pcutt

pt + pcutt

)
+ 1
m− 1

(
1−

(
pt + pcutt

pt

)1−m)

− (m− 1)
(

pcutt

pt + pcutt

)
3F2

(
1, 1, 2−m; 2, 2; pcutt

pt + pcutt

)
I
(std)
3 = −Θ(pt > 2pcutt ) ln

(
pcutt

pt − pcutt

)
− ln

(
pcutt

pt + pcutt

)
+ 1
m− 1

(
pt + pcutt

pt

)1−m

(3.62)

−Hm−1 + (m− 1)
(

pcutt

pt + pcutt

)
3F2

(
1, 1, 2−m; 2, 2; pcutt

pt + pcutt

)
and

J
(std)
1 = 0 (3.63)

J
(std)
2 = −1

2(m− 1) 3F2

(
1, 1, 2−m; 2, 2; 1

2

)
− 21−m − 1

m− 1 − log 2 (3.64)

J
(std)
3 = 1

2(m− 1) 3F2

(
1, 1, 2−m; 2, 2; 1

2

)
−Hm−1 + 21−m

m− 1 + log 2 (3.65)

where Hn are harmonic numbers, pFq is a generalized hypergeometric function, and m is the
power of the LO cross section in Eq. (3.41), which can in principle differ for quarks and gluons.

Adding up all contributions we get:

dσ(1)

dpt
=
∑
i=q,g

[
dσLOi
dpt

(pt)
]
αsCi
π

ln
(
R2
max
R2

)[
1

mi − 1 −Hmi−1

]
. (3.66)

For mq = mg, the K factor is flat, since both the pt and the pcutt dependence have canceled
completely in the square bracket in the last line. The only remaining dependence on pt would
therefore come either from differences between the quark and gluon contributions (mq 6= mg)
or from the running of αs which was neglected in the above result.

We conclude by studying the large pt limit of Jn in the weighted case. When pt →∞, from
Eqs. (3.56)-(3.57) we get

J
(wgt)
1

pt→∞∼ −
∫ 1

0
dz P (z)

[
1
2

]
σ̃(pt) +

∫ 1

0
dz P (z)

[
1

1 + zr + (1− z)r

]
σ̃(pt) (3.67)

J
(wgt)
2

pt→∞∼ −
∫ 1

0
dz P (z)

[
1
2

]
σ̃(pt) +

∫ 1

1/2
dz P (z)

[
zr

1 + zr + (1− z)r

]
1
z
σ̃
(pt
z

)
+
∫ 1/2

0
dz P (z)

[
(1− z)r

1 + zr + (1− z)r

]
1

1− z σ̃
(

pt
1− z

)
(3.68)

while J3 in Eq. (3.58) does not depend on pt and it is always negligible. Assuming that the LO
cross section behaves accordingly to the power law Eq. (3.41), and choosing a negative exponent
r ∼ −m for the weights, it appears that J1 and J2 become the same in the pt →∞ limit. Hence,
the effect of the weight is to balance the leading and the second leading jet contributions.
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Chapter 3. On the definition of single-jet inclusive cross section

3.B Test of collinear approximation

In this appendix we present some simple tests of consistency between the full NLO result,
obtained as output of the NLOJET++ code, and our code implementing the collinear approx-
imation. In particular, we focus on the 3-jet cross section at LO, σLO

3 jets, which does not involve
virtual corrections, whose finite part is missing in our code (we are canceling the infrared diver-
gences imposing unitarity). In practice, for each NLOJET++ event, we cluster the final-state
partons with the anti-kt algorithm and R = 0.2, and we impose the presence of 3 jets in the
event. In this way, we have equivalence between jets and partons, and we can check whether, in
some angular limit, our approximation agree with the full result.

For instance, we can constrain real emissions by imposing that the angular distance between
the subleading and the third leading jet, ∆R23, defined after Eq. (3.26), is less than some angular
cut Rmax i.e. R2 < ∆R2

23 < R2
max. In our collinear approximation, this is this the condition we

have to fulfill to obtain a 3-jet event, according to Eq. (3.48). The result of this test is shown in
Fig. 3.9 on the left, by comparing the pt spectrum as a function of Rmax for several pt values.
We clearly see that, as Rmax decreases, the outputs of our code and NLOJET++ tend to agree.

Furthermore, we can verify this angular dependence at the differential level i.e. we can check
whether

dσLO
3 jets

∆R2
23
∝ 1

∆R2
23

in the limit ∆R2
23 → 0 . (3.69)

Note that in our code, we have implemented exactly this scaling behaviour, as dictated by the
collinear approximation (see Eq. (3.36) with ϑ2 = ∆R2

23). This test is performed in Fig. 3.9 on
the right: again, when the angular distance decreases, the NLO full result tends towards the
collinear approximation characterized by the 1/∆R2

23 scaling.
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Figure 3.9: Comparisons between the output of NLOJET++ and results in the collinear
approximation. Left: 3-jet pt-differential cross section as a function of Rmax for several pt
values. Right: 3-jet ∆R2

23-differential cross section.
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CHAPTER 4

Impact of jet measurements on parton
distributions

Inclusive jets have been used for the determination of the parton distributions of the proton
for over thirty years [129]. However, as we have discussed in the previous chapters, there
are a number of questions related to the definition of the observable which is most promising
and appropriate for precision QCD studies, such as the determination of the PDFs and of the
strong coupling constant αs. In this chapter, we address these issues from a phenomenological
point of view, specifically within the context of a global PDF determination. In particular,
we study the effect of adding jet cross-sections to a global dataset, with various choices of
the observable (single-jet inclusive, or dijet) and of the scale. In each case, we assess the fit
quality and the impact of the jet data on the PDFs, at various perturbative orders. We can test
phenomenologically the conclusions of the previous chapters, by checking which observable and
which scale choice leads to better perturbative stability, better PDF compatibility with other
data and better fit quality, and more stringent constraints on the PDFs.

We will consider the complete inclusive jet [86,87,130,131] and dijet [131–133] dataset from
ATLAS and CMS at

√
s = 7 and 8 TeV. Whereas most recent global determinations of the

proton PDFs [56–58, 134] include some of these jet datasets (for instance, NNPDF3.1 included
the ATLAS and CMS single-inclusive data with

√
s = 2.76 and 7 TeV), and other studies have

assessed the impact of some jet measurements on smaller datasets [133,135], this is the first time
that the full LHC-Run I jet dataset is being considered, and specifically the first time dijets are
included in a modern global PDF determination.

The outline of this chapter is as follows. In Sec. 4.1 we discuss the experimental data for
single-inclusive jet and dijet production that will be used. In Sec. 4.2 we present the theory that
will be used, in particular with respect to the role of NNLO QCD corrections and to the choice
of scales, and we briefly discuss how theoretical calculations are implemented by means of fast
interpolation grids and K-factors. In Sec. 4.3 we shortly introduce the reader to the NNPDF
methodology, based on a Monte Carlo approach to experimental data and on the adoption of
neural networks as universal interpolants. The settings of the global PDF analyses of this study
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Chapter 4. Impact of jet measurements on parton distributions

Experiment Measurement
√
s [TeV] L [fb−1] R Distribution ndat Reference

ATLAS Inclusive jets 7 4.5 0.6 d2σ/dptd|y| 140 [130]

CMS Inclusive jets 7 4.5 0.7 d2σ/dptd|y| 133 [131]

ATLAS Inclusive jets 8 20.2 0.6 d2σ/dptd|y| 171 [86]

CMS Inclusive jets 8 19.7 0.7 d2σ/dptd|y| 185 [87]

ATLAS Dijets 7 4.5 0.6 d2σ/dmjjd|y∗| 90 [132]

CMS Dijets 7 4.5 0.7 d2σ/dmjjd|ymax| 54 [131]

CMS Dijets 8 19.7 0.7 d3σ/d 〈pt〉 dY dy∗ 122 [133]

Table 4.1: The LHC inclusive jet and dijet cross-section measurements that will be used in this
study. For each dataset we indicate the experiment, the measurement, the center of mass energy

√
s,

the luminosity L, the jet radius R, the measured distribution, the number of data points ndat and the
reference.

are then spelled out in Sec. 4.4, where we also present the corresponding results, and discuss
their implications. Finally, in Sec. 4.5 we draw general comparative conclusions on the behaviour
of different observables at different perturbative orders.

4.1 Experimental data

We now discuss the inclusive single-jet and dijet data. We summarize the available jet production
data from the LHC, and we provide details on the treatment and kinematic coverage of the
single-jet and dijet datasets that we will use in this study.

4.1.1 Jet production at the LHC

The ATLAS and CMS collaborations have performed a number of measurements of the single-
inclusive and dijet cross-sections at different center of mass energies, ranging from

√
s = 2.76 TeV

to 13 TeV. We will focus on the 7 and 8 TeV data, for which single-inclusive and dijet data
corresponding to the same underlying dataset and integrated luminosity can be compared.

The
√
s = 7 and 8 TeV data are summarized in Table 4.1, where for each dataset we indicate

the experiment, the measured quantity, the center of mass energy
√
s, integrated the luminosity

L, the number of data points ndat, and the published reference.
We recall to the reader the relevant kinematic variables, some of them already introduced in

chapter 2. For inclusive jets, pt and y are the jet transverse momentum and rapidity. For dijets,
mjj is the dijet invariant mass, y∗ = |y1− y2|/2 and |ymax| = max(|y1|, |y2|) are respectively the
absolute rapidity difference and maximum absolute rapidity of the two leading jets of the event.
Finally, for dijet triple-differential distributions, 〈pt〉 = (pt1 + pt2)/2 is the average transverse
momentum of the two leading jets, and Y = |y1 + y2|/2 is the boost of the dijet system.

In addition to those listed in Table 4.1, ATLAS and CMS have also performed measurements
at
√
s = 13 TeV, though so far with smaller integrated luminosities than for their Run I counter-

parts: at Run II, the single-inclusive jet measurements from ATLAS [136] and CMS [137] have
L = 3.2 fb−1 and L = 71 pb−1 respectively, while the dijet measurements from ATLAS [136]
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4.2. Theoretical calculations and implementation

and CMS [138] have L = 3.2 fb−1 and L = 2.3 fb−1. For this reason, we do not include these
datasets. Very recently, CMS has presented a single-inclusive jet measurement at

√
s = 13 TeV,

based on a luminosity of L = 35.9 fb−1 [139].
In addition, ATLAS and CMS have also presented several measurements of multijet (≥ 3

jets) production. For example, ATLAS has provided measurements of the three jet cross-sections
at 7 TeV [140], differential in three-jet mass and the sum of the absolute rapidity separations
between the three leading jets; and of four-jet cross-sections at 8 TeV [141], differential in the
pt of the four leading jets in the event. CMS has also a measurement of the 3-jet production
cross section at 7 TeV [142] differential in the invariant mass of the three jets mjjj . Because
theoretical predictions are currently only available up to NLO for these observables, they will
not be considered here, though they are important for other applications such as the validation
of Monte Carlo event generators and searches for physics beyond the Standard Model.

4.1.2 Jet data in this analysis

The single-inclusive jet data from ATLAS and CMS used in this work are the double-differential
(y, pt) distributions listed in Table 4.1. The ATLAS 7 TeV data cover the range 100 GeV ≤
pt ≤ 1.992 TeV and 0 ≤ |y| ≤ 3, while the ATLAS 8 TeV data cover the same rapidity range, but
an extended range of transverse momenta, namely 70 GeV ≤ pt ≤ 2.5 TeV. In our default fit we
include only the central rapidity bin (yjet ≤ 0.5) of the ATLAS 7 TeV, due to the aforementioned
issues in the covariance matrix of this data. This is not expected to affect results, as in Ref. [58]
it was shown that PDFs fit to the central rapidity bin provide an equally good fit to all other
rapidity bins, and in Ref. [143] it was checked explicitly that PDFs determined including each
rapidity bin from this data in turn are indistinguishable.

The CMS 7 TeV data cover the range 100 GeV ≤ pt ≤ 2.0 TeV and 0 ≤ |y| ≤ 2.5, and the
CMS 8 TeV data the extended range 74 GeV ≤ pt ≤ 2.5 TeV and 0 ≤ |y| ≤ 3.0. We note that in
the case of the CMS 8 TeV single-inclusive jets, measurements for pt < 74 GeV are also available,
but these are excluded from the fit because non-perturbative and resummation corrections, not
accounted for by fixed-order computations, are large at small pt. We therefore retain only 185
points out of a total of 239.

For the dijet cross-sections we consider three Run I measurements from ATLAS and CMS,
specifically the ATLAS and CMS 7 TeV [131,132] double-differential distributions and the CMS
8 TeV triple-differential distributions [133]. Note that currently ATLAS dijet measurements are
only available at 7 and 13 TeV, and not at 8 TeV. The ATLAS data are double-differential in
mjj and |y∗|. The corresponding ranges are 260 GeV ≤ mjj ≤ 4.27 TeV and 0 ≤ y∗ ≤ 3.0.
The CMS 7 TeV data [131] are instead double-differential in mjj and |ymax|. The ranges are
200 GeV ≤ mjj ≤ 5 TeV and 0 ≤ |y|max ≤ 2.5. The CMS 8 TeV [133] data are triple differential
in 〈pt〉, Y , and |y∗|. The ranges are 133 GeV ≤ 〈pt〉 ≤ 1.78 TeV and 0 ≤ Y, y∗ ≤ 3.

For all these measurements, we will use the complete set of systematic uncertainties and
correlations available from HepData.

4.2 Theoretical calculations and implementation

In this section we present the available theoretical predictions for jet processes required for
state-of-the-art precision phenomenology. We mainly focus on QCD correction, in keeping with
Chapter 2, but we also briefly discuss electroweak (EW) corrections. We first show how NLO
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QCD calculations of hadronic observables can be significantly speed up by means of fast in-
terpolation grids. We then discuss the NNLO QCD corrections and the NLO EW corrections,
provided in the form of K-factors. Finally, we show how to combine these ingredients through
a multiplicative prescription.

Note that fast interpolation grids for jet processes accurate to NNLO are not yet publicly
available. The NNLOJET+APPLfast fast interpolation tables with NNLO QCD corrections
are so far only available for jet production in deep-inelastic scattering [144].

4.2.1 NLO QCD fast interpolation grids

The partonic generator NLOJET++ we have used extensively in Chapter 3 is a powerful tool,
but too slow for PDF fitting purposes. A standard PDF fit include thousands of hadronic data
points (the fits of the present study have 4333 and 4079 data points, if we include inclusive jets
or dijets measurements, respectively), and predictions has to be computed thousands of times
during the minimization process, with the time required to obtain sufficiently accurate results
of the order of a few hours per data point.

However, since during the fit we are only interested in varying PDFs, partonic matrix el-
ements can be precomputed in such a way that the numerical convolution with generic input
PDFs can be efficiently approximated by means of interpolation techniques. Packages such as
APPLgrid [145] and FastNLO [146], once interfaced with NLOJET++ or any other partonic
Monte Carlo generator, fill PDF- and αS-independent look-up tables of cross sections weights.
Such a procedure is required to speed up the computation of hadronic observables when the fit
is performed.

We can understand the basic principle behind fast interpolation grids in the following way.
A total hadronic cross section (or the prediction for the specific bin of a differential distribution)
can be written the same way as Eq. (2.26):

dσpp =
∑
s

∑
p

∫
dx1dx2 dσ̂

(p)(s)
[
αpS(Q2)F (s)(x1, x2, Q

2)
]
, (4.1)

where we are summing over the perturbative orders p up to the accuracy required, and over the
partonic subprocesses s contributing to the process. Q2 is the typical hard scale of the process,
and we have set µ2

R = µ2
F = Q2. As usual, dσ̂(p)(s) is the contribution of order αpS to the partonic

cross section for the subprocess s.
In APPLgrid or FastNLO, the square bracket under integration in Eq. (4.1) is represented

in terms of interpolating functions, spanning the Q2, x1 and x2 values:

αpS(Q2)F (s)(x1, x2, Q
2) =

∑
α,β,τ

αpS(Q2
τ )F (s)(xα, xβ , Q2

τ )Iτ (Q2)Iα(x1)Iβ(x2) , (4.2)

so that the convolution in Eq. (4.1) is reduced to a simple product:

dσpp =
∑
s

∑
p

∑
α,β,τ

αpS(Q2
τ )F (s)(xα, xβ , Q2

τ )W (p)(s)
αβ,τ (4.3)

where
W

(p)(s)
αβ,τ =

∫
dx1dx2 dσ̂

(p)(s)Iτ (Q2)Iα(x1)Iβ(x2) (4.4)
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is the cross section weight matrix, the result of the convolution of the partonic cross section
with the interpolation polynomials. If we pre-compute W (p)(s)

αβ,τ in a look-up table, then by using
Eq. (4.3) the user can a posteriori include PDFs, modify αS or vary the renormalization and
factorization scales by arbitrary factor ξR and ξF .

Within the NNPDF framework, there is another task which may be pre-computed. As we
will discuss in Sec. 4.3, during the fit, PDFs are parametrized at a fixed scale Q2

0, while in
Eq. (4.3) PDFs are required at a generic scales Q2

τ , so an evolution from the scale Q2
0 to the

scale Q2
τ is needed. By directly including the DGLAP evolution kernel — responsible for this

evolution — in Eq. (4.3), after some straightforward algebra one arrives at:

dσpp =
∑
k,l

∑
γ,δ

W̃kl,γδfk(xγ , Q2
0)fl(xδ, Q2

0) . (4.5)

Compared to Eq. (4.3), W̃kl,γδ encodes more information that can be calculated before fitting,
thus minimizing the number of operations required during the fit and therefore decreasing the
computing time. The APFELgrid [147] package takes care of the combination between fast in-
terpolation grids in the APPLgrid format and PDF evolution kernels provided by the APFEL
package [52]. The output of APFELgrid is nothing but an implementation of W̃kl,γδ, in a
format compliant with the NNPDF framework.

In the current study, for each dataset, we have produced fast interpolation grids, accurate to
NLO in QCD, by using NLOJET++ interfaced to FastNLO. The computation is performed
with the scale choices discussed in Sec. 4.2.2. These fast interpolation grids are then combined
with PDF evolution kernels using APFELgrid. However, since APFELgrid is based on grids
provided in the APPLgrid format, we implemented an APPLgrid interface to the weight
tables in the FastNLO format. We provide details about this script in Appendix 4.A.

4.2.2 NNLO QCD K-factors

As we have seen in the previous chapters, single-inclusive and dijet observables display a some-
what different perturbative behaviour. Single-jet cross section is in general rather sensitive to
the choice of central scale, even at NNLO, as pointed out in Sec. 2.4: the commonly used scale
choices µ = pt or µ = pt1 lead to predictions which even at NNLO may differ by an amount
which is comparable to, or larger than, their scale dependence. Still in Sec. 2.4, we presented the
findings of Ref. [121], whereby the event-based scale µ = ĤT , defined in Eq. (2.43), was singled
out as optimal choices. Following this prescription, here we will adopt µ = ĤT as central scale
choice; results obtained with this scale choice will be compared in Sec. 4.4 to those found using
µ = pt, which was the baseline choice adopted in previous NNPDF determinations, specifically
NNPDF3.1. For what concerns dijets, as commented at the end of Sec. 2.4, the NNLO compu-
tation has essentially settled the issue of scale choice, with the dijet invariant mass mjj emerged
as the preferred choice [122]. This is the scale choice which we will adopt in the sequel.

NNLO QCD corrections computed with NNLOJET [148] will be included by supplementing
theoretical predictions accurate to NLO QCD with K-factors defined as

KQCD
NNLO ≡

∑
ij σ̃

NNLO
ij ⊗ LNNLO

ij∑
ij σ̃

NLO
ij ⊗ LNNLO

ij

, (4.6)

where the sum runs over partonic subchannels, σ̃ij are partonic cross sections, and Lij the
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Figure 4.1: The NNLO QCD K-factors, Eq. (4.6), for the ATLAS 7 TeV (top) and CMS 8
TeV (bottom) single-inclusive jet cross sections evaluated using NNPDF3.1 PDF at the scale
and µ = ĤT . Results are shown as function of the jet pt in different jet rapidity bins, with the
central (forward) bins shown in the left (right) plot.

corresponding parton luminosities, computed both in the numerator and the denominator using
NNPDF3.1 NNLO as a fixed input PDF set.

In Fig. 4.1 we show the NNLO QCD K-factors, Eq. (4.6), corresponding to the ATLAS 7
TeV and CMS 8 TeV inclusive jet cross sections evaluated with the NNPDF3.1 NNLO PDF set
and µ = ĤT as central scale. Results are shown as a function of the jet pt in different jet rapidity
bins, with the central (forward) bins in the left (right) plot. At central rapidities, the NNLO
K-factor increases monotonically with pt from about 5% to about 20–25%. This growth with
pt becomes less marked as the jet rapidity increases: in fact at 8 TeV for |y| ≥ 1.5 the K-factor
depends only mildly on the jet pt. The K-factors display moderate point-to-point fluctuations,
especially in the forward rapidity bins.

In Fig. 4.2 we display the NNLO QCD K-factors, Eq. (4.6), computed with this scale choice
and the NNPDF3.1 NNLO PDF set, for the ATLAS 7 TeV and CMS 8 TeV dijet cross sections.
For ATLAS, the K-factors at small rapidity separations are somewhat below unity for low
invariant masses, then grow monotonically with mjj up to about K ∼ 1.15 at the highest
mjj ∼ 4 TeV. For larger rapidity separations, 1.5 ≤ |y∗| ≤ 3.0, the K-factors are less sensitive to
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Figure 4.2: The NNLO QCD K-factors, Eq. (4.6), corresponding to the ATLAS 7 TeV (top)
and CMS 8 TeV (bottom) dijet cross sections evaluated with NNPDF3.1 PDF at the scale
µ = mjj . Results are shown as function of the jet pt in different jet rapidity bins, with the most
central (forward) bins in the left (right) plot.

mjj , and their value corresponds to corrections between 10% and 20%. For CMS, as mentioned,
the measurement is presented as a triple differential distribution in 〈pt〉, y∗, and Y . As seen in
Fig. 4.2, the qualitative behaviour of the K-factors is similar in all rapidity bins, and shows a
monotonic growth with 〈pt〉. However, the value depends strongly on the rapidity difference,
with the K factor larger at larger y∗. For example, in the 0 ≤ Y, y∗ ≤ 1 bin the K-factor ranges
from a few percent at low 〈pt〉 to up to 15%, while in the 0 ≤ Y ≤ 1 and 2 ≤ y∗ ≤ 3 bin it goes
up to 25%. Also these K-factors display sizable point-to-point fluctuations.

These point-to-point fluctuations of QCD K-factors reveal an underlying numerical uncer-
tainty. For illustration purposes, this uncertainty is displayed in Fig. 4.3 for the central rapidity
bins of the ATLAS 7 TeV single jet and of the CMS 8 TeV dijet distributions. We have es-
timated this uncertainty through the procedure for the suppression of outliers as described in
Ref. [149]. When performing PDF fits, this numerical uncertainty is added in quadrature to the
experimental uncertainty, fully uncorrelated datapoint by datapoint.
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Figure 4.3: The NNLO QCDK-factors for the central rapidity bins of the ATLAS 7 TeV single-
inclusive jets (left) and CMS 8 TeV dijets (right), with the Monte Carlo numerical uncertainties
shown as filled bands around the central result.

4.2.3 Electroweak corrections

EW corrections for jet processes have been computed in Ref. [150]. This calculation include
O(ααs) and O(α2) tree level contributions (where α and αs are the electromagnetic and strong
couplings, respectively), and the weak radiative corrections of O(αα2

s). In particular, they in-
clude the virtual exchange of weak bosons that give rise to the dominant EW Sudakov logarithms,
suitably combined with the respective hard QCD emissions to cancel infrared singularities. They
will be collectively referred to as NLO EW corrections in the remainder of this chapter.

As done for the NNLO QCD corrections, we include EW corrections through a K-factor
defined as

KEW ≡
∑
ij σ̃

LO QCD+EWK
ij ⊗ LNNLO

ij∑
ij σ̃

LO QCD
ij ⊗ LNNLO

ij

, (4.7)

where the partonic cross sections in the numerator are obtained combining the contributions
computed in Ref. [150] with the LO QCD computation. The K-factor defined in Eq. (4.7) has
been computed using a proprietary code [150]. Electroweak K-factors have been evaluated using
consistently the NNPDF3.1 NNLO PDF set, and the same scale choice as that of the correspond-
ing NNLO QCD predictions. Note that because of cancellations between (negative) Sudakov
logarithms and (positive) subleading Born contributions, the K-factors are quite sensitive to the
underlying parton decomposition, and it is consequently important to make a consistent choice
of PDFs in the computation of QCD and EW K-factors.

The K-factors thus computed are shown in Fig. 4.4 for the ATLAS 7 TeV and CMS 8 TeV
single-inclusive jet cross sections and for the ATLAS and CMS 7 TeV dijet cross sections. Results
are shown as a function of pt for single-inclusive jets and as a function of mjj for dijets, in bins
of rapidity y (single-inclusive), absolute rapidity difference y∗ (ATLAS dijets) or maximum
absolute rapidity ymax (CMS dijets). In all cases the qualitative behaviour is similar: the K-
factor is close to unity for small values of pt or mjj ; it is flat (in fact slightly decreasing) for large
values of the rapidity variable; and it grows with respectively pt or mjj at central rapidity, the
growth being stronger at smaller rapidity. The largest EW correction can reach 20% or more
for transverse momenta or invariant masses in the TeV range and the smallest rapidity.
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Figure 4.4: The EW K-factors, Eq. (4.7), for the ATLAS and CMS single-inclusive (top) and
dijet (bottom) measurements. For single-inclusive jets the K-factors are shown as a function of
jet pt in six different rapidity bins. For dijets they are shown as a function of the dijet invariant
mass mjj for different y∗ bins for ATLAS (left) or ymax bins for CMS (right).

4.2.4 Combining grids with K-factors

In the previous subsections, we have presented all the components required for state-of-the-art
precision predictions: NLO QCD grids, NNLO QCD K-factors and NLO EW K-factors. In
order to combine these ingredients, we adopt the following multiplicative prescription:

d2σ

dptdy

∣∣∣∣∣
NNLOQCD+EWK

= d2σ

dptdy

∣∣∣∣∣
NLOQCD

×KQCD
NNLO(pt, y,

√
s)×KEW(pt, y,

√
s) . (4.8)

The first term on the right-hand side of the equation is the output of the NLO computation,
while the second and third terms are the bin-by-bin QCD and EWK-factors defined in Eqs. (4.6)
and (4.7), respectively. If the EW K-factor is not included, Eq. (4.8) exactly reproduces the
NNLO results obtained with NNLOJET.

We conclude this section by noting that the theoretical computations of single- and dijet
observables are subject to non-perturbative corrections and to missing higher order uncertainties
(MHOU). The former arise from the underlying event and multiple parton interactions, and are
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estimated by the experimental collaborations by comparing predictions obtained from different
Monte Carlo parton shower generators. In the case of all of the CMS measurements, they are
provided in terms of point-by-point rescaling factors, which we apply to the data together with an
additional, fully correlated, systematic uncertainty, which we estimate as the difference between
the rescaled and unrescaled value of each datapoint. The estimate of MHOUs requires some
care, especially for single-inclusive jets. In Chapter 3 we observed that there are accidental
cancellations which occur for values of the jet radius R ∼ 0.5 which are close to the values
adopted by ATLAS and CMS, where the NLO scale dependence evaluated in a standard way is
artificially small, and thus is not a good estimator of the MHOU. A more reliable estimate of
the MHOU requires performing uncorrelated scale variation, as documented in Sec. 3.2.3. The
inclusion of MHOU in PDF fits, though in principle possible using the formalism of Refs. [151,
152], goes beyond the scope of this analysis, and we will not consider it further.

4.3 Principles of NNPDF methodology

In this section we briefly introduce the main components of a NNPDF fit. The interested reader
can find more information in Refs. [153–155]. In a nutshell, the NNPDF methodology is based
on a Monte Carlo treatment of experimental data, with PDFs parametrized by means of neural
networks (NN). NN are introduced with the specific purpose of being as agnostic as possible
about the assumed parametrization of PDFs, thus reducing the associated bias. Indeed, NN
feature a great number of parameters, and are able to reproduce the behaviour of a very wide
class of functions (more details below). As for the Monte Carlo method, the final aim is to provide
a faithful representation of uncertainties on parton distributions, or in other words, to devise
an uncertainty with statistical interpretation in the PDF space of functions, which is a priori
infinite-dimensional. A parametrization as the one introduced in Eq. (1.88), with a handful of
fit parameters ~a, reduces this infinite-dimensional space to a finite space of parameters, and one
can then apply standard error propagation techniques on ~a. However, in case of NN, where the
number of parameters is deliberately redundant, a Monte Carlo approach offers a more natural
solution, and in addition does not rely on linear error propagation.

4.3.1 Monte Carlo replicas

Specifically, the Monte Carlo approach consists in the generation of artificial data replicas,
starting from the original experimental data points. Experimental collaborations usually provide
data in the form of a set measured central value Oi, with i = 1, . . . , Ndat, supplemented by the
experimental covariance matrix covij between each pair of data points i and j:

covij = δij
(
δOstat

i

)2 +
NA∑
α=1

δOsysA
i,α δOsysA

j,α +OiOj

NM∑
β=1

δOsysM
i,β δOsysM

j,β , (4.9)

There are several kind of uncertainties appearing in the previous equation:

• δOstat
i is sum in quadrature of the statistical uncertainty and of the uncorrelated systematic

uncertainties;

• δOsysA
i,α are the additive correlated uncertainties;

• δOsysM
i,β are the multiplicative (correlated) uncertainties.
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4.3. Principles of NNPDF methodology

The Monte Carlo replicas are generated accordingly to multi-Gauss distribution centered on the
vector of central values Oi and with variances based on experimental covariance matrix covij .
The total number of Monte Carlo replicas, if large enough, reproduce the statistical properties
of the original data set at the desired accuracy.

4.3.2 PDF parametrization

PDFs are parametrized at a reference scale Q2
0 (usually 1–2 GeV). The result of the fit will not

depend on this choice, as DGLAP equations evolves this input parametrization to the energy of
each experimental data point. The parametrization adopted for the PDF with flavour i is1:

fi(x,Q2
0) = Ai x

−αi (1− x)βi NNi(x) . (4.10)

The core of Eq. (4.10) lies in the NNi term, which encodes the neural network, or more precisely a
feedforward multi-layer perceptron. The reader not acquainted with NNs can find a pedagogical
introduction in Ref. [156]. Here, suffice it to say that a sufficiently large neural network (i.e.
with enough parameters) is able to reproduce the behaviour of a very wide class of functions
without the need to adjust the form of the parametrization. A NN is then a functional form
with a much greater flexibility than a polynomial form, reducing the bias associated to the
specific parametrization chosen. For what concerns the other terms present in Eq. (4.10), the
factor x−αi (1 − x)βi is often present in traditional PDF parametrizations, see Eq. (1.88), but
its purpose here is only to speed up the minimization process. The exponents αi and βi are
randomly chosen within a suitable range and assigned to each replica. Finally, Ai is an overall
normalization constant, calculated at each iteration of the fit, which enforces QCD sum rules.

4.3.3 Fitting procedure

The minimization procedure is run in parallel for all of the artificial replicas of experimental
data. Given a replica r, we first initialize the PDFs, by randomly choosing the neural network
weights. Then we compute the theoretical prediction for the i-th data point, T (r)

i , by performing
the convolution between the interpolation grid and the PDFs. At this point, we can compare
the result obtained for T (r)

i with the replica central value O(r)
i for the i-th data point, evaluating

the loss function defined as

χ2,(r) = 1
Ndat

Ndat∑
i,j

(
O

(r)
i − T

(r)
i

)
cov−1

ij

∣∣∣
t0

(
O

(r)
j − T

(r)
j

)
. (4.11)

Here, covij is the experimental2 covariance matrix, as defined in Eq. (4.9), and the subscript t0
denotes that it has been evaluated by following the t0 prescription [157] (this is required in case
of multiplicative uncertainties, to avoid systematic biases). Within a given replica, we adopt a
genetic algorithm as optimizer. It is based on the generation of “mutants”, where a mutant is a
new set of neural networks with weights altered by mutations. Starting with the initial neural
networks, n = 80 mutants are generated. The best fit mutant i.e. the mutant with the smallest

1Actually, the fit basis for the PDFs is different from the physical one i.e. f in Eq. (4.10) is linear combination
of the quark, antiquark and gluon PDFs. These two basis are related by a rotation in the flavour space.

2Note that, in principle, this covariance matrix may include as well a theory covariance matrix added in
quadrature, due to the uncertainties associated to missing higher order in perturbation theory [151,152].
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χ2,(r) value, is selected, while the other mutants are discarded. The best fit mutant acts as basis
for the 80 mutants of the next generation, and the algorithm is iterated for a fixed number (30k)
of times. In order to avoid overfitting, the set of experimental data is randomly split into a
training and into a validation set. The minimization is performed only on the training set, but
the loss function is evaluated on the validation set. At the end, with a simple look-back method,
the best configuration of weights yielding the lowest value of χ2,(r) is selected as the final result
of the training for the replica r.

Finally, once we have fit results for the whole set of Monte Carlo replicas, we perform some
quality tests. We first discard replicas yielding a too unlikely value of χ2. We also discard
replicas non passing some positivity constraints. As it is well known, beyond LO, PDFs loose a
probabilistic interpretation and do not need to be positive definite; however, through convolution
with partonic cross sections, PDFs enter in the calculation of physical cross section, which of
course should be positive. The “generalized” positivity of the PDFs is imposed by means of
pseudo-observables, which not are measurable in practice, but are required to be positive for
reasons of principle. Such pseudo-observables are present as Lagrange multipliers during the fit
i.e. the χ2 is large in case of negative values for their predictions.

The ensemble of PDFs passing the post-fit tests is the final result of the parton determination.
At this point, we can compute the mean value and the standard deviation of this ensemble, and
provide the PDFs with the corresponding one-sigma uncertainties. Unlike in a Hessian approach
— where we estimate the covariance matrix of the fitting parameters as the (Hessian) matrix
of second derivatives around the minimum of Eq. (4.11) — the Monte Carlo method does not
rely on linear error propagation. However, we can check at the PDF level whether the one-
sigma uncertainty bands correspond to the 68% confidence level intervals, as is the case for
a Gaussian distribution i.e. whether, given N = 100 replicas, 68 replicas lie in the one-sigma
uncertainty band around the central value. This test has been performed [71] and the result
confirm this expectation, apart from the regions near the kinematical limits, where there are
significant deviation from gaussianity, due to the positivity constraints imposed on the PDFs.

Note that the fitting code and the part of the methodology has been recently revised [158], in
order to exploit the new technologies and algorithms provided by the machine learning commu-
nity. The NNPDF regression framework has been rewritten in Python and make use of modern
ML libraries, such as Keras [159] and Tensorflow [160]. The genetic algorithm has been replaced
by gradient descent methods, which lead to more stable replicas and, combined with the opti-
mized code, reduce the computational time by a considerable amount (∼ 20 faster on average).
In addition, a systematic scan of NN hyperparameters (e.g. number of layers, activation func-
tions, learning rate etc.) is now possible, with the aim of further reducing possible systematic
biases related to the choice of the NN model itself.

4.4 Results

We now present our main results. They consist of a set of global PDF determinations, in which
the NNPDF3.1 global dataset is supplemented by the single-inclusive jet and inclusive dijet
data presented in Sec. 4.1.2: by comparing fit results, we study the impact of varying the jet
observable, the data, and the theory settings. Specifically, we have performed fits including
either single-inclusive or dijet data, in each case either at 7 TeV or both at 7 and at 8 TeV,
and with theory at pure NLO QCD, pure NNLO QCD, or NNLO QCD supplemented by EW
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NNLOQCD+EW NNLOQCD NLOQCD

baseline (see text) — bn b

ATLAS & CMS jets 7-8 TeV janw — —

ATLAS & CMS jets 7 TeV j7nw j7n j7

ATLAS & CMS jets 7 TeV (µ = pjet
t ) — j7n-pt j7-pt

ATLAS & CMS jets 8 TeV j8nw j8n j8

ATLAS & CMS dijets 7-8 TeV danw — —

ATLAS & CMS dijets 7 TeV d7nw d7n d7

CMS dijets 8 TeV d8nw d8n d8

Table 4.2: The PDF determinations discussed in this study and their IDs. Each row corre-
sponds to a different input jet dataset or fit settings (listed in the first column), and each column
corresponds to a different theory accuracy (listed in the first row). The ID encodes the process
used (j for single inclusive jets and d for dijets); the data used (a for all, 7 or 8 for the 7 TeV or
8 TeV datasets); the perturbative accuracy (n for QCD NNLO, w if EW corrections included);
the choice of scale (pt when µ = pjet

t ).

corrections as discussed in Sec. 4.2.3. For the single-inclusive 7 TeV data we have also performed
fits with alternative choices of central scale. ,

We will first present in Sec. 4.4.2 all PDF sets based on single-inclusive data, including
variations of scale choice, then in Sec. 4.4.3 PDF sets based on inclusive dijet data.

4.4.1 PDF sets

The inclusion of jet data in a global NNPDF3.1-like PDF determinations essentially impacts
only the gluon PDF, as was shown in Ref. [58], while leaving other PDFs essentially unchanged.
The correlation between each data point and the gluon PDF may be quantified by computing
the correlation coefficient [153,161], defined as:

ρ(F , g) = Nrep

Nrep − 1
〈Fg〉rep − 〈F〉rep 〈g〉rep

σFσg
, (4.12)

where g is the gluon PDF, F is the prediction for each data point (dependent on g), and the
average is taken over the set of Nrep Monte Carlo replicas. The denominator is the product
of the standard deviations of the two ensembles. By computing such a coefficient, using the
default baseline NNLO PDF set (before inclusion of the jet data, #bn, see Table 4.2 below),
correlations are seen to be large or very large (up to almost one) for all x & 10−2.

The full list of PDF determinations that we will discuss is given in Table 4.2, together
with an ID that will be used to identify them. Each row corresponds to a different choice of
dataset or methodological settings, while columns correspond to the theory adopted: QCD at
NLO or NNLO, without or with EW corrections included. By “NLO” or “NNLO” we mean
that we incorporate jets predictions at NLO or NNLO in a global QCD fit in which everything
is consistently done at NLO or NNLO respectively. Instead, by “EW” we mean that EW
corrections are possibly included for jet predictions only.
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The jet data of Table 4.1 are added to a baseline dataset, which essentially coincides with
the NNPDF3.1 dataset. This dataset includes: fixed-target neutral-current (NC) DIS structure
function data; charged-current (CC) DIS structure function data; fixed-target Drell-Yan data;
collider Drell-Yan data; inclusive gauge boson and top-pair production data. In total this
baseline dataset contains ndat = 3813 datapoints, see Ref. [58] for more details. The number
of datapoints corresponding to the jet data included in the various fits of Table 4.2 is given in
Table 4.3 and in Table 4.4 below.

In all of these fits, experimental systematic uncertainties are fully correlated across bins
of different kinematic variables, while statistical uncertainties coming from the unfolding are
correlated only across bins of transverse momentum (for jets) or invariant mass (for dijets),
but not across rapidity bins. For jet or dijet data, non-perturbative corrections are included
by default, as are Monte Carlo uncertainties due to finite numerical precision of NNLO QCD
K-factor computations (see Sec. 4.2 for details). The factorization and renormalization scales
are by default taken to be µ = ĤT for single-inclusive jets, and µ = mjj for dijets (see the
discussion in Sec. 4.2). An alternative choice of scale for single-inclusive jets will be considered
in Sec. 4.4.2 below.

All the fits listed in Table 4.2 otherwise closely follow the NNPDF3.1 analysis [58]. Specif-
ically, the same settings and codes are used for the computation of physical observables in the
baseline dataset, and the same choice of kinematic cuts, of values of physical parameters, and
of fitting methodology are adopted. All PDF sets include Nrep=100 Monte Carlo replicas. The
ReportEngine software [162] is used in the sequel to analyze each fit and compute various fit
metrics. Specifically, we will consider:

• the χ2 of the theory prediction for each dataset or combinations of datasets, defined
according to Eqs. (4.11),(4.9);

• the distance d between two fits f and h, defined as the absolute difference of the PDF
central values in units of the standard deviation of the mean:

d = |〈f〉 − 〈h〉|√
σ2
f + σ2

h

. (4.13)

For instance, for a sample of 100 replicas, one expect the distance to fluctuate around
d ∼ 1 if the PDFs are statistically identical (replicas extracted from the same underlying
distribution). On the other hand, d ∼

√
Nrep = 10 corresponds to PDFs that differ by

one standard deviation.

The values of the χ2 per datapoint for all fits with default settings at NLO and NNLO with
or without EW corrections and single-inclusive jet or dijet data are collected in Tab. 4.3 and in
Tab. 4.4 respectively; χ2 values are shown for all data in the global dataset, grouped by process
kind (DIS NC, DIS CC, Drell-Yan, Z pt, top pair) and for all jet data, both those which are and
those which are not included in each fit. The values of χ2 per datapoint for all jet data (included
or not included) for all fits performed with alternative choices of central scale are collected in
Tab. 4.5. In these tables, χ2 values corresponding to data not included in each fit are enclosed
in square brackets.
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Dataset ndat b bn janw j7 j7n j7nw j8 j8n j8nw

DIS NC 2103 1.17 1.17 1.18 1.17 1.18 1.17 1.17 1.17 1.18

DIS CC 989 1.06 1.10 1.11 1.06 1.11 1.10 1.08 1.11 1.11

Drell-Yan 577 1.35 1.33 1.30 1.35 1.31 1.31 1.34 1.31 1.31

Z pT 120 1.84 1.01 1.02 1.85 1.02 1.02 1.89 1.03 1.03

Top pair 24 1.10 1.05 1.25 1.09 1.06 1.02 2.00 1.61 1.24

ATLAS σtt̄ 3 2.02 0.90 0.70 1.68 0.74 0.72 1.70 0.79 0.78

ATLAS tt̄ rap 9 1.12 1.22 2.01 1.25 1.38 1.31 2.93 2.78 1.96

CMS σtt̄ 3 0.53 0.22 0.21 0.42 0.24 0.31 0.34 0.17 0.19

CMS tt̄ rap 9 0.98 1.17 0.98 0.96 1.09 1.04 1.65 1.12 0.99

Jets (all) 520 [1.48] [2.60] 1.88 [1.86] [2.45] [2.53] [1.20] [1.75] [1.89]

Jets (fitted) — — 1.88 0.79 1.15 1.12 1.40 2.05 2.20

ATLAS 7 TeV 31 [1.26] [1.87] 1.59 1.12 1.73 1.15 [1.07] [1.69] [1.62]

ATLAS 8 TeV 171 [2.60] [5.01] 3.22 [3.55] [4.76] [4.58] 2.03 3.18 3.25

CMS 7 TeV 133 [0.60] [1.06] 1.09 0.71 1.01 1.11 [0.72] [0.94] [1.14]

CMS 8 TeV 185 [1.10] [1.59] 1.25 [1.24] [1.47] [1.80] 0.81 1.01 1.23

Dijets (all) 266 [3.49] [3.07] [2.10] [4.16] [2.96] [2.56] [3.34] [2.21] [2.22]

Dijets (fitted) — — — — — — — — —

ATLAS 7 TeV 90 [1.49] [2.47] [1.95] [1.77] [2.46] [1.97] [1.43] [2.28] [2.01]

CMS 7 TeV 54 [2.06] [2.40] [2.08] [2.43] [2.50] [2.12] [1.65] [2.00] [2.15]

CMS 8 TeV 122 [5.60] [3.81] [2.21] [6.70] [3.53] [3.20] [5.48] [2.26] [2.39]

Total 1.20 1.18 1.28 1.17 1.17 1.17 1.39 1.27 1.27

Table 4.3: The χ2 per datapoint for all fits of Table 4.2 including single-inclusive jet data,
with default settings. Results are shown for all datasets, aggregated by process type. For jets,
results are shown both for the data included in each fit, and also for those not included, enclosed
in square brackets. Combined results are also shown for all single-inclusive jet and for all dijet
data, both for the full set, and for those included in each fit. The number of datapoints in each
dataset is also shown.

4.4.2 Single-inclusive jets

We first present PDF sets obtained by including single-inclusive jet data. We discuss in turn
the impact and consistency of individual datasets; perturbative QCD stability and the impact
of EW corrections; the choice of central scale.

Impact and consistency of datasets

We provide a general comparative assessment of the impact of single-inclusive jet data on PDFs
by comparing fits performed with the default theory settings of Sec. 4.2 and the highest theory
accuracy, i.e. NNLO QCD theory used throughout in the fit, and EW corrections included in
the jet predictions. According to the data included, these correspond to the fits #bn, #janw,
#j7nw, and #j8nw of Table 4.2.

First, we compare fit #janw, that contains all of the single-inclusive jet data, to the baseline

95



Chapter 4. Impact of jet measurements on parton distributions

Dataset ndat b bn danw d7 d7n d7nw d8 d8n d8nw

DIS NC 2103 1.17 1.17 1.18 1.17 1.17 1.17 1.21 1.18 1.18

DIS CC 989 1.06 1.10 1.12 1.07 1.09 1.09 1.11 1.11 1.12

Drell-Yan 577 1.35 1.33 1.29 1.36 1.33 1.32 1.32 1.28 1.28

Z pT 120 1.84 1.01 1.07 1.85 1.03 1.03 2.06 1.07 1.08

Top pair 24 1.10 1.05 1.14 1.16 1.06 1.04 1.57 1.34 1.26

ATLAS σtt̄ 3 2.02 0.90 0.66 1.79 0.74 0.73 0.80 0.68 0.69

ATLAS tt̄ rap 9 1.12 1.22 1.57 1.26 1.34 1.32 2.41 2.02 1.82

CMS σtt̄ 3 0.53 0.22 0.53 0.48 0.29 0.28 0.01 0.74 0.67

CMS tt̄ rap 9 0.98 1.17 1.04 1.07 1.09 1.07 1.42 1.04 1.04

Jets (all) 520 [1.48] [2.60] [2.06] [1.62] [2.75] [2.70] [1.42] [1.94] [2.14]

Jets (fitted) — — — — — — — — —

ATLAS 7 TeV 31 [1.26] [1.87] [1.63] [1.26] [1.86] [1.74] [1.00] [1.70] [1.61]

ATLAS 8 TeV 171 [2.60] [5.01] [3.36] [2.62] [4.80] [4.65] [2.18] [3.30] [3.55]

CMS 7 TeV 133 [0.60] [1.06] [1.06] [0.71] [1.13] [1.14] [0.77] [0.97] [1.07]

CMS 8 TeV 185 [1.10] [1.59] [1.64] [1.42] [2.16] [2.17] [1.27] [1.41] [1.68]

Dijets (all) 266 [3.49] [3.07] 1.65 [3.03] [2.21] [2.16] [2.38] [1.74] [1.71]

Dijets (fitted) — — 1.65 1.33 1.79 1.72 3.69 1.59 1.68

ATLAS 7 TeV 90 [1.49] [2.47] 1.76 1.20 1.94 1.78 [1.04] [1.96] [1.78]

CMS 7 TeV 54 [2.06] [2.40] 1.60 1.54 1.55 1.63 [1.67] [1.70] [1.66]

CMS 8 TeV 122 [5.60] [3.81] 1.58 [5.03] [2.70] [2.67] 3.69 1.59 1.68

Total 1.20 1.18 1.22 1.33 1.20 1.19 1.33 1.20 1.20

Table 4.4: Same as Table 4.3, but now for dijets. The baseline is repeated for ease of reference.

#bn, which does not include any jet data. Note that, as discussed in Sec. 4.1.2, in our default
global dataset only the central rapidity bin of the ATLAS 7 TeV data is included. In Fig. 4.5 we
display the distance between the PDF central values for the two fits, and the gluon PDF in both
fits, normalized to the baseline, both at Q = 100 GeV. From Table 4.3, we note that individual
jet datasets are well described (with χ2 per datapoint of order one), except the 8 TeV ATLAS
data (χ2 = 3.22), to be investigated in greater detail below. In comparison to the baseline fit,
the inclusion of the single-inclusive jet data leads to a slight deterioration in the description of
the ATLAS top pair rapidity distributions, whose χ2 per datapoint increases from 1.22 to 2.01.
On the other hand, it leads to an improvement in the description of the dijet data, especially the
8 TeV CMS data, which are not included in any of these fits. This suggests that the inclusion of
single-inclusive and dijet data have a similar impact on PDFs, as we shall also see in Sec. 4.4.3
and discuss in greater detail in Sec. 4.5 below.

As mentioned above, and as it is clear from the distance plot in Fig. 4.5, single-inclusive
jet data only have an impact on the gluon. The regions which are most affected are x ' 0.05,
0.1 . x . 0.2, and 0.3 . x . 0.5 in these regions the gluon PDF changes by up to slightly more
than half of one sigma. In comparison to the baseline, the central gluon PDF is suppressed by
about 2% in the small x region and enhanced by about 4% in the large x regions, though it
always remains within the uncertainty band of the baseline.
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Figure 4.5: Comparison between the baseline fit with no jet data (#bn) and the fit with all
single-inclusive jet data included (#janw); both with default settings and the most accurate
theory (NNLO QCD, including EW corrections for jets). The distance (see text) between all
PDFs (left) and the ratio of the gluon PDF to the baseline (right) are shown at the scale
Q = 100 GeV. The shaded band is the 68% confidence interval, while the outer dashed line is
the one sigma interval.
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Figure 4.6: Comparison between the baseline fit with no jet data (#bn), and the fits with only
7 TeV (#j7nw) or only 8 TeV (#j8nw) jet data included. The relative uncertainty on the gluon
PDF (left) and the ratio of the gluon PDF to the baseline (right) are shown at Q = 100 GeV.
All results are shown as ratios to the baseline.

We next assess the relative impact of different jet datasets, by adding to the comparison
of the baseline (#bn) and the fit with all single-inclusive jet data (#janw) also fits in which
only 7 TeV (#j7nw) or 8 TeV (#j8nw) jet data are included, all with the same settings (NNLO
QCD+EW). The comparison is shown in Fig. 4.6, where we compare the gluon and its relative
uncertainty. Here and henceforth, when comparing relative uncertainties, the uncertainties
shown are computed as a ratio to a common baseline, i.e. the plot displays all uncertainties as a
percentage of the same reference fit. From Table 4.3, we note that the unsatisfactory description
of the ATLAS 8 TeV data persists even when the 7 TeV data are not included in the fit, and
the deterioration in fit quality for the ATLAS top data in the global fit is also similar. On the
other hand, the fit in which only 7 TeV are included shows excellent fit quality both for the jet
data and the global dataset. This suggests tension between the ATLAS 8 TeV data and the rest
of the global dataset.

The relative pull of the jet datasets at 7 TeV and 8 TeV can be inferred from Fig. 4.6. They
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Figure 4.7: Same as Fig. 4.6, but now comparing fits with NLO, NNLO and NNLO+EW
theory for 7 TeV (top: fits #j7, #j7n, #j7nw respectively) and 8 TeV (bottom: fits #j8, #j8n,
#j8nw). All results are now shown as ratios to the NNLO fit.

both lead to a comparable suppression of the gluon PDF of about 1% in the region 0.3 . x . 0.5,
while they respectively enhance it by 4% and 2% in the region 0.1 . x . 0.2. However, the
decrease in gluon uncertainty is rather more marked upon inclusion of the 8 TeV data, and in
fact, results obtained including all jet data, or only 8 TeV are almost identical. Specifically, in
comparison to the baseline, inclusion of the 8 TeV data results in a reduction of the relative
gluon uncertainty at x ' 0.2 from 4% to 1.5%, to be compared to the reduction 4% to 3% when
the 7 TeV data are included. A similar behaviour was observed in the recent CT18 global PDF
determination [57], which includes the ATLAS and CMS jet datasets at 7 TeV and the CMS jet
dataset at 8 TeV.

Impact of higher-order QCD and EW corrections

Having assessed the impact of various single-inclusive jet data on PDFs with optimal theory
settings, we now turn to the assessment of the perturbative stability of results. To this purpose,
we compare fits at NLO, NNLO and with EW corrections (included for jet data only), separately
for the 7 TeV and 8 TeV data, i.e. respectively, fits #j7, #j7n, #j7nw; and #j8, #j8n, #j8nw.
The gluon PDFs at Q = 100 GeV and their uncertainty for these fits are compared in Fig. 4.7.

It is clear from the figure that, both for 7 TeV and 8 TeV data, at NLO the gluon undergoes
a significant distortion in the region 0.1 . x . 0.5 in comparison to the NNLO results shown in
Fig. 4.6. Specifically, at the peak, x ∼ 0.3 the NLO gluon turns out to be by 30-40% larger than
the baseline. This effect is driven by the jet data: we have verified that in the baseline (without
jet data) the NLO gluon does show some distortion in comparison to the NNLO baseline, but
by a much smaller amount, with the largest enhancement of order 5%. This is thus evidence
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4.4. Results

Dataset ndat j7 j7-pt j7n j7n-pt

ATLAS jets 7 TeV 31 1.12 1.13 1.13 1.13

ATLAS jets 8 TeV 171 [3.55] [3.93] [4.76] [4.99]

CMS jets 7 TeV 133 0.71 0.91 0.95 0.94

CMS jets 8 TeV 185 [1.24] [1.16] [1.47] [1.81]

ATLAS dijets 7 TeV 90 [1.77] [1.98] [2.46] [2.55]

CMS dijets 7 TeV 54 [2.43] [2.52] [2.50] [2.57]

CMS dijets 8 TeV 122 [6.70] [7.48] [3.53] [3.89]

Table 4.5: Same as Table 4.3 for fits performed with alternative choices of central scale. Now
only χ2 values for jet data are shown. Results for the fits with default settings #j7 and #j7n,
already shown in Table 4.3 are included for ease of reference.

for large missing NNLO corrections to the single-inclusive jet cross section in the NLO fit. The
effect is more pronounced for the 8 TeV data, which can be understood as a consequence of their
greater precision.

The effect of EW corrections is rather more moderate, with the shift of the central value
always within the NNLO uncertainty band. Also, EW corrections seem to have an opposite
effect when added to the fit to the 7 TeV or the 8 TeV data, leading to a slight enhancement
of the gluon in the former case and a significant suppression in the latter for x & 0.2. For
both datasets, the uncertainty on the gluon for x & 0.1, where the jet data have an impact, is
reduced by a non-negligible amount by the inclusion of NNLO corrections. On the other hand
the impact of the EW corrections is less clear. All this suggests that NNLO corrections have
a significant impact by affecting the best-fit large-x gluon shape and improving its precision,
while the impact of EW corrections is minor, and not clear-cut.

The effect of the inclusion of the NNLO and EW corrections on fit quality is less clear. Indeed,
from Table 4.3, we observe that generally the fit quality to jet data deteriorates somewhat upon
inclusion of NNLO corrections, and a little more upon inclusion of EW corrections. On the other
hand, the global fit quality, as measured by the total χ2, is unchanged for the 7 TeV data, and it
improves significantly, from 1.39 to 1.27, for the more precise 8 TeV data, with the improvement
mostly driven by the top and Z pt data which are most sensitive to the gluon. However, as
already noted in Sec. 4.4.2, the χ2 of the top data deteriorates when adding the jet data to the
baseline, and the fit quality to the ATLAS 8 TeV data remains unchanged. This suggests that,
for the more precise 8 TeV data, the NNLO corrections reduce a tension between top and jets
(especially ATLAS).

In summary, we conclude that, NNLO corrections have a sizable impact on single-inclusive
jets, and in particular their inclusion leads to a reduction of the uncertainty on the large-x
gluon PDF and an improved consistency of the jet data with the rest of the global dataset,
demonstrated by a reduction of the shift of the gluon central value upon inclusion of jets, and
as an improvement of the global χ2 (for the more precise 8 TeV jet data), when going from NLO
to NNLO. Electroweak corrections do not appear to lead to improvements either in terms of fit
quality or PDF uncertainty.
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Figure 4.8: Same as Fig. 4.5, but now comparing fits to the 7 TeV data with the choices of
central renormalization and factorization scale scale µ = ĤT (as shown in Fig. 4.7, top) and
µ = pjet

t at NLO (fits #j7 and #j7-pt) and NNLO (fits #j7n and #j7n-pt). The gluon is shown
as ratio to the fits with µ = ĤT .

Impact of the choice of scale

We now turn to an assessment of the impact of the choice of central scale: specifically, we
compare results obtained by fitting with our default scale choice µ = ĤT and with the scale
choice µ = pjet

t . The comparison is performed for fits to the 7 TeV data (fits #j7 and #j7-pt at
NLO, and #j7n and #j7n-pt at NNLO). In Fig. 4.8 we show the distance between PDF central
values of the two pairs of fits, at NLO and NNLO, and compare the corresponding gluon PDFs.

Inspection of Table 4.5 shows that at NLO the scale choice µ = ĤT leads to a better
description of the jet data, both included and not included in the fits, with respect to µ = pjet

t .
However, the effect of the scale choice on the PDFs is very mild (see Fig. 4.8), with a localized
modification of the gluon below the half sigma level for x ' 0.2 and no effect on the other PDFs.
On the other hand, at NNLO the two scale choices lead to almost indistinguishable results, both
in terms of fit quality and PDF shape, with the scale choice µ = ĤT leading to a slightly better
description of data not included in the fit, and a difference in gluon central values barely above
statistical indistinguishability.

We conclude that the scale choice µ = ĤT is perturbatively more stable, in that it leads to
a better NLO fit, but that at NNLO the choice of central scale is not an issue.
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Figure 4.9: Same as Fig. 4.5, but now for dijets.

4.4.3 PDF fits with dijet data

We now turn to PDF fits in which dijet, rather that single-inclusive jet data are included. Also
in this case, we first discuss the impact and compatibility of this data, and then the perturbative
stability of results.

Impact and consistency of datasets

We assess the impact of dijet data on PDFs by comparing fits with optimal settings, i.e. with
QCD corrections up to NNLO and for jet data also EW corrections included, and either the full
dataset (#danw), or the 7 TeV (#d7nw) or 8 TeV (#d8nw) data included in turn.

We start by comparing to the baseline #bn, with no jet data, fit #danw in which all dijet
data are included; PDFs are compared in Fig. 4.9. From Table 4.4, we see that individual dijet
datasets are overall fairly well described (the χ2 per datapoint is around 1.5 for each of them).
Inclusion of the dijet datasets in the baseline leads to an improved description of single-inclusive
jet data, just like (see Sec. 4.4.2) inclusion of single-inclusive jet data leads to an improved
description of dijets. This confirms consistency of the single-inclusive and dijet data. Unlike in
the case of single-inclusive jet data, no tension is observed between dijet data and the rest of
the global dataset (specifically top rapidity distributions), whose χ2 is left almost unchanged.

As in the case of single-inclusive jets, only the gluon PDF is affected by the inclusion of
dijet data, with the strongest impact observed in the regions x ' 0.01 and 0.06 . x . 0.4
(see Fig. 4.9). In the former region the gluon is suppressed by about 2%, corresponding to a
shift in central value by about one sigma; in the latter it is enhanced by up to 10% around
x ∼ 0.3 , corresponding to a shift by about one and a half sigma, hence outside the error band
of the baseline. These shifts are qualitatively similar to those observed upon inclusion of the
single-inclusive jet data, but somewhat more pronounced and in a somewhat wider kinematic
region.

We then turn to the assessment of the relative impact of different datasets, by comparing to
the baseline (#bn) the fits in which only 7 TeV (#d7nw) or only 8 TeV (#d8nw) dijet data are
included, see Fig. 4.10. From Table 4.4, we see that the fit quality is equally good for 7 TeV or
8 TeV data, however the fit to the 8 TeV dijet data is closer to the fit in which all dijet data
are included, in that it leads to a similar description of all of the jet and dijet data, including
those that are not included in either fit. Such a description is better in both fits than in the fit
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Figure 4.10: Same as Fig. 4.6, but now for dijets.

10 2 10 1

x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(R
at

io
 to

 D
ije

ts
 7

 T
eV

, N
LO

QC
D 

(d
7)

)

g at 100.0 GeV
Dijets 7 TeV, NLOQCD (d7)
Dijets 7 TeV, NNLOQCD (d7n)
Dijets 7 TeV, NNLOQCD+EW (d7nw)

10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 D

ije
ts

 7
 T

eV
, N

NL
O Q

CD
 (d

7n
)

g at 100.0 GeV
Dijets 7 TeV, NLOQCD (d7) (68 c.l.+1 )
Dijets 7 TeV, NNLOQCD (d7n) (68 c.l.+1 )
Dijets 7 TeV, NNLOQCD+EW (d7nw) (68 c.l.+1 )

10 2 10 1

x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(R
at

io
 to

 D
ije

ts
 8

 T
eV

, N
LO

QC
D 

(d
8)

)

g at 100.0 GeV
Dijets 8 TeV, NLOQCD (d8)
Dijets 8 TeV, NNLOQCD (d8n)
Dijets 8 TeV, NNLOQCD+EW (d8nw)

10 2 10 1

x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 D

ije
ts

 8
 T

eV
, N

NL
O Q

CD
 (d

8n
)

g at 100.0 GeV
Dijets 8 TeV, NLOQCD (d8) (68 c.l.+1 )
Dijets 8 TeV, NNLOQCD (d8n) (68 c.l.+1 )
Dijets 8 TeV, NNLOQCD+EW (d8nw) (68 c.l.+1 )

Figure 4.11: Same as Fig. 4.7, but now for dijets.

to the 7 TeV dijet datasets only, and is accompanied by a similar change in the description of
the ATLAS top pair differential rapidity distributions. This suggests that among the dijet data,
the 8 TeV data provide the dominant contribution.

The relative impact of the 7 TeV and 8 TeV data on the gluon central values and uncertainty
can be directly inferred from Fig. 4.10. The impact of the two datasets on the gluon central
value is qualitatively the same, and thus also the same as that of the full dijet dataset, but with
the 8 TeV data having a stronger impact, almost equivalent to the impact of the full dataset.
The reduction in uncertainty in comparison to the baseline due to either dataset is roughly
the same, by about 3-4% to 3% at x ' 0.2. Consequently, the gluon PDF determined when
including all of the dijet data is very close to that found when including only the 8 TeV data,
thus confirming that the 8 TeV data have a dominant impact in the dijet dataset.

102



4.5. Single-inclusive jets vs. dijets: a comparative assessment

Impact of higher order QCD and EW corrections

As for single-inclusive jets, we assess the perturbative stability of fits with dijet data by com-
paring fits at NLO, NNLO and with EW corrections, separately for the 7 TeV and 8 TeV data,
i.e. respectively, fits #d7, #d7n, #d7nw; and #d8, #d8n, #d8nw. The gluon PDFs for these
fits are compared in Fig. 4.11.

The figure shows that the perturbative behaviour of the gluon upon inclusion of the dijet
data is very similar to what observed when including single-inclusive jets. Namely, at NLO the
gluon is distorted in the region 0.1 . x . 0.5 in comparison to the NNLO results already shown
in Fig. 4.10, with the effect more pronounced for the dominant and more precise 8 TeV data,
again providing evidence for large missing NNLO corrections. The effect of the EW corrections
is even less marked than in the case of single-inclusive jets: in fact, their inclusion leaves the
gluon PDF almost unchanged. For both datasets, inclusion of the NNLO corrections leads to
a reduction in uncertainty, more marked for 8 TeV data, while inclusion of the EW corrections
has no clear effect; in fact, for the 8 TeV data it leads to a slight increase of the uncertainty. As
in the case of single-inclusive jets, we conclude that NNLO corrections have a strong impact by
modifying the gluon shape and reducing its uncertainty, while EW corrections have essentially
no impact.

Unlike in the case of single-inclusive jets, where the inclusion of NNLO corrections did
not have a clear impact on fit quality, for dijets at NNLO there is a clear improvement in
χ2 values (see Table 4.4). Specifically, when all dijet data are included at NLO, the χ2 of
the global fit deteriorates significantly in comparison to the baseline, with the largest effect
seen in data which are most sensitive to the gluon, such as the Z pt distribution and the
top rapidity distribution. This deterioration goes away upon inclusion of NNLO corrections.
Namely, when NNLO corrections are included, the quality of the global fit including dijets
improves considerably, corresponding now to a fit quality which is essentially the same for the
fits with or without the dijet data. Accordingly, the fit quality to the dijet data is significantly
better at NNLO than at NLO. The effect is driven by the more precise 8 TeV data. Indeed,
the same pattern is observed when only 8 TeV data are included, while with 7 TeV data only
fit quality to the dijet data at NLO and NNLO is essentially the same, and so is the fit quality
with or without dijet data.

This means that inclusion of NNLO corrections is crucial in order to ensure compatibility of
the dijet data with the rest of the global dataset. Interestingly, when fitting dijet data no clear
effect is seen when going from NLO to NNLO in the fit quality of single-inclusive jet data (not
fitted). Inclusion of EW corrections has no significant effect on fit quality.

We conclude that for dijets NNLO corrections have a significant impact on both fit quality,
the central value of the gluon PDF and its uncertainty, with a clear pattern of improvement
when going from NLO to NNLO.

4.5 Single-inclusive jets vs. dijets: a comparative assessment

Having assessed the impact on PDFs of jet and dijet datasets separately, we now assess them
comparatively, in terms of perturbative stability, fit quality, and impact on PDFs. Specifically,
we compare directly PDFs obtained in fits to all single-inclusive (#janw) and dijet (#danw)
datasets with the most accurate NNLO+EW theory and default settings in Figs. 4.12-4.13,
where the baseline fit (with no jet data) and, in the latter case, the CT18 PDF fit [57] are
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Figure 4.12: Same as Fig. 4.5, but now comparing the fits with all single-inclusive jet data
(#janw), and that with all dijet data (#danw) and highest theory accuracy (NNLO QCD+
EW) and default settings. In the gluon comparison (right) results are displayed as a ratio to
the baseline with no jet data included (also shown for reference).
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Figure 4.13: Same as Fig. 4.6, but now comparing the baseline (#bn) to the fits with all
single-inclusive jet (#janw) and dijet data (#danw) of Fig. 4.12. All results are shown as a
ratio to the CT18 fit (also shown for reference).

also shown for reference. Also, in Fig. 4.14 we compare to a representative set of datapoints
from each of the single-inclusive jet and dijet datasets predictions obtained using PDFs from
the baseline fit, the fit with single-inclusive jets, and the fit with dijets.

Based on the χ2 values from Tables 4.3-4.4 and the PDF comparisons in Figs. 4.12-4.14, our
conclusions are the following.

1. Concerning the relative impact on PDFs of single-inclusive jets and dijets:

(a) The effect on PDFs of the inclusion of jet and dijet data in the NNPDF3.1 global
dataset is qualitatively the same. Namely, they only affect the gluon, by leading to
an enhancement of its central value in the region 0.1 . x . 0.4, accompanied by a
suppression in the region 0.01 . x . 0.1. The suppression is by about 1%, while the
enhancement at the peak, localized at x ' 0.3 is by about 2.5% for single-inclusive
jets, but stronger, by about 7.5% for dijets. An enhanced gluon is also present in the
CT18, which, as mentioned, includes the 8 TeV CMS single-inclusive jet data, and
whose gluon PDF is consistent with our result within its rather larger uncertainty.
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(b) The inclusion of either single-inclusive or dijets leads to a reduction in the gluon
uncertainty, with a somewhat stronger reduction observed for single-inclusive jets.
It should be noted in this respect that for the most accurate 8 TeV dijet dataset,
which as shown in Secs. 4.4.2-4.4.3 is mostly responsible for the reduction in gluon
uncertainty, only CMS data are currently available. The constraining power of the
dijet dataset is consequently at present more limited than that of the single-inclusive
jet dataset.

(c) The inclusion of single-inclusive jet or dijet data does not lead to a deterioration in
the description of the rest of the data in comparison to the baseline fit: almost all
χ2 values for other datasets are unchanged. This shows that the single-inclusive and
dijet data are not only consistent with each other, but also with the rest of the global
dataset, and their impact on the gluon central value, accompanied by a reduction in
uncertainty, corresponds to a genuine addition of new information in the fit. Indeed,
a comparative assessment of the impact of jet, Z pt and top production data on the
gluon distribution in Ref. [143] showed good consistency, specifically wish the top
data also leading to an enhancement of the gluon in the x & 0.1 region. An exception
is the ATLAS top rapidity distributions, which seem to be in tension with the ATLAS
8 TeV single-inclusive jet data, as discussed in Sec. 4.4.2. The quality of the fit to this
data also deteriorates, though by smaller amount, when dijet data are fitted; note
however that in this case the quality of the fit to CMS top rapidity data improves.

2. Concerning relative fit quality:

(a) The quality of the fit to single-inclusive jet data and dijet data when each of them is
fitted is comparable, though somewhat better for dijets (χ2 = 1.65 vs. χ2 = 1.88).
The quality of the fit to dijets when single inclusive jets are fitted and conversely are
almost identical (χ2 = 2.10 for dijets when fitting single inclusive jets vs. χ2 = 2.06
for single inclusive jets when fitting dijets), and only marginally worse than the quality
of the fit to each dataset when it is fitted. This confirms the full consistency of the
two datasets, with a marginal preference for dijets.

(b) The fit including dijet data is also somewhat more internally consistent than the fit
including single-inclusive jet data. Indeed, the χ2 per datapoint of the global fit is
closer to one (1.22 vs 1.28), and also, the χ2 for individual datasets is generally better.
In particular, this happens for top production data, also sensitive to the large-x gluon.
It is unclear whether this is due to a greater theoretical accuracy of the NNLO dijet
observable, or to better quality of the dijet data (specifically a better control of
correlated systematics). However, the issue is phenomenologically immaterial, given
that the shape and size of the data to theory ratio are qualitatively comparable for all
of the jet and dijet data (including for the rapidity bins not displayed in Fig. 4.14),
regardless of which dataset is actually fitted.

3. Concerning relative perturbative stability:

(a) When fitting the dijet data, fit quality to the fitted data improves significantly from
NLO to NNLO (χ2 = 2.44 at NLO vs. 1.65 at NNLO), but the fit quality to the
single-inclusive jet data actually deteriorates from NLO to NNLO (from χ2 = 1.54
to 2.06). When fitting the single-inclusive jet data, the fit quality to the fitted data
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does not improve and actually deteriorates from NLO to NNLO (from χ2 = 1.25
to χ2 = 1.88) but, perhaps surprisingly, the fit quality to the dijet data, not fitted,
does improve (from χ2 = 3.29 at NLO to the NNLO χ2 = 2.10). Whereas this
shows a good theoretical consistency of the dijet data, it is unclear whether the lack
of improvement of the single-inclusive jet data is due to a less stable perturbative
behaviour of the jet observable, or to issues with data.

(b) As already noted in Sec. 4.4.3, the fit quality to all other data included in the global
datasets deteriorates at NLO when including jet data, with a greater deterioration
seen in the case of dijets, and more moderate for single-inclusive jets: the total χ2 per
datapoint for the global fit goes from χ2 = 1.20 of the baseline to 1.28 in the former
case and 1.33 in the latter. At NNLO, when dijets are fitted the global fit quality
significantly improves and becomes almost the same as that of the baseline (χ2 = 1.22,
in comparison to χ2 = 1.18 of the baseline) while for the fit to single-inclusive jets
it does not improve. The greater deterioration of fit quality at NLO for dijets can
be understood as a consequence of the fact, observed in point 1.a above, that dijets
have a greater pull on the gluon: hence missing NNLO corrections lead to a stronger
loss of accuracy. The lack of improvement in the description of single-inclusive jets
shows again that this observable seems to be somewhat less well-behaved, either for
theoretical or experimental reasons.

We generally conclude that single-inclusive jets and dijets are mutually consistent and at
NNLO consistent with the global dataset and have a similar impact on the gluon. The dijet
observable has a better behaved perturbative behaviour and a stronger pull on the gluon PDF
and it appears to be marginally preferable, though it leads to a less pronounced decrease of the
gluon uncertainty, possibly because ATLAS dijet measurements are not yet available at 8 TeV,
while single-inclusive jet measurements are available both from ATLAS and CMS.

4.A APPLgrid interface to FastNLO

In this appendix, we want to briefly highlight the main differences between grids in the AP-
PLgrid format (version 1.4.7) and in the FastNLO format (series 2.x with fixed additive con-
tributions3). Taking into account these differences, it has been possible to provide APPLgrid
with the possibility to read FastNLO tables.

• In the case of multi-differential distribution e.g. d2σ/dptdy, in APPLgrid any rapidity
bin defines a different observable. Instead, in FastNLO, the grid is only one and each
point has more kinematical coordinates e.g. (pt, y). This implies that a single FastNLO
table will return a vector of APPLgrid grids.

• In FastNLO, predictions for different values of µR = ξRQ
2 and µF = ξFQ

2 are explicitly
saved into the grid. In APPLgrid only the prediction for the central scale i.e. µR = µF =
Q2 is needed, as it has the ability to a posteriori vary both scales.

3Starting from version 2, FastNLO introduces also alternative flexible-scale tables [163], which allow one to
a posteriori choose as renormalization and factorization scale any function of user-defined observables s1 and s2,
calculated at filling time.
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Figure 4.14: The theory to data ratio for a representative set of points from each dataset
introduced in Sec. 4.1. Specifically, we show the central rapidity bins for all the ATLAS and
CMS jet and dijet datasets at 7 and 8 TeV. Theoretical predictions are computed from fits #bn,
#janw and #danw with corresponding theoretical accuracy.
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Figure 4.15: Benchmark test of our APPLgrid interface to FastNLO tables. Results are
shown both at LO and at NLO, for each subprocess. See text for details.

• In APPLgrid, each grid has two x-coordinates, xα and xβ , as in Eq. (4.4). In FastNLO
tables, there is only one x-coordinate. This is possible thanks to the fact that if for any
grid we adopt the same range of xα and xβ values, we have a symmetric 2-dim matrix,
and then we can build a 1-dim vector with just the elements in upper right triangle. The
single x-coordinate of FastNLO spans such a vector.

• In case of jet production in pp collisions, both APPLgrid and FastNLO adopt the same
set of seven subprocesses, defined in Eq. (2.24). However, there is a reshuffle of the indices
used in APPLgrid and FastNLO for denoting the same subprocess: sAG = π(sFN).

• Both in APPLgrid and in FastNLO, the grids are not saved in terms of x and Q2, but
as a function of more natural variables y and τ , defined by the relations:

y(x) = ln 1
x

+ a(1− x) , τ(Q2) = ln ln Q
2

Λ2 . (4.14)

• In FastNLO, the weight W (p)(s)(b)
αβ,τ for the bin b in a differential distribution is divided

by the bin size (in case of multi-differential distributions, the bin size is the width of the
most internal bin).

• There is a factor xαxβ of difference between the FastNLO and the APPLgrid weights,
as the FastNLO ones are designed to be convoluted with x1f(x1) and x2f(x2).

In Fig. (4.15) we show a comparison between the output of APPLgrid interfaced to a
FastNLO table, and the original output of FastNLO with the same input table. We consider
predictions for the the dijet process measured in Ref. [133] with central scale choice (ξR = 1,
ξF = 1). We observe a relative agreement for the two predictions below 10−5, both at LO and
at NLO, for the whole set of data points and for different partonic channels.
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CHAPTER 5

Towards machine learning analytics for jet
substructure

The rapid development of machine-learning (ML) techniques is having a profound impact on
particle physics. For instance, as we have seen in Sec. 4.3, the NNPDF collaboration heavily
exploits ML techniques in its fitting procedure e.g. neural networks as universal interpolant and a
genetic algorithm as optimizer. In addition, with the recent revision of the whole methodology,
more efficient ML software libraries have been adopted and NN hyperparameters have been
optimized.

The same is true for jet physics: ML is deeply affecting jet substructure studies. We have
briefly introduced the main concepts behind jet substructure in Sec. 1.9, and we have seen how
jet substructure has emerged as an important tool in the context of analyses involving hadronic
final states at the LHC. In the context of jet physics, ML algorithms are typically trained on
a control sample, which could be either Monte Carlo pseudo-data or high-purity dataset, and
then applied to an unknown sample to classify its properties. Because of limitations on the
algorithms’ efficiency and on computers’ power, ML algorithms were applied to relatively low-
dimensional projections of the full radiation pattern that one wished to classify. Even so, such
projections usually correspond to physically-motivated observables, such as, e.g. the jet mass,
jet shapes, and therefore limitation in performance were mitigated with physics understanding.
The field of jet substructure is currently undergoing a ML revolution, moving away from low-
dimensional projections and exploiting deep neural network to perform classification. Early
progress was made on supervised classification of known particles [164–168] to the point where
powerful network architectures are now available [169–172] and the focus lies on improving the
stability [173–177] of these approaches.

Despite the success of ML, physicists — and theorists in particular — often feel uneasy about
relying on black-box techniques. The situation is not too dissimilar to the one at the birth of
jet substructure. At the time there was a plethora of new tagging algorithms and a deeper
understanding was reached only when theoretical studies based on QCD were performed [75,76,
178–188]. Similarly, we would like to accomplish a first-principle understanding of ML, made
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possible by the fact that we do have a QCD expert-knowledge of the underlying phenomena
behind the classification problem. In particular, we would like to find an answer to the following
question, which naturally arise when employing NN techniques for classification. Does the NN,
after proper training, lead to the same classifier as the one dictated by the likelihood ratio, which
is the optimal single-variable discriminant? In other words, is the NN tuned with the weights
corresponding to the global minimum of the cost function equivalent to a cut on the likelihood
ratio? In this chapter we are going to find an answer to this question, by looking for a situation
where most studies can be performed analytically, and afterwards by investing how our findings
in the simplest case compare to a more general setup.

To this purpose, in Section 5.1, we introduce a variant of the well-known N -subjettiness
variable (see Sec. 1.9) based on the primary Lund plane declustering tree [189]. This primary
N -subjettiness TN is more amenable to an all-order QCD analysis, which we perform at lead-
ing logarithmic (LL) accuracy, while maintaining, if not improving, the discrimination power.
This definition is such that, if we measure the N -subjettiness variables {T1...Tn}, then, at LL,
a cut on the likelihood ratio simply corresponds to a simple cut on Tn. Furthermore, with
this definition and within the stated accuracy, we are able to find analytic expressions for the
cumulative distributions and for the so-called area under the curve (AUC), which measures the
discriminating power of the observable, for any value of n. We then move in Section 5.2 to use
the aforementioned primary N -subjettiness variables as input to a NN. Because we expect the
optimal discriminant to be a cut on Tn, we can start by considering the simplest possible NN,
namely a single neuron, or perceptron with n inputs and one output. This opens up the interest-
ing possibility of performing analytic calculations that describe the behaviour of the perceptron
at LL accuracy in QCD. In Sections 5.3 and 5.4, we compare our theoretical findings with actual
networks with architecture of increasing complexity using pseudodata, which we generate either
according to a leading-logarithmic distribution in QCD or using a general-purpose Monte Carlo
parton shower.

5.1 Primary N-subjettiness

A general approach to quantitatively assess the power of quark/gluon discrimination by using
the N -subjettiness variables τN (introduced in Sec. 1.9) was put forward in Ref. [78]. The main
idea underlying this approach is as follows. If we measure the first n variables {τ1 . . . τn}, we are
able to resolve n emissions in the jet. In particular, the Authors of Ref. [78] calculated explicitly
the N -subjettiness distributions

pi(τ1, . . . , τn) = 1
σi

dσi
dτ1 · · · dτn

, i = q, g, (5.1)

at LL accuracy, i.e. in the limit in which all emissions are strongly ordered, for the cases n =
1, 2, 3. Given that the likelihood ratio — which according to the Neyman-Pearson lemma [190]
provides us with the best single-variable discriminant — is simply given by:

L(τ1, . . . , τn) = pB
pS

= pg(τ1, . . . , τn)
pq(τ1, . . . , τn) , (5.2)

the Authors of Ref. [78] has been able to determine the best single-variable discriminant for n
emissions resolved in a jet.

110



5.1. Primary N -subjettiness

However, even in the limit where the emissions are strongly ordered, pi results in a rather
complicated structure. This is because the emissions that set the values of the observables τi,
which are always gluons at LL accuracy, can either be primary emissions, i.e. they originate
from the original hard parton, which could be a quark or a gluon, or they can originate from
subsequent gluon splittings. If we consider, for instance, the case of a jet initiated by a hard
quark, one ends up with n contributions with colour factors Cn−iF CiA, i = 0, . . . n−1. One would
also end up with a Sudakov form factor with both CF and CA contributions with a structure
depending on the complete tower of n emissions. It is clear that this intricate structure does
not facilitate analytical calculations.

Therefore, we find convenient to introduce a variant of N -subjettiness that is sensitive, at LL
accuracy, only to primary emissions, such that the distributions pi are determined by strongly-
ordered gluon emissions off the initial hard parton. Specifically, we define the new observable,
primary N -subjettiness, as follows. Starting from a jet of radius R0, one first builds the list of
primary Lund declusterings [189]:

1. Recluster the jet constituents with the Cambridge/Aachen algorithm [66,67].

2. Iteratively undo the last step of the clustering j → j1 + j2, with pt1 > pt2. At step i

(i = 1, . . . ,m), define

p̃ti = pt2 and ∆i =
√

∆y2
12 + ∆φ2

12. (5.3)

Repeat the procedure with j = j1, i.e. following the harder branch of the de-clustering.

3. When the de-clustering terminates, i.e. when j is no longer coming from a j1+j2 clustering,
define p̃t0 as the transverse momentum of j.

From the set of transverse momenta, we can define the momentum fractions

zi = p̃ti∑m
i=0 p̃ti

i = 1, . . . ,m, (5.4)

where we note that the final hard momentum p̃t0 is included in the normalisation. This produces
a set of values (zi,∆i) that we order such that z1∆β

1 ≥ z2∆β
2 ≥ · · · ≥ zm∆β

m. The primary N -
subjettiness is then defined as 1.

TN =
m∑
i=N

zi

(
∆i

R0

)β
. (5.5)

Note that T1 ≥ · · · ≥ Tn, like with the standard N -subjettiness τN . The primary N -subjettiness
definition in Eq. (5.5) is very similar to the standard N -subjettiness definition with the main
difference that it is computed based on primary Lund declusterings. The definition of the
momentum fractions zi is such that

∑m
i=0 zi = 1.

By construction the LL expression for the n-dimensional differential distribution is obtained
by considering independent emissions off the originating hard parton (either a quark or a gluon).
Of this infinite tower of emission, n of them set the values of T1, . . . ,Tn, while all the other

1Note that an alternative definition, equivalent at leading-logarithmic accuracy, but different beyond, would
be to define T

(max)
N = zN (∆N/R0)β i.e. the maximum value instead of the sum.
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ones remain unresolved. Furthermore, we have to consider virtual corrections, which naturally
exponentiate in the soft and collinear limit. Both unresolved and virtual corrections are divergent
order by order in perturbation theory and we regularise such singularities with and infra-red
regulator ε. We have

pi(T1, . . . ,Tn) =
∫ 1

0

dρ1

ρ1
CiR′(ρ1) · · ·

∫ ρn−1

0

dρn
ρn

CiR′(ρn)
n∏
j=1

δ

Tj −
∑
k≥j

ρk


· lim
ε→0

∞∑
p=0

1
p!

(∫ ρn

ε

dρ

ρ
CiR′(ρ)

)p
exp

[
−
∫ 1

ε

dρ

ρ
CiR′(ρ)

]
, (5.6)

where i = q, g (with Cq = CF and Cg = CA), and ρk = zkθ
β
k , where as before θk is the angular

distance between parton k and the jet axis, in units of the jet radius R0. Since we are working
in the strongly order limit ρk � ρk+1, we can approximate the delta function in Eq. (5.6) as

δ

Tj −
∑
k≥j

ρk

 = δ (Tj − ρj) . (5.7)

Furthermore, we have introduced the LL radiator function R, defined in Eq. (1.99), and its
derivative

R′(ρ) = dR(ρ)
d log(1/ρ) , (5.8)

where with log x we always denote the natural logarithm of x. Going back to Eq. (5.6), we
note that the unresolved emission contribution exponentiates too and combines with the virtual
corrections to produce a finite exponent, giving rise to the so-called Sudakov form factor. Thus,
we arrive at a resummed expression for the probability distribution pi(T1, . . . ,Tn), which is valid
to LL accuracy:

pi(T1, . . . ,Tn) =

 n∏
j=1

R′(Tj)
Tj

Cni exp [−CiR(Tn)] . (5.9)

An important observation is the following. From Eq. (5.9) we note that the structure of the
probability distributions at LL in QCD for primary definition of N -subjettiness is the same for
quark and gluon jets, with a parametric difference encoded in the colour factor CF or CA (this
is not case with the standard definition of N -subjettiness). Consequently, the likelihood ratio
Eq. (5.2) at LL becomes

LLL =
(
CA
CF

)n
exp

−2CA − CF
β

∫ 1

Tn

dρ

ρ

∫ 1

ρ

dz

z

αs

(
z
β−1
β ρ

1
β ptR0

)
π

 , (5.10)

which is monotonic in Tn. Therefore, at LL, a cut on the likelihood ratio is equivalent to a cut on
Tn. The remarkable simplicity of this result is the strongest motivation for introducing primary
N -subjettiness. This observable is then the ideal laboratory to study in an analytical fashion
how a neural network that takes the primary N -subjettiness variables as inputs performs. Note
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that because of the simplicity of the classifier, i.e. a cut on a single variable, we expect that even
the simplest network, i.e. the one formed by a single neuron, should lead to meaningful results.

Analytic studies of a perceptron will be the topic of Section 5.2, but, before moving to
that, let us derive a couple of results that allow us to establish primary N -subjettiness as an
appealing observable on its own, rather than just a shortcut to more tractable analytic results.
It is interesting to obtain an analytic expression for the cumulative distribution with a cut T on
Tn. As we have just seen, this is equivalent to a cut on the likelihood. We have

Σi(Tn < T) =
∫ 1

0
dT1

∫ T1

0
dT2· · ·

∫ Tn−2

0
dTn−1

∫ Tn−1

0
dTn pi(T1, . . . ,Tn) Θ(Tn < T)

=
∫ 1

0
dT1

∫ T1

0
dT2· · ·

∫ Tn−2

0
dTn−1

∫ min[Tn−1,T]

0
dTn pi(T1, . . . ,Tn) . (5.11)

The latter expression splits naturally in two terms: if Tn−1 < T, we simply find Σi(Tn−1 < T);
if Tn−1 > T, the exponential factors out and we obtain

e−CiR(T)
∫ 1

T

dT1

∫ T1

T

dT2· · ·
∫ Tn−2

T

dTn−1 pi(T1, . . . ,Tn) = e−CiR(T)C
n−1
i Rn−1(T)

(n− 1)! . (5.12)

By induction we arrive at

Σi(Tn < T) = e−CiR(T)
n∑
k=1

Ck−1
i Rk−1(T)

(k − 1)! = Γ(n,CiR(T))
Γ(n) , (5.13)

where Γ(n, x) is the incomplete Gamma function.

It is also possible to find an analytic expression for the AUC. Exploiting the ROC curve def-
inition in Eq. (1.105), we can write the AUC as an integral of the quark and gluon distributions:

AUC =
∫ 1

0
dT1q

∫ T1q

0
dT2q · · ·

∫ Tn−1,q

0
dTnq

∫ 1

0
dT1g

∫ T1g

0
dT2g · · ·

∫ Tn−1,g

0
dTng

· pq(T1q,T2q, · · · ,Tnq) pg(T1g,T2g, · · · ,Tng) Θ(Tnq > Tng) . (5.14)

At LL accuracy, all the above integrals can be performed analytically. The necessary steps are
not entirely trivial, so we collect some details in Appendix 5.A for the interested reader. The
LL expression for the area under the ROC curve is

AUC = 1−
(

CFCA
(CF + CA)2

)n Γ(2n)
Γ(n)Γ(1 + n) 2F1

(
1, 2n, 1 + n; CA

CF + CA

)
. (5.15)

We can compare the values given by this expression with the ones computed in [78] for the
standard definition of N -subjettiness.

n = 1 → AUCstandard = 0.308, AUCprimary = 0.308
n = 2 → AUCstandard = 0.256, AUCprimary = 0.226
n = 3 → AUCstandard = 0.231, AUCprimary = 0.173
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We conclude that, at least at LL, a cut on the primary N -subjettiness Tn provides better
quark/gluon discrimination power than a cut on the standard N -subjettiness. The comparison
of the two different definitions when evaluated on Monte-Carlo generated pseudodata will be
discussed in Sec. 5.4.

So far we have obtained analytic expressions for primary N -subjettiness distributions that
are valid at LL and therefore include running-coupling effects. Henceforth, for sake of simplicity,
we are going to consider the fixed coupling limit of Eq. (1.99). In this limit, the probability
distributions for quarks and gluons Eq. (5.9) is

pi(T1, . . . ,Tn) =
(
αS
πβ

)n
(2Ci)n

n∏
j=1

(
log (1/Tj)

Tj

)
exp

[
−αS
πβ

Ci log2 Tn

]
, (5.16)

and the likelihood ratio Eq. (5.10) consequently becomes:

LLL-f.c. =
(
CA
CF

)n
exp

[
−CA − CF

β

αs
π

log2 Tn

]
. (5.17)

In order to further simplify our notation, we can also imagine to reabsorb the factor αs/(πβ) in
the variables Ti, by an appropriate redefinition of the N -subjettiness, or, equivalently, we can
imagine to define the colour factors CF and CA in units of αs/(πβ). Thus, we rewrite Eq. (5.16)
as

pi(T1, . . . ,Tn) =
(

2C̃i
)n log (1/T1)

T1
. . .

log (1/Tn)
Tn

exp
[
−C̃i log2 Tn

]
, (5.18)

with C̃i = αSCi
πβ . Finally, for later purposes, it is convenient to express the probability distribu-

tion Eq. (5.18) in terms of logarithmic variables li = log(1/Ti):

pi(l1, . . . , ln) = 1
σi

dσi
dl1 · · · dln

= (2C̃i)n l1 · · · ln exp
[
−C̃i l2n

]
, (5.19)

or double logarithmic variables Li = log2(1/Ti):

pi(L1, . . . , Ln) = 1
σi

dσi
dL1 · · · dLn

= (C̃i)n exp
[
−C̃i Ln

]
, (5.20)

where in both cases we have taken into account the appropriate Jacobian factor.

5.2 Perceptron analytics

In this section we will investigate the simplest neural network, namely the perceptron, where
the input layer is directly linked to the output through a single neuron, as depicted in Fig. 5.1,
on the left. Analytically, this means that the network output is a function of a weighted linear
combination of the inputs:

f(~x · ~a+ b) (5.21)

with ~x vector of the input variables, while ~a is the vector of the weights of the neuron and
b is a bias. The function f , called activation function, allows us to introduce an element of
non-linearity in the network. We will focus on the sigmoid, which is widely adopted in the ML
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Figure 5.1: Left: The perceptron consists of n input units and one output y = f(~a · ~x + b).
Right: The sigmoid activation function, Eq. (5.22).

community. The sigmoid is defined as

f(x) ≡ σ(x) = 1
1 + e−x

, (5.22)

and it is shown in Fig. 5.1, on the right. Clearly, one can also choose alternative functional
form, with similar behaviour. However, note that, in a classification context, the output of
the network is required to be a single value bounded between 0 and 1 in order to acquire a
probabilistic interpretation. In the perceptron case, this implies that this property should also
apply to the image of the activation function. For instance, in this context, one could replace
the sigmoid with a rectified version (hard-sigmoid):

f(x) = max(0,min(x, 1)) . (5.23)

We note the standard rectifier linear unit (ReLU), defined as f(x) = max(0, x), does not meet
this requirement.

The neural network learns the best choice of the weights by minimising the cost function,
which quantifies the difference between the expected value of the network ŷ and the predicted
value y (the latter in the perceptron case is simply equal to Eq. (5.21)). In this study we are
focusing on the issue of quark versus gluon discrimination, which is an example of a binary
classification problem, where we have ŷ = 0, 1. In this context, the cross-entropy loss is one of
the most common functional form employed for the cost function

C(y, ŷ) = −(1− ŷ) log(1− y)− ŷ log(y) . (5.24)

In our study we will focus on a cost function defined with the cross-entropy loss. However, many
of the results we obtain also applies to other loss functions, such as, for instance, the quadratic
loss:

C(y, ŷ) = (y − ŷ)2 . (5.25)

In order to train the NN, one usually starts with a so-called training sample, i.e. a collection
of input vectors {~xi}, each labelled as a quark jet or as a gluon jet. If we have a training sample
of 2N input vectors, equally divided between signal and background labels, we can write the
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cost function as:

C̃(~a, b) = 1
2N

N∑
i=1

[
C
(
f(~x(q)

i · ~a+ b), 0
)

+ C
(
f(~x(g)

i · ~a+ b), 1
) ]

. (5.26)

The input variables ~x(i) can be thought as being generated according to a probability dis-
tribution pi(~x), with pq being the probability distribution of the inputs ~x for quark jets and pg
for gluon jets. If the training sample is rather large, as it usually is, we can re-write the above
equation in the continuous limit:

C̃(~a, b) = 1
2

∫
d~x
[
pq(~x)C(f(~x · ~a+ b), 0) + pg(~x)C(f(~x · ~a+ b), 1)

]
. (5.27)

In a general classification problem, the probability distributions of the inputs are unknown.
However, in the context of QCD studies, we can exploit expert-knowledge: if we choose the
input variables ~x as IRC safe observables, we can apply the powerful machinery of perturba-
tive quantum field theory to determine these distributions at a well-defined and, in principle,
systematically improvable accuracy.

In what follows, we are going to use the primary N -subjettiness variables {Ti} as input
variables for a perceptron. Thanks to the results obtained in Section 5.1, we will be able to
evaluate Eq. (5.27) using probability distributions for the inputs calculated at LL accuracy. We
will study the global minimum point of Eq. (5.27), by adopting the sigmoid, Eq. (5.22), as
activation function f , and the cross-entropy loss, Eq. (5.24), as cost function (analogous results
can be found with the quadratic loss, Eq. (5.25)). In particular, we want to establish whether
the set of weights ~a and bias b that minimises Eq. (5.27) does correspond to a cut on Tn, which,
in turns, is equivalent at LL to a cut on the likelihood ratio, as we have already deduced from
Eq. (5.10). We are going to discover that the ability of the perceptron of finding the likelihood
ratio crucially depends on the functional form of the input variables. In our studies, we shall
consider three cases, all based on the primary N -subjettiness, namely Ti, log Ti and log2 Ti.

5.2.1 Minimisation of the cost function

In order to find the extrema of the cost function Eq. (5.27), we consider the partial derivatives
with respect to a generic weight ai or b. With a simple application of the chain rule, we find a
set of n+ 1 simultaneous equations

∂C̃

∂ai
= 1

2

∫
d~x xif

′(~x · ~a+ b)[
pq(~x)C ′(f(~x · ~a+ b), 0) + pg(~x)C ′(f(~x · ~a+ b), 1)

]
= 0,

∂C̃

∂b
= 1

2

∫
d~x f ′(~x · ~a+ b)[
pq(~x)C ′(f(~x · ~a+ b), 0) + pg(~x)C ′(f(~x · ~a+ b), 1)

]
= 0, (5.28)

where i = 1, . . . , n and the prime indicates the derivative of a function with respect to its (first)
argument.

In general, in order to solve the above system of simultaneous equations, we have to explicitly
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compute the n-dimensional integral in Eq. (5.28). However, in some cases, it might be also
possible to find directly a solution at the integrand level. To this purpose, we observe that if
the equality

pq(~x)
pg(~x) = −C

′(f(~x · ~a+ b), 1)
C ′(f(~x · ~a+ b), 0) (5.29)

is satisfied for any value of ~x, then the system of equations is fulfilled. In addition, because of
the properties of the cross-entropy loss, Eq. (5.24),

C ′(y, 1) = −1
y
, C ′(y, 0) = −C ′(1− y, 1) , (5.30)

the dependence of Eq. (5.29) on the loss function drops out, i.e.

−C
′(f(~x · ~a+ b), 1)

C ′(f(~x · ~a+ b), 0) = 1− f(~x · ~a+ b)
f(~x · ~a+ b) . (5.31)

We note that the above equation also holds in the case of the quadratic loss.

For later purposes, it may be useful to specialise Eq. (5.28) to our probabilities pi – given
respectively in Eq. (5.18), Eq. (5.19) and Eq. (5.20), to the sigmoid activation function and to
the cross-entropy loss. The probability densities pi share the common structure

pi(x1, . . . , xn) = r′(x1) · · · r′(xn)
(
C̃ni exp

[
−C̃i r(xn)

])
, (5.32)

where the function r(x) is essentially the radiator introduced in Eq. (1.99), but with its argument
dictated by the functional form of the perceptron input variables. Given the following identities
for the sigmoid function:

1− σ(x) = σ(−x) σ′(x) = σ(x)σ(−x) , (5.33)

and the properties of the cross-entropy loss in Eq. (5.30), the system in Eq. (5.28) may be
alternatively rewritten as:

∂C̃

∂ai
= 1

2

∫
d~x xi r

′(x1) · · · r′(xn)[
C̃nF e

−C̃F r(xn) σ(~x · ~a+ b)− C̃nA e−C̃A r(xn) σ(−~x · ~a− b)
]

= 0,

∂C̃

∂b
= 1

2

∫
d~x r′(x1) · · · r′(xn)[
C̃nF e

−C̃F r(xn) σ(~x · ~a+ b)− C̃nA e−C̃A r(xn) σ(−~x · ~a− b)
]

= 0. (5.34)

Log-square inputs. Let us start with considering Li = log2 Ti as inputs to the perceptron.
In this case the probability distributions for quarks and gluons in the fixed-coupling limit are
given by Eq. (5.20). This is a very lucky scenario where we can determine the minimum at the
integrand level. Indeed, by simply equating the l.h.s. of Eq. (5.29) and the r.h.s. of Eq. (5.31),

117



Chapter 5. Towards machine learning analytics for jet substructure

we obtain (
C̃F

C̃A

)n
exp

[
−(C̃F − C̃A)Ln

]
= exp

[
−~a · ~L− b

]
, (5.35)

leading to the following solution

a1 = · · · = an−1 = 0 , an = C̃F − C̃A, b = n log
(
C̃A

C̃F

)
. (5.36)

Hence, for the log-square inputs, the minimum of the cost function does agree with the optimal
cut on Tn dictated by the likelihood. Moreover, as C̃F < C̃A, the weight an is negative. This
has to be expected, since the sigmoid function is monotonic and we have mapped the gluon
(quark) sample to output 1 (0), see Eq. (5.26), whereas the gluon sample has larger Ti and thus
smaller Li: the negative sign of an restores the proper ordering between inputs and output of
the perceptron.

If we restrict ourselves to the case n = 2, it is also possible to explicitly perform the integrals
that appear in Eq. (5.27) and arrive at an analytic expression for the cost function. We report
this calculation in Appendix 5.B.

Log inputs. We now turn our attention to logarithmic inputs l = − log Ti. In this case we
are not able to determine the position of the minimum at the integrand level and we are forced
to address the actual integrations in Eqs. (5.28) In particular, we would like to check whether
the likelihood condition a1 = · · · = an−1 = 0 is still present in the solution of the system of
simultaneous equations. To this purpose, we use Eq. (5.34) with the probability distribution
given by Eq. (5.19), then we set a1 = · · · = an−1 = 0, thus explicitly obtaining

∂C̃

∂ai
= 2n−1

∫ ∞
0

dln ln Ii(ln)
[

C̃nF exp(−C̃F l2n)
1 + exp(−anln − b)

− C̃nA exp(−C̃Al2n)
1 + exp(anln + b)

]
= 0,

∂C̃

∂b
= 2n−1

∫ ∞
0

dln ln I0(ln)
[

C̃nF exp(−C̃F l2n)
1 + exp(−anln − b)

− C̃nA exp(−C̃Al2n)
1 + exp(anln + b)

]
= 0, (5.37)

where Ii(ln) is the result of the integration over l1, . . . , ln−1

Ii(ln) =
∫ ln

0
dln−1 ln−1· · ·

∫ l2

0
dl1 l1 vi , (5.38)

where v0 = 1 , vi = li. These integrals can be straightforwardly evaluated and, up to an irrelevant
constant, we have

I0(ln) ∝ l2n−2
n , Ii(ln) ∝ l2n−1

n for i = 1, . . . , n (5.39)

Replacing this result in Eq. (5.37), we see that all of the derivatives with respect to ai, i =
1, . . . , n give rise to the same equation, and thus the system of n+ 1 simultaneous equation re-
duces to a system of just two independent equations, for any n. These two equations correspond
to two lines in the (an, b) plane. If these two lines never cross, then the system has no solution,
and the minimum of the cost function is not at a1 = . . . an−1 = 0 and thus the perceptron is
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not able to correctly reproduce the likelihood. If instead these lines meet at some ān, b̄, then
the minimum of the cost function does correspond to the likelihood ratio. Despite numerous
attempts, we have not been able to perform the final integration over ln in Eq. (5.37). However,
we can perform the integration numerically and plot the result in the (an, b) plane. This is done
in Fig. 5.2, on the left, where, without loss of generality, we have concentrated on the case n = 2.
It is clear from the plot that the two curves do meet in a point and hence the perceptron is able
to find the correct minimum, i.e. the one dictated by the likelihood with a1 = 0.

-0.955

-0.95

-0.945

-0.94

-0.935

-0.93

-0.925

-0.92

-0.915

-0.91

-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4

b
/a

2

a2

Log inputs

b derivative
a1 derivative
a2 derivative

 0.406

 0.407

 0.408

 0.409

 0.41

 0.411

 0.412

 0.413

-8.6 -8.4 -8.2 -8 -7.8 -7.6 -7.4 -7.2 -7

b
/a

2

a2

Linear inputs

b derivative
a1 derivative
a2 derivative

Figure 5.2: Solutions of Eq. (5.34), in the case n = 2 with a1 = 0, plotted as points in the
(a2, b/a2) plane, for log (left) and linear (right) inputs.

The explicit n-dependence of the coefficients an and bn can be found numerically by solving
the system of equations. Furthermore, it is possible to obtain analytically the scaling of an with
respect the colour factors, as detailed in Appendix 5.C. We find that, once we have factored out
C̃
−1/2
F , the resulting coefficient only depends on the ratio of colour factors:

an√
C̃F

= F

(
C̃A

C̃F

)
, (5.40)

where F stands for a unspecified function that we have not determined.

Linear inputs. We now move to consider linear inputs of the perceptron, i.e. the variables Ti
directly. We follow the same logic as in the case of the logarithmic inputs, namely we want to
check whether at the position of the minimum of the cost function we have a1 = . . . an−1 = 0.
Following the same steps as before, we have

∂C̃

∂ai
= 2n−1

∫ 1

0

dTn
Tn

log 1
Tn

Ii(Tn)
[
C̃nF exp(−C̃F log2 Tn)
1 + exp(−anTn − b)

− C̃nA exp(−C̃A log2 Tn)
1 + exp(anTn + b)

]
= 0,

∂C̃

∂b
= 2n−1

∫ 1

0

dTn
Tn

log 1
Tn

I0(Tn)
[
C̃nF exp(−C̃F log2 Tn)
1 + exp(−anTn − b)

− C̃nA exp(−C̃A log2 Tn)
1 + exp(anTn + b)

]
= 0,

(5.41)
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with
Ii(Tn) =

∫ 1

Tn

dTn−1

Tn−1
log 1

Tn−1
· · ·
∫ 1

T2

dT1

T1
log 1

T1
vi , (5.42)

where now v0 = 1 , vi = Ti. There is a crucial difference between the integrals in Eq. (5.42) and
the corresponding ones in the case of the logarithmic inputs Eq. (5.38): the cases with i = n

and with i < n do not lead to the same functional form of the results. For sake of simplicity, let
us specialise to n = 2. We have

Ii(T2) =
∫ 1

T2

dT1

T1
log 1

T1
vi =


1
2 log2 T2 , i = 0,
1− T2 + T2 log T2 , i = 1,
1
2T2 log2 T2 , i = 2.

(5.43)

Thus, all the three equations appearing in (5.41), i.e. i = 0, 1, 2 provide independent conditions.
Then, the system has solutions if the corresponding three curves in the (a2, b) plane meet in one
point. By numerically performing the integrations, we can check whether this happens or not.
This is done in Fig. 5.2, on the right. It is clear from the plot that the three curves do not meet
in a point and hence the perceptron is unable to find the correct minimum, i.e. the one dictated
by the likelihood.

Let us summarise the findings of this section. We have analytically studied the behaviour
of a perceptron in the context of a binary classification problem. The perceptron features a
sigmoid activation function and a cross-entropy cost function. We have explicitly considered
three variants of the primary N -subjettiness inputs: squared logarithms, logarithms and linear
inputs. In the first two cases the minimum of the cost function does correspond to the configu-
ration dictated by the likelihood, i.e. a1 = . . . an−1 = 0, while this does not happen with linear
inputs. This is most likely due to the fact that the simple perceptron with linear inputs struggles
to correctly learn the probability distributions of signal and background, that are intrinsically
logarithmic, although the configuration is a1 = . . . an−1 = 0 is within the reach of the network.
A more complex network would be needed in this case.

5.3 Perceptron numerics

In this section we validate our analytic findings with an actual implementation of a perceptron.
Because our first-principle analysis has been developed at LL accuracy, in order to numerically
test the perceptron performance we generate a sample of pseudo-data according to the QCD LL
distribution for quark and gluon jets. The perceptron is trained using the same home-brewed
implementation based on Ref. [156], with a training over 15 epochs. We consider the three
different input variants also used in the analytic study, namely square logarithms, logarithms
and the linear version of the N -subjettiness inputs. We use 1M events for the training in the
first two cases, and 16M in the for linear inputs, unless otherwise stated. Furthermore, we
perform our study as a function of number of N -subjettiness variables. Specifically, when we
quote a given value of n, we imply that all Ti with i ≤ n have been employed. The results of
this study are collected in Fig. 5.3. Each plot shows the value of the network weights ai and
b after training, i.e. at the minimum of the cost function that has been found by the network
through the steepest-descent algorithm. The plot on the left is for log-square inputs, the one in
the middle for log inputs and the one on the right for linear inputs. The values of the weights
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Figure 5.3: Perceptron parameters after training. When available, expected analytic results
are shown as dashed lines.

determined by the network are shown as circles, squared and triangles, with the respective
numerical uncertainties. In the case of log-square and log inputs, we also show the theoretically
expected behaviour, derived in the previous section. We find perfect agreement. In particular,
the minimum of the cost function which is found by the network exhibits a1 · · · an−1 = 0, as
dictated by the likelihood. This does not happen in the case of linear inputs, although the
discrepancy is tiny.

It is interesting to investigate whether the theoretical issues for the linear inputs, which we
have found analytically and confirmed with the study that we have just discussed, have some
visible effect on the network performance. In order to do so, we first perform a study of the
perceptron convergence as a function of the training sample size Ntrain. As before, we repeat this
study for each of the input variants previously introduced, namely, square logarithms, logarithms
and linear inputs. We also consider two different values of n: for the case n = 3 we build our
inputs from T1,T2,T3, while for n = 5, we also include T4 and T5. In Fig. 5.4 we plot the cost
function as a function of the training sample size. Fig. 5.4 is obtained by training the perceptron
with a progressively increasing sample of pseudo-data generated on the fly according to the QCD
LL distribution. At fixed values of Ntrain, the cost function C̃ of the trained network is then
evaluated on a test sample of fixed dimension. This procedure is iterated a number of times, and
at the end, for each Ntrain, we take the central value of the envelope (the solid line in Fig. 5.4),
and the standard deviation of the results as a measure of the uncertainty (the error band in
Fig. 5.4). The plots clearly show that the convergence with linear inputs is rather slower than
in the cases of log-squares and logs, exposing the fact that the single-neuron network struggles
to learn intrinsically logarithmic distributions with linear inputs.

Furthermore, with the same set up, we can study the actual performance of the network in
terms of ROC curves. In order to expose possible, albeit small, deviations from in ideal case,
instead of ROC curves, the plots Fig. 5.4 show:

∆εg = ROCNN
ROCLL

− 1, (5.44)
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Figure 5.4: Convergence of the network as a function of the training sample size.
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Figure 5.5: ROC curves obtained from a trained perceptron with different inputs.
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where ROCNN is the network ROC curve, while ROCLL is the ROC curve that corresponds to
a cut on Tn. We perform this study for two different sizes of the training sample: 1M and 16M.
We know from Fig.5.4 that former is enough to achieve convergence in the case of log-square
and log inputs but not for the linear inputs. Thus, we expect to see larger differences in this
case. This is indeed confirmed by the plots in Fig. 5.5. The dash-dot-dotted curve in blue
indicates that the difference with respect the optimal case is of order 10% for εq < 0.6 in the
case of n = 3 and exceeds 30% in the same region, for n = 5. On the other hand, if the training
sample size is increased to 16M, the perceptron with linear inputs always performs worse than
the other choices, although the difference after training is rather minimal and never exceeds 1%.
For comparison, we also show the results for N -subjettiness ratios as inputs. In this case, for
n = 3, we include T1, T2,1 = T2

T1
and T3,2 = T3

T2
. The perceptron performance in this case is

much worse because a single-neutron network is not able to reconstruct the likelihood, i.e. a cut
on T3, if it is passed N -subjettiness ratios as inputs.

5.4 Monte Carlo studies

In the previous section, we have validated the results of Sec. 5.2, using the same setting of
the analytical calculations: namely, we considered a single-neuron network and we fed it with
primary N -subjettiness variables (or functions thereof) evaluated on samples of pseudo-data
generated according to QCD LL distribution. This setup is somehow oversimplified, and one
may wonder how our results compare in term of performance and convergence to a fully-fledged
neural network trained on Monte Carlo pseudo-data. In addition, we have adopted the primary
N -subjettiness definition, whose nice analytical properties naturally justifies its use in our the-
oretical studies. However, this alternative definition so far has been compared to the standard
definition only in terms of AUC at LL accuracy. Even though the purpose of this work is not a
detailed comparison of the two definitions, we need to make sure that primary N -subjettiness
performs sensibly as a quark/gluon tagger.

The purpose of this section is to address some of these concerns. We report some preliminary
results obtained by extending the setup of Sec. 5.3 to a more realistic scenario, both in terms of
the generation of pseudo-data and of the network architecture employed in the analysis.

First, we generate pseudo-data with Pythia 8.230 [191]. We simulate dijet events qq → qq

and gg → gg and we cluster jets with the anti-kt algorithm [68], as implemented in FastJet [70],
with jet radius R0 = 0.4. We keep jets with pt > 2 TeV and |y| < 4. We then compute
τN and TN (i.e. both N -subjettiness definitions) up to the desired N = n for each jet. We
set the N -subjettiness parameter β to 1. For the standard N -subjettiness, we use the reference
axes obtained from the exclusive kt axis with winner-takes-all [192] recombination and a one-pass
minimisation [193]. In addition to linear, log-square and log functional forms and N -subjettiness
ratios already adopted in the previous section, we also consider a running-coupling-like input.
This is obtained by evaluating the radiator R(τi) of Eq. (1.99) with the one-loop approximation
for the running coupling.2

The samples thus obtained are used to train either a single perceptron (as in the previous
section) or a full neural network. The latter is a home-brewed implementation based on Ref. [156]
with a fully connected network with 3 layers of 64 (sigmoid) neurons each and standard gradient
descend. We plan to compare our results with a fully fledged NN as implemented in public codes.

2We set αs(ptR0) = 0.09, and we regulate the divergence at the Landau pole by freezing the coupling at a
scale kt such that 2αs(ptR)β0 log(ptR0/kt) = 0.99.
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Figure 5.6: ROC curves obtained after training on a Pythia8 sample, using τ1, τ2 and τ3. To
better highlight differences the vertical axes show the gluon rate normalised by what is obtained
using log2 Ti inputs for primary N -subjettiness trained on a full neural network. The different
colours correspond to different inputs to the neural network.

We start with a comparison of the primary and the standard definition of N -subjettiness
in terms of network performance. In Fig. 5.6a we plot the ROC curves for the primary (solid
lines) and full (dashed line) definitions of N -subjettiness, and for different choices of the input
functional form (different colours). The gluon efficiencies are normalised by the central value
obtained with primary N -subjettiness with log2(Ti) inputs trained on a full NN. The central
values and the error bands are calculated by taking the average and standard deviation of five
different runs.

We see that the performance of NN trained with the full definition is worse by 10-15%
compared to the primary definition for mid-values of the quark efficiency, 0.4 . εq . 0.8 and
comparable elsewhere except for a small region at large quark efficiency, εq & 0.9. Even though
the benefit of using primary N -subjettiness is not as large as one could have expected based on
our leading-logarithmic calculations, we still observe a performance improvement. We note also
that at small quark efficiency non-perturbative effects would have a sizeable effect, invalidating
our arguments purely based on a perturbative calculation. Furthermore, large εq correspond
to the regime where the cut on N -subjettiness is no longer small and our arguments based on
the resummation of large logarithms no longer apply, and one should instead consider the full
structure of hard matrix elements. However, as Fig. 5.6a testifies, it seems that for the most
of the range in quark efficiency, a better discrimination is reached if we adopt the primary-N -
subjettiness definition.

It is also interesting to compare the results obtained with different inputs in Fig. 5.6a.
Although one should expect that full NN should ultimately converge to the log-likelihood inde-
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pendently on the choice of inputs, our practical setup still shows a mild dependence on the choice
of inputs. The key point is that the favoured inputs agree with our analytic expectations from
Sec. 5.2 with logarithmic inputs (log τi, log2 τi and R(τi)) showing an equally good performance,
the linear inputs only marginally worse and the ratio inputs showing a (few percent) worse dis-
criminating power. This shows that an understanding of the underlying physical behaviour of
the problem one addresses is helpful for deep-learning. We note however that even though the
convergence of the neural network is more delicate for the case of ratio inputs (and, to a lesser
extent, for linear inputs), a performance similar to the optimal one reported in Fig. 5.6a for
logarithmic inputs could be achieved with a careful optimisation of the hyperparameters.

We now move to Fig. 5.6b, where we compare the ROC curves obtained with a full neural
network to those of a simple perceptron. In this plot we select the primary N -subjettiness
definition and we display results for the usual input functional forms. The solid lines in Fig. 5.6b
coincide with the ones in Fig. 5.6a. First, we observe that a perceptron trained with Monte Carlo
pseudo-data performs worse compared to the full NN for all the considered input types. This
is not surprising as the arguments in Sec. 5.2 are based on a simplified, leading-logarithmic,
approach and subleading correction can be expected to come with additional complexity that
a single perceptron would fail to capture. It is actually remarkable that for εq & 0.6 the
performance of a single perceptron trained with logarithmic inputs gives performances which
are only 10% worse that the full network. Comparing the different input types, we see that
the perceptron performances in case of N -subjettiness ratios as inputs are remarkably worse
compared to the performances we get by using the full NN, and this in agreement with the
observation made near the end of Sec. 5.3: the more complex architecture of the NN is able to
learn the correct weights for the ratio inputs, while the perceptron is not. The behaviour of the
other functional forms is less clear, and dependent on the value of quark efficiency. For values
of quark efficiency 0.5 ≤ εq ≤ 0.9, which are phenomenologically relevant, we qualitatively
recover the hierarchy among the different input functional forms already observed in Fig. 5.6a
and in Sec. 5.3. Namely, the log-like inputs perform better than the linear inputs, which in turn
perform better than the N -subjettiness ratios. However, for smaller values of quark efficiencies,
this hierarchy seems to be inverted.3

5.A Details of the analytic calculations

In this appendix we report details of the analytic calculation of the area under the ROC curve
(AUC). We start from the generic definition of the AUC and we exploit the definition of the
ROC curve given in Eq. (1.105):

AUC =
∫ 1

0
dxROC(x) =

∫ 1

0
dxΣB

(
Σ−1
S (x)

)
, (5.45)

where, for a given observable v, the cumulative distribution for signal or background as a function
of a cut vcut reads:

Σi(vcut) =
∫
dt pi(t) Θ(v(t) < vcut), i = S,B. (5.46)

3One possible reason for this is that at smaller quark efficiencies one is more sensitive to non-perturbative
effects and that these are better characterised in terms of linear inputs, but a more detailed study would be
needed to better understand this behaviour.
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We know perform a change of variable from the efficiency x to the cut on the observable vcut,
which results in the following Jacobian factor:

dx

dvcut
= dx

dΣ−1
S (x)

= dΣS (vcut)
dvcut

. (5.47)

Thus, we have

AUC =
∫ 1

0
dvcut ΣB (vcut)

dΣS (vcut)
dvcut

(5.48)

=
∫ 1

0
dvcut

∫
dtB pB(tB) Θ(v(tB) < vcut)

∫
dtS pS(tS) δ(v(tS)− vcut) (5.49)

=
∫
dtB

∫
dtS pB(tB)pS(tS) Θ(v(tB) < v(tS)), (5.50)

which is the expression presented in Eq. (5.14).

We now specialise to our case and we consider the probability distributions pq and pg for
primary N -subjettiness at LL accuracy, which are given in Eq. (5.9). We first integrate over
quark variables and exploiting the result found in Eq. (5.13), we obtain∫ 1

0
dT1q · · ·

∫ Tn−1,q

0
dTnq pq(T1q,T2q, · · · ,Tnq) Θ(Tnq > Tng) = 1− Γ(n,CFR(Tng))

Γ(n) . (5.51)

The integral over Tng can be performed using the following integration-by-parts identity:∫ T

0
dT′ CA

R′(T′)
T′

e−CAR(T′) Γ(n,CFR(T′))

= e−CAR(T)Γ(n,CFR(T))− CnF
(CF + CA)nΓ(n, (CF + CA)R(T)) . (5.52)

We see that iteratively the following kind of integrals appear:∫ T

0
dT′ CA

R′(T′)
T

R(T′)m Γ(n, (CF + CA)R(T′))

= CA
1 +m

(
Γ(n+ 1 +m, (CF + CA)R(T))

(CF + CA)1+m −R(T)1+mΓ(n, (CF + CA)R(T))
)
. (5.53)

In the end we obtain:∫ 1

0
dT1g · · ·

∫ Tn−1,g

0
dTng pg(T1g,T2g, · · · ,Tng) Γ(n,CFR(Tng))

= Γ(n)− CnF
(CF + CA)2n−1

n−1∑
k=0

Γ(n+ k)
Γ(k + 1)C

k
A(CF + CA)n−1−k. (5.54)

The sum can be performed explicitly, leading to the result presented in Eq. (5.15) .
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5.B Analytic results for the cost function

In Section 5.2 we have looked for a minimum of the cost function, Eq. (5.27), by computing
from the very beginning the derivatives with respect to the NN weights. This procedure allowed
us to determine analytically the position of the minimum for the case of log-square inputs. An
alternative approach would be to determine an analytic expression for the cost function, as a
function of the NN weights and bias, which we would have to, in turn, minimise.

As we shall see in this appendix, this approach is not as successful as the one presented in
the main text. The integrals that appear in the determination of the cost function Eq. (5.27) are
rather challenging and we have been able to solve them only in a couple of simple cases. Namely,
we limit ourselves to the case n = 2 with log-square inputs, by using the sigmoid as activation
function, and we report results for the cross-entropy loss, Eq. (5.24), and the quadratic loss,
Eq. (5.25). Even if the NN setup is minimal, the derivation of explicit expressions for the cost
function may be instructive as they represent a first-principle determination of a NN behaviour
and they could be valuable in the context of comparisons between experimental measurements
that make use of machine-learning algorithms and theoretical predictions. Furthermore, it gives
us the opportunity to analytically study how the neural network approaches the minimum during
learning.

5.B.1 Cross-entropy loss

We start by considering the cost function Eq. (5.27) with the cross-entropy loss. Explicitly:

C̃(XE)(a1, a2, b) =1
2

∫ ∞
0

dL2

∫ L2

0
dL1

[
C̃2
F e
−C̃FL2

(
− log

(
1

1 + ea1L1+a2L2+b

))

+ C̃2
A e
−C̃AL2

(
− log

(
1

1 + e−a1L1−a2L2−b

))]
. (5.55)

Note that the replacement C̃F ↔ C̃A is equivalent to (a1, a2, b) ↔ (−a1,−a2,−b), due to the
symmetries of the functions involved. We first observe that the integral over L1 gives rise to a
dilogarithmic function. In order to evaluate the integral over L2 we make use of the following
result:

I(XE)(CR, c, d) = C2
R

∫ ∞
0

dx e−CRx Li2
(
−ecx+d) (5.56)

= CRLi2
(
−ed

)
+


−c log

(
1 + ed

)
− c2

CR

(
1− 2F1

(
1,−CRc , 1−

CR
c ;−ed

))
(c < 0)

0 (c = 0)
−c log

(
1 + ed

)
− c2

CR 2F1
(
1, CRc , 1 + CR

c ;−e−d
)

(c > 0)

The analytic expression that we obtain for the cost function is

C̃(XE)(a1, a2, b) = 1
2a1

[
− (I(XE)(C̃F , a1 + a2, b)− I(XE)(C̃F , a2, b))

+ (I(XE)(C̃A,−(a1 + a2),−b)− I(XE)(C̃A,−a2,−b))
]
. (5.57)
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From Section 5.2, we already now that the minimum is located at a1 = 0. However, given the
structure of the explicit result after integration, Eq. (5.57), it is highly nontrivial to recover the
position of the minimum analytically, due to the presence of a1 both at denominator and in the
arguments of hypergeometric function.

5.B.2 Quadratic loss

An analogous calculation can be performed in the case of the quadratic loss Eq. (5.25). We have
to calculate

C̃(χ2)(a1, a2, b) = 1
2

∫ ∞
0

dL2

∫ L2

0
dL1

[
C̃2
F e
−C̃FL2

(1 + e−a1L1−a2L2−b)2 + C̃2
A e
−C̃AL2

(1 + ea1L1+a2L2+b)2

]
. (5.58)

As in the case of the cross-entropy loss, the integral over L1 is straightforward. We then make
use of the following identity to perform the remaining integral over L2:

I(χ2)(CR, c, d) = C2
R

∫ ∞
0

dx e−CRx
[
log
(
1 + ecx+d)+ 1

1 + ecx+d

]

= CR log
(
1 + ed

)
+


c+ (CR − c) 2F1

(
1,−CRc , 1−

CR
c ;−ed

)
(c < 0)

CR
1 + ed

(c = 0)

CR + (c− CR) 2F1
(
1, CRc , 1 + CR

c ;−e−d
)

(c > 0)

(5.59)

We find

C̃(χ2)(a1, a2, b) = 1
2a1

[(
I(χ2)(C̃F , a1 + a2, b)− I(χ2)(C̃F , a2, b)

)
−
(
I(χ2)(C̃A,−(a1 + a2),−b)− I(χ2)(C̃A,−a2,−b)

)]
. (5.60)

As for Eq. (5.57), the position of the minimum is hard to find analytically. To check whether we
recover the result obtained in Eq. (5.36), we can numerically look for the minimum of Eqs. (5.57)
and (5.60). For illustration purposes, we fix C̃A and C̃F to CA and CF respectively. In Fig. 5.7
we plot each cost function around the found minimum point. We see that the condition a1 = 0
and the (negative) value of a2 = CF − CA ' −1.67 are indeed confirmed.

5.C Scaling of an in the log inputs case.

In this appendix we would like to study the scaling of an with respect to C̃F and C̃A. In order
to simplify the notation, in this appendix we will rename x ≡ ln and a ≡ an.

We first expand in series around x = 0 the sigmoid functions which appear in Eq. (5.37):

1
1 + e−a x−b

= eb

1 + eb
+
∞∑
k=1

ak f (k)(eb)xk , (5.61)

− 1
1 + ea x+b = − 1

1 + eb
+
∞∑
k=1

ak f (k)(eb)xk , (5.62)
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Figure 5.7: Cost function as a function of a1 and a2 around the minimum point. b has been
accordingly fixed to the value in Eq. (5.36).

where the explicit form of f (k)(eb) is not of relevance to our purposes. Note that the two
series with index k appearing on the r.h.s. of Eqs. (5.61)-(5.62) are the same. By substituting
Eqs. (5.61)-(5.62) under integration, Eq. (5.37) becomes:∫ ∞

0
dxxm

[
C̃nF e

−C̃F x2

(
eb

1 + eb
+
∞∑
k=1

ak f (k)(eb)xk
)

+ C̃nA e
−C̃Ax2

(
− 1

1 + eb
+
∞∑
k=1

ak f (k)(eb)xk
)]

= 0 (5.63)

with m = 2n or m = 2n− 1. Given the following integration identity:∫ ∞
0

dxxm e−c x
2

= 1
2
√
cm+1

Γ
(
m+ 1

2

)
, c > 0 (5.64)

by also dividing by
√
C̃2n−m−1
F we obtain:

Γ
(
m+1

2
)

2(1 + eb)

eb −( C̃A
C̃F

)(2n−m−1)/2


+
∞∑
k=1

 a√
C̃F

k

f (k)(eb)
Γ
(
m+1+k

2
)

2

1 +
(
C̃A

C̃F

)(2n−m−1−k)/2
 = 0 . (5.65)

This equation suggests the relation quoted in the main text:

an√
C̃F

= F

(
C̃A

C̃F

)
. (5.66)
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CHAPTER 6

Electron PDFs

As we have discussed at length in the previous chapters, theoretical predictions for processes at
hadron colliders always imply the introduction of long-distance objects, like the hadronic PDFs,
whose presence is required by the non-perturbative nature of QCD. Conversely, the typical cross
section relevant to e+e− collisions is in principle entirely computable as a perturbative series in
the QED coupling constant α. In practice, however, this is hardly useful. The coefficients of
such a series are very large and prevent the series from being well behaved. The problem stems
from the fact that the incoming e± particles tend to copiously radiate photons at small angles
w.r.t. the beamline. In perturbation theory, any zero-angle emission would induce a divergent
cross section, were it not for the screening effect provided by the mass of the emitter and/or
the emitted particle. This has already been observed in Sec. 1.4, where we also showed that,
when integrating over all possible emissions, the cross section will contain logarithms of the ratio
m2/E2, where E is a scale of the order of the hardness of the process, andm is the screening mass
i.e. that of the electron. It is these logarithms that, by growing large when m2/E2 � 1, give
the dominant contributions to the perturbative coefficients, thus compensating the suppression
due to α. In other words, all terms of the series might be of the same order numerically, which
leads to a complete loss of predictive power.

Fortunately, such log(m2/E2) terms are universal, and because of this they can be taken into
account to all orders in α by a process-independent resummation procedure. In the so-called
structure-function approach, the physical cross section is written by means of a factorisation
formula that recalls the standard QCD factorization formula at hadron colliders, Eq. (1.64).
Order by order, one collects all of the logarithmic terms in the Parton Distribution Functions
(PDFs) of the electron (or of the positron). Then, by means of the DGLAP evolution equations,
Eq. (1.70), one is able to resums such terms to all orders.

QED electron PDFs, at variance with hadronic PDFs, are entirely calculable with pertur-
bative techniques. Presently they are known in close analytical forms [194–196] which are
leading-logarithmic (LL) accurate, and that include all-order in α contributions in the region
z± ' 1 (which is responsible for the bulk of the cross section), matched with up to O(α3)
terms for any values of z±; both of these forms exploit leading-order (LO) initial conditions.
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The goal of this chapter is to improve on the results of Refs. [194–196] by extending them to
the next-to-leading logarithm accuracy (NLL) starting from the next-to-leading order (NLO)
initial conditions computed in Ref. [42]. In keeping with what was done in the literature, we
shall present predictions both for all-order PDFs in the z± ' 1 region, and for up to O(α3)
NLL terms valid for any z±. By working at the NLL+NLO accuracy, the mixing between the
electron/positron and the photon PDFs is taken into proper account, as are running-α effects.
Our results are obtained with both analytical and numerical methods, which are compared and
used to validate each other.

The chapter is organised as follows. In Sec. 6.1 we report the initial conditions for the
evolution of the electron PDFs, while Sec. 6.2 briefly describes the evolution-operator formalism.
We then move to the actual solution of the evolution equations. We obtain the NLL-accurate
PDFs of the electron in closed analytical forms in two different ways. First, in Sec. 6.3, by
solving the evolution equations order by order in perturbation theory. Second, in Sec. 6.4 and
in Sec. 6.5 for the non-singlet and the singlet-photon sector respectively, by using the properties
of the evolution operator to obtain the asymptotic behaviour in the z → 1 region to all orders in
α. These two analytical results can then be combined in order to obtain predictions which are
numerically well-behaved in the whole of the z range. This is done in Sec. 6.7 by means of an
additive matching. Afterwards, in Sec. 6.8, we describe the code employed to obtain numerical
results. Finally, our analytical and numerical predictions are extensively compared in Sec. 6.9.

6.1 Initial conditions for the electron PDFs

In the structure-function approach, we write a generic cross section at e+e− colliders as follows:

dσ̄e+e−(pe+ , pe− ,m2) =
∑

ij=e±,γ

∫
dz+dz− Γi/e+(z+, µ

2,m2) Γj/e−(z−, µ2,m2)

× dσ̂ij(z+pe+ , z−pe− , µ
2) . (6.1)

Let us describe the various terms present in Eq. (6.1).

• dσ̄e+e− is a the particle-level cross section, defined so as to retain only terms that do not
vanish in the m/E → 0 limit. In other words, it is obtained by computing the cross
section dσe+e− with massive electrons, by Taylor-expanding the result, and by keeping
only the terms either proportional to a logarithm (possibly to some power) of m2/s, or
are independent of m.

• dσ̂ij is a parton-level cross section, understood to be computed with massless electrons.
As in QCD, a suitable zero-mass subtraction scheme must be introduced (e.g. MS) and a
factorization scale µ appears. dσ̂ij does not contain any logarithmic term, and is expected
to be well-behaved order by order in perturbation theory.

• Γi/e± are the Parton Distribution Functions (PDFs) of the electron or the positron, a name
that originates from the analogy of Eq. (6.1) with its QCD counterpart. By working in
QED the cases of the electron and of the positron PDFs are identical. Thus, in this chapter
we shall only consider the PDFs of the electron, which we simply denote as Γi, with parton
index i equal to i = e−, e+, γ.
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Note that neither Γi/e± nor dσ̂ij are physical quantities; their definitions always involve some
degree of arbitrariness, which is parametrised by the mass scale µ, that is only constrained by
the requirement µ ∼ E, and by the chosen factorisation scheme. Fuller details on the usage
of the factorisation formula (6.1) in calculations relevant to e+e− colliders and on its physical
meaning can be found in Ref. [42].

A necessary ingredient for the collinear evolution through DGLAP equations are the initial
conditions for such an evolution. By “initial condition” we mean the expression for Γi at the
initial scale µ0. The electron PDFs can be expanded perturbatively, and we denote such an
expansion as:

Γi(z, µ2
0) = Γ[0]

i (z, µ2
0) + α

2π Γ[1]
i (z, µ2

0) +O(α2) . (6.2)

If the initial scale µ0 is chosen to be of the same order of the electron mass m, the higher order
terms in Eq. (6.2) can be safely neglected, and the fixed order expansion of Γi at the scale µ0 is
assumed to be the initial condition for the evolution. Needless to say, the accuracy required for
initial condition depends on the accuracy of the resummation we are interested in. For instance,
if we aim at a LL resummation, we only need the zeroth-order term, whose expression is given
by physically obvious condition:

Γ[0]
i (z, µ2

0) = δie−δ(1− z) , (6.3)

i.e. at leading order no collinear splittings are allowed. Instead, the prerequisite for an evolution
accurate at NLL level is the explicit expression for the NLO coefficient, Γ[1]

i .

Such a coefficient has been calculated in Ref. [42], within the FKS subtraction method [98,
197], in two different ways:

• the factorization formula Eq. (6.1) is seen as a definition for Γi at a given µ. Thus, one
finds both dσ̄e+e− and dσ̂ij , and then solves for Γi. This requires an explicit computation
of the particle-level and parton-level cross sections for a specific process; however, the final
result does not depend on the arbitrary process chosen in the calculation.

• by exploiting the universal factorization properties in the collinear limit, one is able to
calculate the difference between the massive and the massless cross sections — which
is the only thing that matters for the determination of Γi — for z strictly less than 1.
The distributional part of Γi is eventually determined by the momentum-conservation
condition: ∫ 1

0
dz z

[
Γe−(z) + Γγ(z) + Γe+(z)

]
= 1 , (6.4)

or by the charge-conservation condition:∫ 1

0
dz
[
Γe−(z)− Γe+(z)

]
= 1 . (6.5)
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With both strategies we get the same O(α) initial conditions, which read as follows:

Γ[1]
e− (z, µ2

0) =
[

1 + z2

1− z

(
log µ2

0
m2 − 2 log(1− z)− 1

)]
+

+Kee(z) , (6.6)

Γ[1]
γ (z, µ2

0) = 1 + (1− z)2

z

(
log µ2

0
m2 − 2 log z − 1

)
+Kγe(z) , (6.7)

Γ[1]
e+ (z, µ2

0) = 0 , (6.8)

where µ0 ' m, and m is the electron mass. The rightmost terms on the r.h.s. of Eqs. (6.6)
and (6.7) are associated with, and fully determined by, the scheme used to subtract the initial-
state collinear singularities. In this chapter, we work in the MS scheme, which implies:

Kee(z) = Kγe(z) = 0 ⇐⇒ MS . (6.9)

Eq. (6.6), apart from colour factors, coincides with the initial condition for the perturbative
heavy quark1 fragmentation function in QCD, first calculated in Ref. [198]. This is hardly sur-
prising. The way the structure-function approach in QED addresses the problem of potentially
large logarithms of collinear origin is indeed QCD-inspired, as the factorization formula Eq. (6.1)
conveys. Both in the case of electronic PDFs and in the case of heavy quark fragmentation func-
tions, one wants to resum the collinearly-enhanced perturbative contributions, in the former
case due to initial state photon emissions, in the latter case due to final state gluon emissions.

6.2 Evolution operator formalism

As far as the evolution in µ is concerned, DGLAP equations for singlet, Eq. (1.77), and non-
singlet, Eq. (1.75) are identical. We shall thus start dealing with the former one, which has a
more involved flavour structure; the results will then be applied to the non-singlet case as well,
by simply considering a one-dimensional flavour space. We re-write Eq. (1.77) by means of a
simpler notation, where all of the irrelevant indices are dropped:

∂Γ(z, µ2)
∂ logµ2 = α(µ)

2π
[
P⊗ Γ

]
(z, µ2) , (6.10)

and Γ is a column vector. As already pointed out in Sec. 1.6, in Mellin space the convolution
becomes a standard matrix multiplication:

∂ΓN (µ2)
∂ logµ2 = α(µ)

2π PN (µ) ΓN (µ2) =
∞∑
k=0

(
α(µ)
2π

)k+1
P[k]
N ΓN (µ2) . (6.11)

By denoting by Γ0,N ≡ ΓN (µ2
0) the PDF initial conditions at the reference scale µ0, and by

introducing an evolution operator EN (µ2, µ2
0) such that:

ΓN (µ2) = EN (µ2, µ2
0) Γ0,N , EN (µ2

0, µ
2
0) = I , (6.12)

1Heavy quarks are quarks such as charm or bottom whose mass m is large enough (m � ΛQCD) to be
considered in the perturbative domain.
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6.2. Evolution operator formalism

Eq. (6.11) becomes:

∂EN (µ2, µ2
0)

∂ logµ2 Γ0,N =
∞∑
k=0

(
α(µ)
2π

)k+1
P[k]
N EN (µ2, µ2

0) Γ0,N . (6.13)

Since Eq. (6.13) must be true regardless of the specific choice for Γ0,N , it is equivalent to:

∂EN (µ2, µ2
0)

∂ logµ2 =
∞∑
k=0

(
α(µ)
2π

)k+1
P[k]
N EN (µ2, µ2

0)

= α(µ)
2π

[
P[0]
N + α(µ)

2π P[1]
N

]
EN (µ2, µ2

0) +O(α2) . (6.14)

Following Ref. [199], it is appropriate to introduce the variable2:

t = 1
2πb0

log α(µ)
α(µ0) . (6.15)

Equation (6.15) implies that:

∂

∂ logµ2 = 1
2πb0

β(α(µ))
α(µ)

∂

∂t
, (6.16)

and thus:
∂α(µ)
∂t

= 2πb0α(µ) =⇒ α(µ) = α(µ0)e2πb0t . (6.17)

With Eq. (6.16), Eq. (6.14) becomes3:

∂EN (t)
∂t

= b0α
2(µ)

β(α(µ))

∞∑
k=0

(
α(µ)
2π

)k
P[k]
N EN (t)

=
[
P[0]
N + α(µ)

2π

(
P[1]
N −

2πb1
b0

P[0]
N

)]
EN (t) +O(α2) . (6.18)

Note that, from Eq. (6.12), EN (t = 0) = I.
If the flavour space is one-dimensional (as for the non-singlet evolution), Eq. (6.18) can be

solved analytically. Notation-wise, we deal with this case by performing the formal replacements:

EN −→ EN , P[k]
N −→ P

[k]
N . (6.19)

By exploiting Eq. (6.17), one readily obtains:

logEN = P
[0]
N t+ 1

4π2b0

(
α(µ)− α(µ0)

)(
P

[1]
N −

2πb1
b0

P
[0]
N

)
+O(α3) . (6.20)

By construction, the O(α3) terms neglected in Eq. (6.20) stem from the truncation of the series
that gives the evolution kernels in Eq. (1.71); conversely, the relationship between α(µ) and α(µ0)

2This differs by a minus sign w.r.t. that of QCD, since it is convenient to still have t > 0 for µ > µ0.
3As the argument of the evolution operator, we shall use t interchangeably with the pair (µ, µ0).
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is treated exactly thanks to the usage of the variable t. If one wants to expose explicitly the
large logarithms that originate from having µ� µ0, one can use the following series expansions:

α(µ0) = α(µ)− α2(µ)b0L+ α3(µ)
(
b20L

2 − b1L
)

+O(α4) , (6.21)

t = α(µ)
2π L− α2(µ)

4π

(
b0L

2 − 2b1
b0
L

)
+O(α3) , (6.22)

having defined:

L = log µ
2

µ2
0
. (6.23)

By employing these results, Eq. (6.20) becomes:

logEN = α(µ)
2π P

[0]
N L+

(
α(µ)
2π

)2 (
P

[1]
N L− πb0P [0]

N L2
)

+O(α3) . (6.24)

This result is useful because, at variance with that of Eq. (6.20), it allows one to consider the
case of a non-running α, which can simply be obtained from Eq. (6.24) in the limit b0 → 0.
As a consistency check, it is immediate to verify that, by taking such a limit, one arrives at
a form for logEN which could have been directly obtained from Eq. (6.14), by working in a
one-dimensional flavour space and by freezing α(µ) there.

6.3 Analytical recursive solutions

Following Ref. [196], perturbative solutions for the evolution equations can conveniently be
obtained by re-writing Eq. (6.10) in an integral form:

∂F(z, µ2)
∂ logµ2 = α(µ)

2π
[
P⊗F

]
(z, µ2) , (6.25)

with4:
F(z, µ2) =

∫ 1

0
dyΘ(y − z) Γ(y, µ2) =⇒ Γ(z, µ2) = − ∂

∂z
F(z, µ2) , (6.26)

and the modified convolution operator defined as follows:

g⊗ zh =
∫ 1

0
dxΘ(x− z) g(x)h(z/x) = ḡ ⊗z h , ḡ(x) = xg(x) , (6.27)

which is a valid definition regardless of whether g(x) is a distribution or an ordinary function.
Note that F is a column vector, and that Eq. (6.25) has a matrix structure, in the flavour space.
As was the case for Eq. (6.10), this implies that all of the results to be obtained in the following
can be applied to the limiting situation of a one-dimensional flavour space as well.

The procedure of Ref. [196] is LL-accurate. In order to generalise it to the NLL accuracy we
are interested in in this work, it is best to first consider the case of non-running α. With this

4The use of a Θ function in Eq. (6.26) guarantees its validity also when Γ is a distribution, and thus allows
one to take into account its possible endpoint contributions. Conversely, while F should also be treated as a
distribution, we shall regard it as an ordinary function, because in the large-z region we shall in any case employ
the asymptotic solutions whose results, given in Sec. 6.4, are more accurate there.
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assumption, the solution of Eq. (6.25) can formally be written as follows:

F(z, µ2) = F(z, µ2
0) + α

2π

∫ logµ2

logµ2
0

d logµ′
2

[P⊗F ] (z, µ′
2
) . (6.28)

From this equation, F can be obtained by representing it by means of a power series:

F(z, µ2) =
∞∑
k=0

ηk0
2kk!

(
ILL
k (z) + α

2π I
NLL
k (z)

)
, (6.29)

where:
η0 = α

π
L , L = log µ

2

µ2
0
, (6.30)

and with ILL
k and INLL

k two sets of unknown functions. More precisely, ILL
k and INLL

k are two-
dimensional column vectors in the singlet-photon flavour space, whose elements are functions
of z, and c-number functions in the non-singlet flavour space. By replacing Eq. (6.29) into
Eq. (6.28), the two sides of the latter equation become two series in η0: one then equates the
coefficients relevant to the same power of η0 on the two sides, thereby obtaining equations that
can be solved for ILL

k and INLL
k (recursively in k). The r.h.s. of Eq. (6.29) is simply an expansion

in terms of αL, and thus η0 is a convenient expansion parameter, irrespective of the logarithmic
accuracy one is working at. Indeed, Eq. (6.29) can be extended by adding further contributions
to its r.h.s., that are suppressed by higher powers of α. Conversely, by keeping only the ILL

k

contributions, one recovers what was done in Ref. [196]. The recursive solutions for ILL
k and

INLL
k stemming from Eq. (6.29) read as follows:

ILL
k = P[0]⊗ILL

k−1 , (6.31)
INLL
k = P[0]⊗INLL

k−1 + P[1]⊗ILL
k−1 , (6.32)

with:
ILL

0 = F [0](z, µ2
0) , INLL

0 = F [1](z, µ2
0) . (6.33)

The quantities in Eq. (6.33) must be obtained by direct computation by using the definition in
Eq. (6.26), with the perturbative expansion of Eq. (6.2) and the initial conditions of Eqs. (6.3)–
(6.8). By doing so, we obtain:

ILL
S, 0 = ILL

NS, 0 = 1 , (6.34)
ILL
γ, 0 = 0 , (6.35)

INLL
S, 0 = INLL

NS, 0 = 2z + (1− 2z − z2) log(1− z)− 2 log2(1− z)

+
[
z + z2/2 + 2 log(1− z)

]
log µ2

0
m2 , (6.36)

INLL
γ, 0 = −2(1− z) + (2− 4z + z2) log z + 2 log2 z

−
[1

2 (3− 4z + z2) + 2 log z
]

log µ2
0

m2 . (6.37)

The key to the simplicity of the solutions in Eqs. (6.31) and (6.32) is the fact that the
dependence on µ on the r.h.s. of Eq. (6.29) is entirely parametrised by L, which in turn allows
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one to compute the integral on the r.h.s. of Eq. (6.28) in a trivial manner:∫ logµ2

logµ2
0

d logµ′
2
ηk0
∣∣
µ→µ′ =

(α
π

)−1 ηk+1
0
k + 1 . (6.38)

Unfortunately, things are not so simple when α is running. In this case, as was already done in
Sec. 6.2, it is convenient to use the variable t introduced in Eq. (6.15). Owing to Eq. (6.16), the
analogue of Eq. (6.28) reads as follows:

F(z, t) = F(z, 0) +
∫ t

0
du

b0α
2(u)

β(α(u)) [P⊗F ] (z, u) . (6.39)

As a consequence of this, we shall use the representation:

F(z, t) =
∞∑
k=0

tk

k!

(
J LL
k (z) + α(t)

2π J
NLL
k (z)

)
, (6.40)

rather than that of Eq. (6.29). Thus:

b0α
2(t)

β(α(t)) P⊗F =
∞∑
k=0

tk

k!

{
P[0]⊗J LL

k + α(t)
2π

[
P[0]⊗J NLL

k + P[1]⊗J LL
k

− 2πb1
b0

P[0]⊗J LL
k

]
+O(α2)

}
. (6.41)

The r.h.s. of Eq. (6.39) therefore features two independent classes of integrals, namely:

ak =
∫ t

0
duuk = tk+1

k + 1 , (6.42)

bk =
∫ t

0
duukα(u) . (6.43)

In order to evaluate Eq. (6.43), we make repeated use of Eq. (6.17). Then:

bk = α(0)
∫ t

0
duuk e2πb0u = α(t)e−2πb0t

∞∑
j=0

(2πb0)j
j!

∫ t

0
duuk uj . (6.44)

By direct computation:

e−2πb0t
∞∑
j=0

(2πb0)j
(k + 1 + j)j! t

k+1+j = tk+1

k + 1

∞∑
p=0

dk,p t
p , (6.45)

with:
dk,p = (−)p(2πb0)p Γ(k + 2)

Γ(k + 2 + p) . (6.46)
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We have thus:

F(z, t)−F(z, 0) =
∞∑
k=0

1
k!

(
gk

tk+1

k + 1 + α(t)
2π hk

∞∑
p=0

tk+1+p

k + 1 dk,p

)
, (6.47)

where:

gk = P[0]⊗J LL
k , (6.48)

hk = P[0]⊗J NLL
k + P[1]⊗J LL

k −
2πb1
b0

P[0]⊗J LL
k . (6.49)

The r.h.s. of Eq. (6.47) can be simplified by means of algebraic manipulations of the summation
indices:

∞∑
k=0

1
k! gk

tk+1

k + 1 =
∞∑
k=1

tk

k! gk−1 , (6.50)

and:
∞∑
k=0

1
k! hk

∞∑
p=0

tk+1+p

k + 1 dk,p =
∞∑
k=1

tk

k!

k−1∑
p=0

(−)p(2πb0)p hk−1−p , (6.51)

since from Eq. (6.46):
dk−1−p,p

(k − p)! = (−)p(2πb0)p
k! . (6.52)

The initial conditions must then be written as follows:

F(z, 0) = F [0](z, µ2
0) + α(t)e−2πb0t

2π F [1](z, µ2
0)

= F [0](z, µ2
0) + α(t)

2π F
[1](z, µ2

0)
∞∑
k=0

(−)k(2πb0)k
k! tk . (6.53)

By replacing the results of Eqs. (6.50), (6.51), and (6.53) into Eq. (6.47), and by using the
representation of Eq. (6.40) for F(z, t), we obtain the sought recursion relations:

J LL
k = P[0]⊗J LL

k−1 , (6.54)
J NLL
k = (−)k(2πb0)kF [1](µ2

0) (6.55)

+
k−1∑
p=0

(−)p(2πb0)p
(
P[0]⊗J NLL

k−1−p + P[1]⊗J LL
k−1−p

− 2πb1
b0

P[0]⊗J LL
k−1−p

)
,

with:
J LL

0 = F [0](z, µ2
0) , J NLL

0 = F [1](z, µ2
0) . (6.56)

These results generalise those obtained in the case of non-running α, which can be obtained
from them. Indeed, in the limit of fixed α, which at the NLL can be achieved by letting b0 → 0
and b1 → 0 (with b1/b0 → 0), we have t→ η0/2, thereby Eq. (6.40) coincides with Eq. (6.29), if
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one identifies J LL with ILL and J NLL with INLL. This is justified, since Eqs. (6.31) and (6.54)
are identical, and the recursive relation of Eq. (6.55) coincides with that of Eq. (6.32) when α
is not running.

After solving Eqs. (6.31) and (6.32) for ILL
k and INLL

k , with the definition in Eq. (6.26) one
arrives at the following representation of the PDF in the case of fixed α:

Γ(z, µ2) =
∞∑
k=0

ηk0
2kk!

(
ILL
k (z) + α

2π I
NLL
k (z)

)
, (6.57)

where
ILL
k (z) = − d

dz
ILL
k (z) , INLL

k (z) = − d

dz
INLL
k (z) . (6.58)

Analogously, in the case of running α:

Γ(z, µ2) =
∞∑
k=0

tk

k!

(
JLL
k (z) + α(t)

2π JNLL
k (z)

)
, (6.59)

with
JLL
k (z) = − d

dz
J LL
k (z) , JNLL

k (z) = − d

dz
J NLL
k (z) . (6.60)

We point out that with, for example, α(µ) = 1/128 and α(µ0) = 1/137 we have t ' 0.1/nF .
Furthermore, since:

2πb0 = 2
3 nF ,

2πb1
b0

= 3
2 , (6.61)

the numerical coefficients in front of the convolution products and of the initial conditions in
Eq. (6.55) are of order one. Therefore, the series of Eq. (6.40) is expected to be poorly convergent
only for z → 1 and z → 0, owing to the possible presence of logp(1− z) and logp z terms in the
J LL and J NLL functions.

The recursive solutions are thus obtained by means of the following procedure. One first com-
putes the J LL

k and J NLL
k functions, by employing Eqs. (6.54) and (6.55). These equations must

be applied recursively, by working one’s own way up in k from the known k = 0 results (given
in Eqs. (6.34)–(6.37)). The expressions for the relevant Altarelli-Parisi kernels are reported in
Appendix 6.C. Finally, the JLL

k and JNLL
k functions are obtained by derivation, according to

Eq. (6.60).

We have computed the JLL
k and JNLL

k basis functions that appear in Eq. (6.59) for 0 ≤ k ≤ 3
and 0 ≤ k ≤ 2, respectively, i.e. up to O(α3). We write the actual recursive solution as follows:

Γ(z, µ2) =
kLL

max∑
k=0

tk

k! J
LL
k (z) + α(t)

2π

kNLL
max∑
k=0

tk

k! J
NLL
k (z) , (6.62)

with
kLL

max = 3 , kNLL
max = 2 . (6.63)

We also remind the reader that from Eq. (6.62) one can obtain the solution in the case of
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non-running α, by replacing JLL
k with ILL

k and JNLL
k with INLL

k , where:

ILL
k (z) = JLL

k (z) , (6.64)
INLL
k (z) = JNLL

k (z)
[
b0 → 0 , b1 → 0 , b1/b0 → 0

]
. (6.65)

It is convenient, also in view of the matching with the large-z solution in Sec. 6.7, to present
the results for the basis functions by writing them as follows:

JLL
k (z) = J̄LL

k (z) + ĴLL
k (z) , (6.66)

JNLL
k (z) = J̄NLL

k (z) + ĴNLL
k (z) . (6.67)

By definition, ĴLL
k and ĴNLL

k collect all of the terms of JLL
k and JNLL

k , respectively, that vanish at
z = 1:

lim
z→1

ĴLL
k (z) = lim

z→1
ĴNLL
k (z) = 0 . (6.68)

It then follows that J̄LL
k and J̄NLL

k include all contributions that are either divergent (which then
feature all the logp(1− z) terms) or equal to a non-null constant at z = 1. Because of this, it is
useful to introduce the following auxiliary functions:

`i(z) = logi(1− z)
1− z , i ≥ 0 , (6.69)

qi(z) = logi(1− z) , i ≥ 0 , (6.70)

and write:

J̄LL
k (z) =

iLL
max(k)∑
i=0

[
bLL
k,i `i(z) + cLL

k,i qi(z)
]
, k ≥ 1 , (6.71)

J̄NLL
k (z) =

iNLL
max (k)∑
i=0

[
bNLL
k,i `i(z) + cNLL

k,i qi(z)
]
, k ≥ 0 . (6.72)

with:

iLL
max(k) = k − 1 , (6.73)
iNLL
max(k) = k + 1 . (6.74)

In addition to this, one must take into account that, at O(α0):

JLL
0 (z) = J̄LL

0 (z) = ĴLL
0 (z) = 0 . (6.75)

The contribution to Γ(z) that does not vanish at z → 1 is then written as follows:

Γ(z, µ2) =
kLL

max∑
k=0

tk

k! J̄
LL
k (z) + α(t)

2π

kNLL
max∑
k=0

tk

k! J̄
NLL
k (z) . (6.76)

The expressions of the b(N)LL
k,i and c(N)LL

k,i coefficients for the non-singlet, singlet, and photon PDFs
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will be presented in Appendix 6.B. The expressions of the functions Ĵ (N)LL(z) are lengthy and
not relevant to the matching. Some of them receive contributions that we have not computed
analytically, as detailed in Appendix 6.A. For these reasons, they are only reported in an ancillary
file that accompanies the submission of Ref. [2] to the arXiv.

In order to document the effect of increasing the number of terms included in the recursive
solutions, we plot in Fig. 6.1 the ratio of the result of Eq. (6.62) over the numerical predictions5
minus one; Eq. (6.62) is computed by setting:

kNLL
max = kLL

max − 1 , kLL
max = 1, 2, 3 . (6.77)

The ratios are displayed as green dot-dashed lines (kLL
max = 1), blue dashed lines (kLL

max = 2), and
red solid lines (kLL

max = 3). In order for the results to fit into the layout of the figures, the green
and blue curves are multiplied by a constant factor equal to 10−2 and 10−1, respectively.
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Figure 6.1: Agreement between recursive solutions of various accuracies, and the numerical
predictions, for the non-singlet (top left panel), singlet (top right panel), and photon (bottom
panel), for µ = 100 GeV. See the text for details.

We see that our most accurate recursive predictions (kLL
max = 3) agree with the numerical

results at the level of a few 10−4 at the worst. Note that since here we are dealing only with
the recursive solutions we have limited ourselves to plotting the PDFs in the range z ∈ (0, 0.9)

5The numerical solutions will be discussed in Sec. 6.8.
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6.4. Analytical large-z solution for non-singlet PDF

– at the upper end of the range, the absence of the contribution from the asymptotic solution
starts to be felt. The information stemming from Fig. 6.1 is that, if we had only computed
either the first term or the first two terms in the sums of Eq. (6.62), the O(10−4) agreement
remarked above would actually have been roughly equal to, but generally worse than, 10−2 and
10−3, respectively. The figure also shows that, for any given accuracy of the recursive solution,
the agreement with the numerical prediction marginally worsens towards z → 0 in the case of
the singlet, owing to the presence of log z terms which are not resummed.

6.4 Analytical large-z solution for non-singlet PDF

The electron PDF is equal to δ(1 − z) at the LO (see Eq. (6.3)); while the LL evolution of
such an initial condition does smooth its behaviour, resulting in a tail that extends down to
z = 0 [194–196], the PDF remains very peaked towards z = 1, where it has an integrable
singularity. This implies that the perturbative expansion of the LL-accurate solution features
log(1− z) terms at each order: if one truncates such a perturbative series, one exposes a non-
integrable divergence at z = 1, regardless of the order at which the truncation occurs. The same
is true when NLO initial conditions and NLL-accurate evolution are considered.

In order to address this issue, the log(1−z) terms must be resummed. This can conveniently
be done by exploiting the evolution-operator formalism presented in Sec. 6.2, whose usage is
simplified by the observation that the large-z region corresponds to the large-N region in Mellin
space:

z → 1 ←→ N → ∞ . (6.78)

Thus, when dealing with Mellin transforms and their inverse, we shall often implicitly assume
Eq. (6.78). In this section, we study the z → 1 asymptotic behaviour of the non-singlet compo-
nent; we shall return to and comment on the singlet-photon case in Sec. 6.5.

6.4.1 LL solution

Given that the LL-accurate result has been available for a long while [44], this case is presented
here only to show how the evolution-operator formalism helps find the asymptotic solution in
a straightforward manner. At the LL we are entitled to neglect the running6 of α. Thus,
the appropriate form for the evolution operator is obtained by keeping only the O(α) term of
Eq. (6.24), with α(µ)→ α there, supplemented by the LO initial condition:

Γ[0]
0,N = 1 . (6.79)

From Eqs. (6.12) and (6.79) we obtain:

Γ(z, µ2) = M−1[ exp
(

logEN
)]
. (6.80)

A direct calculation in the large-N region leads to:

P
[0]
N

N→∞−→ −2 log N̄ + 2λ0 , (6.81)

6Whenever the coupling constant is not running, we simply denote its fixed value by α, i.e. we remove its
argument µ from the notation.
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where all terms suppressed by at least one inverse power of N have been neglected, and we have
defined:

N̄ = N eγE , λ0 = 3
4 . (6.82)

We point out that N̄ is a quantity that routinely appears in the computation of Mellin trans-
forms, and which helps retain some universal subleading terms. Therefore:

logEN = α

2π P
[0]
N L

N→∞−→ −η0
(
log N̄ − λ0

)
, (6.83)

with η0 defined in Eq. (6.30). Equation (6.83), when substituted into Eq. (6.80), implies:

M
[
Γ(z, µ2)

]
= N−η0e−γEη0eλ0η0 . (6.84)

The inverse Mellin transform can now be evaluated by using the following result, valid for any
κ > 0:

M
[
(1− z)−1+κ] = Γ(κ)Γ(N)

Γ(κ+N)
N→∞−→ Γ(κ)N−κ . (6.85)

The comparison of Eq. (6.85) with Eq. (6.84) allows one to arrive at the final result [44]:

Γ(z, µ2) = e−γEη0eλ0η0

Γ(1 + η0) η0(1− z)−1+η0 . (6.86)

This is identical to what is nowadays a rather standard form, except for an exponentiated term
of pure-soft origin (stemming from the use of βexp = β, rather than of βexp = η, as defined e.g.
in Eq. (67) of Ref. [200]). Such a term clearly cannot be obtained by means of the collinear
resummation carried out here.

6.4.2 MS NLL solution

At the NLL, the PDF initial conditions must be set as given in Eqs. (6.3) and (6.6), withKee = 0
in the latter equation (see Eq. (6.9)). By exploiting the property of the Mellin transform of
Eq. (1.87), we have:

Γ(z, µ2) =
(
δ(1− x) + α(µ2

0)
2π

[
1 + x2

1− x

(
log µ2

0
m2 − 2 log(1− x)− 1

)]
+

)
⊗z M−1[ exp

(
logEN

)]
, (6.87)

with logEN given in Eq. (6.20) (where running-α effects are also included). With Eq. (6.81)
and its NLO analogue:

P
[1]
N

N→∞−→ 20
9 nF log N̄ + λ1 , (6.88)

where:
λ1 = 3

8 −
π2

2 + 6ζ3 −
nF
18 (3 + 4π2) , (6.89)

we can cast the logarithm of the evolution operator in the same form as in Eq. (6.83), namely:

logEN
N→∞−→ −ξ1 log N̄ + ξ̂1 , (6.90)
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having defined:

ξ1 = 2t− α(µ)
4π2b0

(
1− e−2πb0t

)(20
9 nF + 4πb1

b0

)
(6.91)

= 2
[
1− α(µ)

π

(
5
9nF + πb1

b0

)]
t

+ α(µ)
π

(
10
9 πb0nF + 2b1π2

)
t2 +O(t3) , (6.92)

ξ̂1 = 3
2 t+ α(µ)

4π2b0

(
1− e−2πb0t

)(
λ1 −

3πb1
b0

)
(6.93)

= 3
2

[
1 + α(µ)

π

(
λ1

3 −
πb1
b0

)]
t

− α(µ)
π

(
πb0
2 λ1 −

3
2 π

2b1

)
t2 +O(t3) . (6.94)

Equation (6.90) implies that we can follow the same steps that have led us to Eq. (6.86), and
therefore:

M−1[ exp
(

logEN
)]

= e−γEξ1eξ̂1

Γ(1 + ξ1) ξ1(1− y)−1+ξ1 . (6.95)

We must now replace this result into Eq. (6.87). In this way, two independent convolution
integrals emerge:

I+(z) = 1
2

[
1 + x2

1− x

]
+
⊗z (1− y)−1+κ , (6.96)

IL(z) = 1
2

[
1 + x2

1− x log(1− x)
]

+
⊗z (1− y)−1+κ . (6.97)

A tedious but otherwise relatively straightforward procedure leads to the following results:

I+(z) = (1− z)−1+κ
[
A(κ) + log(1− z) + 3

4

]
, (6.98)

IL(z) = (1− z)−1+κ
[
B(κ) +A(κ) log(1− z) + 1

2 log2(1− z)− 7
8

]
, (6.99)

where, inside the square brackets, we have neglected terms that vanish at z → 1. We have
introduced the two functions:

A(κ) =
∞∑
k=1

1
k k!

Γ(1− κ+ k)
Γ(1− κ) = −γE − ψ0(κ) , (6.100)

B(κ) = −
∞∑
k=1

1
k2 k!

Γ(1− κ+ k)
Γ(1− κ)

= 1
2 γ

2
E + π2

12 + γE ψ0(κ) + 1
2 ψ0(κ)2 − 1

2 ψ1(κ) , (6.101)
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where:
ψj(z) = dj+1 log Γ(z)

dzj+1 . (6.102)

By putting everything back together, we arrive at the final result:

Γ(z, µ2) = e−γEξ1eξ̂1

Γ(1 + ξ1) ξ1(1− z)−1+ξ1 (6.103)

×

{
1 + α(µ0)

π

[(
log µ2

0
m2 − 1

)(
A(ξ1) + 3

4

)
− 2B(ξ1) + 7

4

+
(

log µ2
0

m2 − 1− 2A(ξ1)
)

log(1− z)− log2(1− z)
]}

,

which is therefore the NLL-accurate counterpart of Eq. (6.86).

A couple of observations about Eq. (6.103) are in order. Firstly, owing to Eqs. (6.91)
and (6.22), we have ξ1 ' η0. With µ0 and µ of the order of the electron mass and of a few
hundred GeV’s, respectively, one obtains η0 ∼ 0.05. Therefore, both the LL and the NLL so-
lutions are still very peaked towards z = 1, where they diverge with an integrable singularity.
Furthermore, the z → 1 behaviour of Eq. (6.103) is worse than that of Eq. (6.86) because of the
presence of the explicit logp(1− z) terms in the former equation. Secondly, the small numerical
value of ξ1 just mentioned implies that the following expansions:

A(κ) = 1
κ

+O(κ) , (6.104)

B(κ) = −π
2

6 + 2ζ3κ+O(κ2) , (6.105)

are rather accurate approximations of the complete results of Eqs. (6.100) and (6.101). Equa-
tion (6.104), in particular, implies that numerically the log(1− z) term is much larger than the
(formally dominant) log2(1− z) one, even for z values that are extremely close to one. This fact
might be significant when performing the integral of the convolution between electron PDFs and
short-distance cross sections.

From Eq. (6.103) one can also readily obtain a LL-accurate solution, where at variance with
that of Eq. (6.86) the effects due to the running of α are included. Explicitly:

Γ(z, µ2) = e−γEξ0eξ̂0

Γ(1 + ξ0) ξ0(1− z)−1+ξ0 , (6.106)

where
ξ0 = 2t , ξ̂0 = 3

2 t ; (6.107)

this is again consistent with the findings of Ref. [44]. Finally, the running of α can formally be
switched off in the NLL-accurate solution. In order to do so, one must repeat the procedure
that leads to Eq. (6.103); however, rather than using the expression of the evolution operator
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given in Eq. (6.20), one must use that of Eq. (6.24). By doing so, one arrives at:

Γ(z, µ2) = e−γEη1eη̂1

Γ(1 + η1) η1(1− z)−1+η1 (6.108)

×

{
1 + α

π

[(
log µ2

0
m2 − 1

)(
A(η1) + 3

4

)
− 2B(η1) + 7

4

+
(

log µ2
0

m2 − 1− 2A(η1)
)

log(1− z)− log2(1− z)
]}

.

where

η1 = η0

(
1− 5α

9π nF
)
, (6.109)

η̂1 = η0

(
λ0 + α

4π λ1

)
. (6.110)

6.4.3 Alternative z-space derivation of the NLL result

We now show how the large-z solution for the non-singlet can be obtained directly in configura-
tion space, that is without resorting to Mellin-space techniques, and thus providing one with a
cross-check. We have considered this alternative procedure by neglecting the running of α. We
point out that this method has already been used to obtain the LL solution of Eq. (6.86) – see
e.g. Ref. [201]. Here, we extend it to the NLL accuracy.

In essence, the procedure works as follows. One makes an ansatz for the z-space functional
form of Γ(z, µ2), where the µ2 dependence is parametrised by unknown functions. The PDF
evolution equations, simplified in the z → 1 limit, are then turned into differential equations for
such unknown functions, where the independent variable is µ2. By solving these equations, one
is left with arbitrary integration constants, whose values are finally determined by matching the
solutions to the known PDF initial conditions.

In order to proceed, we start by observing that the assumption of non-running α implies that
the dependence on µ2 can be entirely parametrised by means of the quantity η0, introduced in
Eq. (6.30); thus, we shall use the latter as our independent variable. At the LL, this implies
that the evolution equation of Eq. (1.75) reads as follows:

d

dη0
ΓLL(z, η0) = 1

2 P
[0] ⊗z ΓLL(η0) . (6.111)

For the computation of the convolution integral on the r.h.s. of Eq. (6.111) we approximate the
first-order non-singlet Altarelli-Parisi kernel in the large-z region as follows:

P [0](z) z→1−→ 2
(

1
1− z

)
+

+ 2λ0 δ(1− z) , (6.112)

which is the analogue of Eq. (6.81). The parameter λ0 has been defined in Eq. (6.82), and its
value stems from the exact form of the denominator of the splitting kernels, 1 + z2. We now
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make the following ansatz for the functional form of the LL PDF that appear in Eq. (6.111):

ΓLL(z, η0) = b(η0) (1− z)a(η0) . (6.113)

By replacing Eq. (6.113) into Eq. (6.111), and by using Eq. (6.112), the convolution integral
has two trivial contributions, induced by the δ(1 − z) and by the subtraction term of the plus
distribution (integrated in the (0, z) range) in Eq. (6.112). The non-trivial part of the convolution
integral can also be easily computed in the z → 1 limit, to read:∫ 1

z

dx

1− x

[
1
x

(
1− z

x

)a(η0)
− (1− z)a(η0)

]
z→1' −(1− z)a(η0)

[
ψ0(a(η0) + 1) + γE

]
. (6.114)

Thus, both sides of Eq. (6.111) are linear combinations of two terms, whose dependence on z is
equal to (1− z)a(η0) and to (1− z)a(η0) log(1− z), respectively. By equating the coefficients of
such terms one finally arrives at the sought differential equations:

d

dη0
a(η0) = 1 , (6.115)

d

dη0
b(η0) = b(η0)

[
−
(
ψ0(a(η0) + 1) + γE

)
+ λ0

]
. (6.116)

The solutions of these are:

a(η0) = η0 + a0 , (6.117)

b(η0) = b0
e(λ0−γE)η0

Γ(η0 + a0 + 1) . (6.118)

The quantities a0 and b0 are arbitrary integration constants, which can be determined by ob-
serving that, in the limit η0 → 0, ΓLL(z, η0) must be equal to the initial condition of Eq. (6.3).
By imposing such an equality we obtain:

a0 = −1 , b0 = 1 . (6.119)

It then becomes apparent that Eq. (6.113), supplemented with Eqs. (6.117), (6.118), and (6.119),
coincides with Eq. (6.86).

The procedure outlined so far can now be extended to the NLL. We write the analogue of
Eq. (6.111) as follows:

d

dη0
ΓNLL(z, η0) = 1

2

(
P [0] + α

2πP
[1]
)
⊗z ΓNLL (η0) , (6.120)

with the second-order non-singlet Altarelli-Parisi kernel approximated in the large-z as follows:

P [1](z) z→1−→ −20
9 nF

(
1

1− z

)
+

+ λ1 δ(1− z) . (6.121)

Equation (6.121) is the z-space analogue of Eq. (6.88), with λ1 defined in Eq. (6.89). We also

148



6.4. Analytical large-z solution for non-singlet PDF

need to replace our LL ansatz of Eq. (6.113) with one that is appropriate at the NLL, namely:

ΓNLL(z, η0) = (1− z)a(η0)

×
{
b(η0) + α

π

[
c(η0) + d(η0) log(1− z) + e(η0) log2(1− z)

]}
. (6.122)

The physical motivation of Eq. (6.122) is the following. Firstly, one observes that P [0] and
P [1] have the same functional large-z behaviours. Secondly, we have seen that at the LL the
convolution of the evolution kernel with the r.h.s. of Eq. (6.113) either leaves the functional
form of the latter unchanged, or it multiplies it by a log(1− z) term. Therefore, since the O(α)
contribution to the PDF initial condition in the MS scheme, Eq. (6.6), contains logarithmic terms
up to the first power, its convolution with the evolution kernel either leave those unchanged, or
it increases their powers by one unity.

As was the case at the LL, the convolution of the r.h.s. of Eq. (6.122) with the Altarelli-
Parisi kernels features a few trivial contributions, due to the endpoints, and some non-trivial
ones, which can nevertheless be readily computed. Among the latter, we find again Eq. (6.114),
and: ∫ 1

z

dx

1− x

[
1
x

(
1− z

x

)a(η0)
log
(

1− z

x

)
− (1− z)a(η0) log (1− z)

]
z→1' −(1− z)a(η0)

{
log(1− z)[ψ0(a(η0) + 1) + γE] + ψ1(a(η0) + 1)

}
, (6.123)∫ 1

z

dx

1− x

[
1
x

(
1− z

x

)a(η0)
log2

(
1− z

x

)
− (1− z)a(η0) log2 (1− z)

]
z→1' −(1− z)a(η0)

{
log(1− z)

{
log(1− z)[ψ0(a(η0) + 1) + γE]

+ 2ψ1(a(η0) + 1)
}

+ ψ2(a(η0) + 1)
}
. (6.124)

Upon using these results, the two sides of Eq. (6.120) become linear combinations of terms
proportional to logp(1− z), with p = 0, 1, 2, 3. By equating the coefficients of such terms, one
finds a system of differential equations:

d

dη0
a(η0) = 1− 5α

9πnF , (6.125)

d

dη0
b(η0) = b(η0)

{
−[ψ0(a(η0) + 1) + γE]

(
1− 5α

9πnF
)

+
(
λ0 + α

4πλ1

)}
, (6.126)

d

dη0
e(η0) = e(η0)

{
−[ψ0(a(η0) + 1) + γE]

(
1− 5α

9πnF
)

+
(
λ0 + α

4πλ1

)}
, (6.127)

d

dη0
d(η0) = d(η0)

{
−[ψ0(a(η0) + 1) + γE]

(
1− 5α

9πnF
)

+
(
λ0 + α

4πλ1

)}
+
(

1− 5α
9πnF

){
− 2 e(η0)ψ1(a(η0) + 1)

}
, (6.128)

d

dη0
c(η0) = c(η0)

{
−[ψ0(a(η0) + 1) + γE]

(
1− 5α

9πnF
)

+
(
λ0 + α

4πλ1

)}
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+
(

1− 5α
9πnF

){
− d(η0)ψ1(a(η0) + 1)− e(η0)ψ2(a(η0) + 1)

}
, (6.129)

with solutions:

a(η0) = η0

(
1− 5α

9πnF
)

+ a0 ≡ η1 + a0 , (6.130)

b(η0) = b0
eη̂1−γEη1

Γ(η1 + a0 + 1) , (6.131)

e(η0) = e0
eη̂1−γEη1

Γ(η1 + a0 + 1) , (6.132)

d(η0) = e(η0)
[
d0 +

(
1− 5α

9πnF
)∫ 1

η0

dt 2ψ1(a(t) + 1)
]

= e(η0) [d0 − 2ψ0(η1 + a0 + 1)] , (6.133)

c(η0) = e(η0)
[
c0 +

(
1− 5α

9πnF
)∫ 1

η0

dt d(t)ψ1(a(t) + 1) + ψ2(a(t) + 1)
]

= e(η0)
[
c0 − d0 ψ0(η1 + a0 + 1) + ψ0(η1 + a0 + 1)2 − ψ1(η1 + a0 + 1)

]
, (6.134)

where η1 and η̂1 have been defined in Eqs. (6.109) and (6.110), respectively.
The arbitrary integration constants a0 , . . . e0 can be found by matching with the initial

condition. We observe that at µ = µ0 the α→ 0 NLL result for the PDF must coincide with the
LL one; this implies that that Eq. (6.119) must still hold true. Because of this, one can expand
Eq. (6.122) by using the techniques employed in Appendix 6.6 (see in particular Eq. (6.234)),
to obtain at O(α) the same functional form as in Eq. (6.6), which leads to the following results:

c0 = −7
4 + γ2

E + π2

6 +
(
γE −

3
4

)(
log µ2

0
m2 − 1

)
, (6.135)

d0 = 1− 2γE − log µ2
0

m2 , (6.136)

e0 = −1 . (6.137)

By putting everything back together, one sees that Eq. (6.122) coincides with Eq. (6.108).

6.5 Analytical large-z solution for singlet-photon sector

In this section we compute the asymptotic large-z solution for the singlet-photon sector. The
key result relevant to the evolution in the z → 1 region is the following:

PS,N
N→∞−→

(
−2 log N̄ + 2λ0 0

0 − 2
3 nF

)
+ α

2π

( 20
9 nF log N̄ + λ1 0

0 −nF

)
+O(α2) , (6.138)

that is obtained by means of a direct computation starting from the definitions given in Sec. 1.6
and from the explicit expressions for the Altarelli-Parisi splitting kernels provided in Appendix 6.C.
Equation (6.138) implies that the singlet and the photon evolve independently from each other
in this limit. Since the kernel evolution is a diagonal matrix, so is the evolution operator,
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6.5. Analytical large-z solution for singlet-photon sector

and therefore the solutions for its elements on the diagonal are given by either Eq. (6.20) or
Eq. (6.24).

Let us start by considering the singlet. The singlet-singlet elements of the O(α0) and O(α)
matrices in Eq. (6.138) are identical to Eqs. (6.81) and (6.88) respectively. Thus, the solutions
of Eqs. (6.103), (6.106), and (6.108) are also valid for the singlet.

As far as the photon is concerned, Eq. (1.11) and the photon-photon elements in Eq. (6.138)
imply that the second term on the r.h.s. of Eq. (6.20) is equal to zero. Therefore:

M−1[Eγγ,N ] = α(µ0)
α(µ) δ(1− z) , (6.139)

having used Eq. (6.15). The convolution with the initial conditions of Eqs. (6.3) and (6.7) is
thus trivial, and the final result reads as follows:

Γγ(z, µ2) = 1
2π

α(µ0)2

α(µ)
1 + (1− z)2

z

(
log µ2

0
m2 − 2 log z − 1

)
. (6.140)

Unfortunately, Eq. (6.140) does not give a good description of the true large-z behaviour of
the photon PDF. This is because the off-diagonal terms of the evolution kernel imply that such
a PDF receives a contribution that primarily stems from the initial conditions of the electron
PDF. As we have seen previously, these are much more peaked towards z = 1 than their photon
counterparts, so much so that this behaviour compensates the fact that the off-diagonal elements
of the evolution kernel are suppressed w.r.t. the diagonal ones, which are the only ones that have
been taken into account in Eq. (6.138). It then follows that, in order to improve on the solution in
Eq. (6.140), one needs to solve the evolution equations of the singlet-photon system by including
those off-diagonal elements.

In order to do this, we start from writing the O(α) expressions of the Altarelli-Parisi kernels
as follows (see Eq. (1.71)):

PS,N = P[0]
S,N + α(µ)

2π P[1]
S,N +O(α2) (6.141)

≡
(
P[0,0]

S,N + 1
N

P[0,1]
S,N +O

(
N−2))

+ α(µ)
2π

(
P[1,0]

S,N + 1
N

P[1,1]
S,N +O

(
N−2))+O(α2) , (6.142)

having introduced, at each order in α, the leading- and subleading-N contributions. They read
as follows:

P[0,0]
S,N =

(
−2 log N̄ + 2λ0 0

0 − 2
3 nF

)
, (6.143)

P[0,1]
S,N =

(
−1 2nF
1 0

)
, (6.144)

P[1,0]
S,N =

( 20
9 nF log N̄ + λ1 0

0 −nF

)
, (6.145)
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P[1,1]
S,N =

(
−4 log N̄ + 27+22nF

9 2nF
(

log2 N̄ + 15−π2

6

)
− log2 N̄ + 15+4nF

3 log N̄ − 64nF+3(36+π2)
18 0

)
.(6.146)

Note that, by considering only Eqs. (6.143) and (6.145), one recovers Eq. (6.138). According to
Eq. (6.18), the Altarelli-Parisi kernels define the evolution kernel as follows:

MN = P[0]
S,N + α(µ)

2π

(
P[1]

S,N −
2πb1
b0

P[0]
S,N

)
, (6.147)

whence one can write the evolution equation and its formal solution as follows:

∂EN (t)
∂t

= MN (t)EN (t) =⇒ EN (t) = exp
[ ∞∑
k=1

Ωk,N (t)
]
. (6.148)

The solution in Eq. (6.148) is based on the so-called Magnus expansion [202] (see also Ref. [203]),
which is constructed solely in terms of the evolution kernel:

Ω1,N (t) =
∫ t

0
dt1MN (t1) , (6.149)

Ω2,N (t) = 1
2

∫ t

0
dt1

∫ t1

0
dt2

[
MN (t1),MN (t2)

]
, (6.150)

Ω3,N (t) = . . . , (6.151)

with Ωk,N (t) featuring k instances of MN , all appearing in commutators. Thus, in the case
of a one-dimensional flavour space or of a diagonal evolution kernels, Eq. (6.148) is identical
to the solution given in Eq. (6.20). As far as the singlet-photon sector is concerned, we can
indeed recover the solutions we have found previously in terms of the quantity introduced in
this section. We define the leading-N evolution kernel:

M(0)
N = P[0,0]

S,N + α(µ)
2π

(
P[1,0]

S,N −
2πb1
b0

P[0,0]
S,N

)
(6.152)

and denote by E(0)
N (t) the corresponding evolution operator. Thus:

∂E(0)
N (t)
∂t

= M(0)
N (t)E(0)

N (t) =⇒ E(0)
N (t) =

(
E

(0)
ΣΣ,N 0
0 E

(0)
γγ,N

)
, (6.153)

where:

E
(0)
ΣΣ,N = exp

[
−ξ1 log N̄ + ξ̂1

]
, (6.154)

E
(0)
γγ,N = exp

[
−2nF

3 t− α(µ)− α(µ0)
4π2b0

nF

(
1− 4πb1

3b0

)]
(6.155)

=
(
α(µ0)
α(µ)

) nF
3πb0

exp
[
−α(µ)− α(µ0)

4π2b0
nF

(
1− 4πb1

3b0

)]
QED−→ α(µ0)

α(µ) . (6.156)

Equation (6.154) coincides with Eq. (6.90), while Eq. (6.155) coincides with Eq. (6.139), as they
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should. This is not immediately apparent in the case of Eq. (6.155) since there, at variance
with what has been done in Eq. (6.139), we have not used the simplifications induced by the
explicit expressions of the QED β-function coefficients (see Eq. (1.11)). This is useful when one
considers the limit of non-running α of the formulae presented here. An expression equivalent
to Eq. (6.155), as well as the QED “limit” of both, is given in Eq. (6.156).

We stress that the case of non-running α is problematic, as it might lead to inconsistencies.
By switching off the running, one effectively neglects bubble-diagram contributions which are
exactly the same as those that lead to the γγ entries in Eqs. (6.143) and (6.145). In this
context we ignore such potential inconsistencies, but then we need to carefully distinguish the
γγ contributions to the Altarelli-Parisi kernels (which we always parametrise by means of nF )
from those to the QED β function (which we parametrise by means of the β-function coefficients
bi). We shall return to this point with one explicit example later in this section (see Eqs. (6.215)
and (6.216)).

In order to improve on the leading-N results, we shall introduce the subleading-N contribu-
tions to the evolution kernel, and treat them as a perturbation to the solution of Eq. (6.153).
This entails writing:

MN = M(0)
N + 1

N
M(1)
N =⇒ EN (t) = E(0)

N (t)E(1)
N (t) , (6.157)

having defined:
M(1)
N = P[0,1]

S,N + α(µ)
2π

(
P[1,1]

S,N −
2πb1
b0

P[0,1]
S,N

)
. (6.158)

By replacing Eq. (6.157) into Eq. (6.148), one arrives at the evolution equation for the operator
E(1)
N (t):

∂E(1)
N (t)
∂t

= M̂(1)
N (t)E(1)

N (t) , M̂(1)
N (t) = 1

N

(
E(0)
N (t)

)−1
M(1)
N (t)E(0)

N (t) . (6.159)

Equation (6.159) can be solved as is written in Eq. (6.148), by constructing the Ωk,N (t) terms
according to Eqs. (6.149)–(6.151) with MN → M̂(1)

N there. We then observe that Ωk,N ∝ 1/Nk,
and thus for consistency with Eq. (6.142) we are allowed to discard all contributions with k ≥ 2.
Therefore:

E(1)
N (t) = exp

[
Ω1,N (t)

]
+O

(
1/N2) = I +

∫ t

0
dt1M̂(1)

N (t1) +O
(
1/N2) . (6.160)

In spite of these simplifications, the integral on the r.h.s. of Eq. (6.160) features contribu-
tions of the type exp(at1) exp(exp(bt1)) for certain a and b, where the functional dependence
exp(exp(bt1)) stems for the dependence on t1 of α(µ) in E(0)

N . Apart from rendering the t1
integral in Eq. (6.160) non trivial, this will also induce functional forms in the N -space whose
analytical inverse Mellin transforms will be extremely hard to compute. We shall therefore
resort to simplifying the expression of E(0)

N , by linearising the dependence on t1 of α(µ) there.
This implies that, as an evolution kernel, we shall use what follows:

M̂(1,L)
N (t) = M̂(1)

N (t)
[
E(0)
N (t) −→ E(0,L)

N (t)
]
, (6.161)
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where:

E(0,L)
N (t) =

(
E

(0,L)
ΣΣ,N 0
0 E

(0,L)
γγ,N

)
, (6.162)

whose expression can be obtained from Eqs. (6.154) and (6.155) after the linearisation introduced
above. Thus:

E
(0,L)
ΣΣ,N = exp

[(
−ξ1,0 log N̄ + ξ̂1,0

)
t
]
, (6.163)

E
(0,L)
γγ,N = exp

[
−
(

2nF
3 + χ1,0

)
t

]
. (6.164)

In equation (6.163) we have introduced the quantities ξ1,0 and ξ̂1,0 which we have defined as
follows:

ξ1 = ξ1,0 t+O(t2) , ξ̂1 = ξ̂1,0 t+O(t2) , (6.165)

with ξ1 and ξ̂1 given in Eqs. (6.91) and (6.93). By means of an explicit computations from the
latter two equations we obtain:

ξ1,0 = 2
[
1− α(µ0)

π

(
5
9nF + πb1

b0

)]
, (6.166)

ξ̂1,0 = 3
2

[
1 + α(µ0)

π

(
λ1

3 −
πb1
b0

)]
. (6.167)

As far as Eq. (6.164) is concerned, its expression stems from that of Eq. (6.155); in particular:

−α(µ)− α(µ0)
4π2b0

nF

(
1− 4πb1

3b0

)
= −χ1,0 t+O(t2) , (6.168)

from whence:
χ1,0 = α(µ0)

2π nF

(
1− 4πb1

3b0

)
QED−→ 0 . (6.169)

In summary, the evolution operator we shall use is the following:

EN (t) = E(0,L)
N (t)

(
I +

∫ t

0
dt1M̂(1,L)

N (t)
)
. (6.170)

Having established that the asymptotic solutions presented in Sec. 6.4 are perfectly adequate
for the case of the singlet, we shall now focus on the implications of Eq. (6.170) on the photon
PDF. We obtain:

Γγ(z) = M−1
[(
EN (t)

)
γΣ ΓS,0,N

]
+M−1

[(
EN (t)

)
γγ

Γγ,0,N
]
, (6.171)

with ΓS,0,N and Γγ,0,N the N -space expressions of the singlet and photon initial conditions,
respectively. These can be obtained from Eqs. (6.3)–(6.8):

ΓS,0,N = 1 + α(µ0)
2π

(
F0 + F1 log N̄ + F2 log2 N̄

)
+O

(
N−1) , (6.172)

Γγ,0,N = O
(
N−1) , (6.173)
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where:

F0 = 2− π2

3 + 3
2L0 , (6.174)

F1 = 2 (1− L0) , (6.175)
F2 = −2 . (6.176)

Let us start by considering the contribution of the first term on the r.h.s. of Eq. (6.171). With
a straightforward, if tedious, computation we obtain what follows:

(
EN (t)

)
γΣ ΓS,0,N

N→∞−→ E
(0,L)
γγ,N

1
N

4∑
j=1

N̄−κj
∑4
i=0 x

(j)
i logi N̄

y
(j)
0 + y

(j)
1 log N̄

, (6.177)

with {x(j)
0 , . . . x

(j)
4 , y

(j)
0 , y

(j)
1 } four sets of N -independent quantities, whose specific forms are

unimportant here. For any given j, the five terms in the numerators on the r.h.s. of Eq. (6.177)
can be re-expressed algebraically (i.e. without any approximations) in terms of the corresponding
denominators. In this way, one arrives at the following forms (note that E(0,L)

γγ,N is independent
of N):

Γγ,j(z) = M−1

[
1
N
N̄−κj

∑4
i=0 x

(j)
i logi N̄

y
(j)
0 + y

(j)
1 log N̄

,

]
, j = 1, 2, 3, 4 ,

≡
5∑
i=1

Ri

(
C1,j , C2,j , C3,j , D2,j

/
D1,j , D1,j

)
Mi

(
z;κj , D1,j , D2,j

)
. (6.178)

with:

R1(C1, C2, C3, C4, C5) =
(
C3 − C4C2 + C2

4C1

)
×
[
1 + α(µ0)

2π

(
F0 − C4F1 + C2

4F2

)]
, (6.179)

R2(C1, C2, C3, C4, C5) = 1
C5

(
C2 − C4C1

)
+ α(µ0)

2π
1
C5

(
C2F0 + C3F1 − C4

(
C1F0 + C2F1 + C3F2

)
+ C2

4
(
C1F1 + C2F2

)
− C3

4C1F2

)
, (6.180)

R3(C1, C2, C3, C4, C5) = C1

C5
+ α(µ0)

2π
1
C5

(
C1F0 + C2F1 + C3F2

− C4
(
C1F1 + C2F2

)
+ C2

4C1F2

)
, (6.181)

R4(C1, C2, C3, C4, C5) = α(µ0)
2π

1
C5

(
C1F1 + C2F2 − C4C1F2

)
, (6.182)

R5(C1, C2, C3, C4, C5) = α(µ0)
2π

C1

C5
F2 , (6.183)
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D1,1 = ξ1,0 , (6.184)

D2,1 = −
(

2nF
3 + 2πb0 + ξ̂1,0 + χ1,0

)
, (6.185)

C1,1 = α(µ0)
2π exp

(
−D2,1t

)
, (6.186)

C2,1 = −α(µ0)
2π

(
5 + 4nF

3

)
exp

(
−D2,1t

)
, (6.187)

C3,1 = α(µ0)
2π

(
6 + π2

6 + 32nF
9 + 2πb1

b0

)
exp

(
−D2,1t

)
, (6.188)

D1,2 = D1,1 , (6.189)
D2,2 = D2,1 , (6.190)

C1,2 = −α(µ0)
2π , (6.191)

C2,2 = α(µ0)
2π

(
5 + 4nF

3

)
, (6.192)

C3,2 = −α(µ0)
2π

(
6 + π2

6 + 32nF
9 + 2πb1

b0

)
, (6.193)

D1,3 = D1,1 , (6.194)

D2,3 = −
(

2nF
3 + ξ̂1,0 + χ1,0

)
, (6.195)

C1,3 = 0 , (6.196)
C2,3 = 0 , (6.197)
C3,3 = − exp

(
−D2,3t

)
, (6.198)

D1,4 = D1,3 , (6.199)
D2,4 = D2,3 , (6.200)
C1,4 = 0 , (6.201)
C2,4 = 0 , (6.202)
C3,4 = 1 , (6.203)

and:

kj = ξ1,0 t , j = 1, 3 , (6.204)
kj = 0 , j = 2, 4 . (6.205)

We have introduced the inverse Mellin transforms relevant to Eq. (6.177) which are linearly
independent from each other, namely:

M−1
[
N̄−κ

N

1
M2 +M1 log N̄

]
z→1−→ M1(z;κ,M1,M2) , (6.206)

M−1
[
N̄−κ

N
logp N̄

]
z→1−→ Mp+2(z;κ,M1,M2) , p = 0, 1, 2, 3 . (6.207)
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Explicit computations give:

M1(z;κ,M1,M2) = e−γEκ(1− z)κ
Γ(1 + κ)

(
1

M2 −M1 log(1− z) −
(π2κ− 6ζ3κ2)M1

6(M2 −M1 log(1− z))2

− (30π2 − 360ζ3κ+ π4κ2)M2
1

180(M2 −M1 log(1− z))3

)
, (6.208)

M2(z;κ,M1,M2) = e−γEκ(1− z)κ
Γ(1 + κ) , (6.209)

M3(z;κ,M1,M2) = e−γEκ(1− z)κ
Γ(1 + κ)

(
− log(1− z) + π2κ

6 − ζ3κ2
)
, (6.210)

M4(z;κ,M1,M2) = e−γEκ(1− z)κ
Γ(1 + κ)

(
log(1− z)2 − π2

6 + κ
(
− π2

3 log(1− z) + 2ζ3
)

+ κ2
(

2ζ3 log(1− z)− π4

180

))
, (6.211)

M5(z;κ,M1,M2) = e−γEκ(1− z)κ
Γ(1 + κ)

(
− log(1− z)3 + π2

2 log(1− z)− 2ζ3 (6.212)

+ κ
(π2

2 log(1− z)2 − 6ζ3 log(1− z)− π4

60

)
+ κ2

(
− 3ζ3 log(1− z)2 + π4

60 log(1− z) + 3
2π

2ζ3 − 12ζ5
))

,

where, consistently with Eqs. (6.206) and (6.207), in Eqs. (6.208)–(6.212) some terms that
vanish at z → 1 have not been included. This is of course arbitrary to some extent, and the
logic we have followed is that of keeping those terms which, when expanded in series, either
contribute to the same monomials tn and αtn as the recursive solutions considered in Sec. 6.3,
or have the same power of κ as the former ones. On top of this, one has the special case of
Eq. (6.208) which has the structure of a series in Mk−1

1 (M2 −M1 log(1− z))−k. When z → 1,
these terms are progressively more suppressed with increasing k. Unfortunately, this hierarchy
is not valid at intermediate z’s; in fact, for the values ofM1 andM2 relevant to our computation
there is a singularity at z ' 0.65 which is dominated by increasingly large values of k. This
is what prevents the asymptotic solution of the photon PDF from being well-behaved in all of
the z range, at variance with its electron counterpart. This has significant implications for the
matching, which are discussed in Sec. 6.7.

We next consider the contribution of the second term on the r.h.s. of Eq. (6.171). Owing to
Eq. (6.170), to the 1/N suppression implicit in M̂(1,L)

N , and to Eq. (6.173), it is immediate to see
that this contribution, up to terms vanishing in the z → 1 limit, is identical to that of Eq. (6.140),
bar for an α(µ0)/α(µ) prefactor that here needs to be written according to Eq. (6.164). Thus,
by introducing the quantity:

Γγ,5(z) = α(µ0)
2π

1 + (1− z)2

z

(
log µ2

0
m2 − 2 log z − 1

)
, (6.213)
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we can write the sought large-z expression of the photon PDFs in a compact form:

Γγ(z) = exp
[
−
(

2nF
3 + χ1,0

)
t

] 5∑
j=1

Γγ,j(z) , (6.214)

with Γγ,j(z) given in Eq. (6.178) for j ≤ 4 and in Eq. (6.213) for j = 5.
The results presented above allow one to obtain their counterparts in the case of non-running

α, by means of the following formal replacements (see Eq. (6.22)):

t −→ η0

2 , χ1,0 t −→
α

2π
η0

2 nF , (6.215)

b0 −→ 0 , b1 −→ 0 , b1/b0 −→ 0 , (6.216)

with η0 defined in Eq. (6.30). We can also see that, by using the replacements above in the
expression for E(0)

γγ,N given in Eq. (6.155), one obtains the same result as one would have di-
rectly read from the solution for the evolution operator relevant to the case of non-running α
(Eq. (6.24), with α(µ)→ α and b0 → 0 there). We observe that this would not have happened
if one had used Eq. (6.156) instead of Eq. (6.155), in spite of these two equations being identical
in QED. In other words, the replacements in Eqs. (6.215) and (6.216) might lead to an incor-
rect result in the limit of non-running α if applied to an expression that contains two values
of α computed at different scales; when this is the case, one must first express one of such α

values in terms of the other one, and of t. That being said, we point out again that the limit of
non-running α must be interpreted with some care — see the comments that follow Eq. (6.156).

When not considering the case of non-running α, one can re-expressed the exponential pref-
actors in Eq. (6.214) and in Eqs. (6.184)–(6.203), and their combinations, in simpler ways,
namely:

exp
(
−D2,1t

)
exp

[
−
(

2nF
3 + χ1,0

)
t

]
= α(µ)

α(µ0) e
ξ̂1,0t −→ α(µ)

α(µ0) e
ξ̂1 , (6.217)

exp
(
−D2,3t

)
exp

[
−
(

2nF
3 + χ1,0

)
t

]
= eξ̂1,0t −→ eξ̂1 , (6.218)

exp
[
−
(

2nF
3 + χ1,0

)
t

]
= α(µ0)

α(µ) . (6.219)

Two observations are in order. Firstly, the expressions on the r.h.s.’s of Eqs. (6.217) and (6.218)
factorise in the functions Ri, owing to the linearity of the latter w.r.t. C1,j , C2,j , and C3,j . Sec-
ondly, the replacements on the rightmost sides of Eqs. (6.217) and (6.218) stem from Eq. (6.165);
they are not mandatory, but are consistent with the linearisation simplifications made when solv-
ing the evolution equations. For scales of the order of up to a few hundred GeV’s, in practice they
do not induce any significant numerical differences. With the same arguments, in Eq. (6.178)
one can also perform the replacements:

kj = ξ1,0 t −→ ξ1 j = 1, 3 , (6.220)

again from Eq. (6.165).
Equation (6.214) is the asymptotic solution that emerges from solving the evolution equation

by keeping the dominant off-diagonal terms in the Altarelli-Parisi kernels. As we shall discuss
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in Sec. 6.6, it shares with its singlet and non-singlet counterparts the nice property that its
perturbative expansion lead to the same coefficients as those of the recursive solutions (for
certain classes of basis functions in the z space). However, its functional form is rather involved,
but it is fortunately possible to simplify it, by keeping only the truly dominant terms in the
z → 1 limit at each order in α. In order to do so one starts by observing that, in such a limit,
one has:

Mi(z;κ,M1,M2) z→1−→ 0 , (6.221)
M1(z; 0,M1,M2) z→1−→ 0 , (6.222)
M2(z; 0,M1,M2) z→1−→ 1 , (6.223)
M3(z; 0,M1,M2) z→1−→ − log(1− z) , (6.224)
M4(z; 0,M1,M2) z→1−→ log2(1− z) , (6.225)

M5(z; 0,M1,M2) z→1−→ π2

2 log(1− z)− log3(1− z) , (6.226)

for any values of M1 and M2. Because of Eqs. (6.204) and (6.205), Eq. (6.221) implies that only
the j = 2 and j = 4 contributions to Eq. (6.214) govern the divergent behaviour of Γγ(z) at
z → 1. A simple computation then leads to the following result:

Γγ(z) z→1−→ α(µ0)2

α(µ)
3

2πξ1,0
log(1− z)− α(µ0)3

α(µ)
1

2π2ξ1,0
log3(1− z) . (6.227)

There is a certain similarity between Eq. (6.227) and Eq. (6.103) which is worth stressing. In
particular, the dominant term at z → 1 in both equations (proportional to log(1 − z)3 and
log(1− z)2, respectively) is suppressed w.r.t. the subdominant one (log(1− z) in both cases) by
a factor proportional to α (owing to Eq. (6.104) for Eq. (6.103)). This implies that numerically
the onset of the behaviour driven by the most divergent terms occurs only at z values which are
exceedingly large, and in fact hardly relevant to any phenomenological applications, as we shall
see in Sec. 6.9.

Equation (6.214) simplifies considerably when one retains only the LL terms. A direct
calculation leads to the following result:

Γγ(z) = −eξ̂0 M1

(
z; ξ0, D(0)

1 , D
(0)
2

)
+ α(µ0)

α(µ) M1

(
z; 0, D(0)

1 , D
(0)
2

)
, (6.228)

with ξ0 and ξ̂0 defined in Eq. (6.107), and:

D
(0)
1 = 2 , (6.229)

D
(0)
2 = −2nF

3 − 3
2 . (6.230)

We point out that, consistently with the results of Appendix 6.B, the LL photon PDF is of O(t)
(i.e. it does vanish with α→ 0): the two terms on the r.h.s. of Eq. (6.228) cancel each other at
t = 0. From Eq. (6.208), we also see that the LL-accurate photon PDF of Eq. (6.228) vanishes
in the z → 1 limit:

Γγ(z) z→1−→ 0 . (6.231)
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By comparing Eqs. (6.227) and (6.231) we observe that the photon PDF has a behaviour analo-
gous to that of the electron PDF, namely that its NLL form grows faster than its LL counterpart
at z → 1; to a good extent, this is an artifact of the MS scheme.

We finally point out that Eq. (6.228) can be directly obtained from solving the evolution
equation of Eq. (6.148), by using there:

MN = P[0,0]
S,N + 1

N
P[0,1]

S,N . (6.232)

Since the kernel of Eq. (6.232) is independent of t, Eq. (6.148) can be simply solved by diago-
nalisation. After that, one multiplies the results by the LO initial conditions, and performs the
inverse Mellin transform. The fact that by doing so one recovers Eq. (6.228) is a rather powerful
check on the procedure adopted in this section.

6.6 Expansion of large-z solutions

In view of the matching between the asymptotic large-z solutions and the recursive solutions,
it is useful to consider the expansion of the former ones in a series of α; this will also allow
us to perform some consistency checks on them. We can formally write the result of such an
expansion for the NLL-accurate, running-α solutions of Eqs. (6.103) and (6.214) in the same
way as in Eqs. (6.62) and (6.76), namely:

Γ(z, µ2) =
kLL

max∑
k=0

tk

k! K
LL
k (z) + α(t)

2π

kNLL
max∑
k=0

tk

k! K
NLL
k (z) . (6.233)

As the notation with an overline suggests, we only take into account contributions that do no
vanish at z → 1. We point out that we consider the expansion up to O(α3), i.e. we use the
values in Eq. (6.63), for the sole reason of consistency with what has been done for the recursive
solutions in Sec. 6.3. We shall omit flavour indices here, in order to simplify the notation,
since no confusion is possible. In fact, one must bear in mind that the large-z solutions of
the singlet and non-singlet PDFs coincide, and that the one of the photon has a functional
behaviour significantly different from the former two. Therefore we shall first deal with the
singlet non-singlet cases together, and with that of the photon afterwards.

6.6.1 Singlet and non-singlet

When expanding Eq. (6.103) to obtain KLL
k (z) and KNLL

k (z), one can simply use the explicit
expressions of ξ1 and ξ̂1 in Eqs. (6.91) and (6.93), respectively, and then consider the Taylor
series in t and α. However, this procedure cannot possibly give a correct answer at z = 1, since
Γ(z) diverges there order by order, with non-integrable singularities. In order to properly take
such an endpoint contribution into account, all z-dependent terms in Γ(z) must be regarded
as distributions, rather than as regular functions. By doing so, one can exploit the following
identities:

logp(1− z)
(1− z)1−κ = (−1)p Γ(1 + p)

κ1+p δ(1− z) +
∞∑
i=0

κi

Γ(1 + κ) Li+p(z) , p ≥ 0 , (6.234)
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for any κ, and where:

Li(z) =
[
`i(z)

]
+
≡
[

logi(1− z)
1− z

]
+
, i ≥ 0 , (6.235)

having introduced `i(z) in Eq. (6.69). By using Eq. (6.234) in Eq. (6.103) with κ = ξ1, and
by subsequently expanding in t and α, one determines KLL

k (z) and KNLL
k (z). Because of the

structure of Eq. (6.234), it is clear that the latter two quantities can be expressed as linear
combinations of the Li(z) distributions and of Dirac delta’s, namely:

KLL
k (z) = ALL

k δ(1− z) + (1− δk0)
iLL
max(k)∑
i=0

BLL
k,i Li(z) , k ≥ 0 , (6.236)

KNLL
k (z) = ANLL

k δ(1− z) +
iNLL
max (k)∑
i=0

BNLL
k,i Li(z) , k ≥ 0 . (6.237)

Equations (6.236) and (6.237) are by construction valid for any z, including z = 1, and so is
Eq. (6.233). The z = 1 contribution will be used in the following, but is not relevant for the
matching procedure. For the latter, Γ(z) will be considered only with z < 1, and thus becomes
an ordinary function. Its form can be read directly from Eq. (6.233), and is as follows:

Γ(z, µ2) =
kLL

max∑
k=0

tk

k! K
LL
k (z) + α(t)

2π

kNLL
max∑
k=0

tk

k! K
NLL
k (z) , (6.238)

where:

KLL
k (z) = KLL

k (z)
[
ALL
k → 0 , Li(z)→ `i(z)

]
, (6.239)

KNLL
k (z) = KNLL

k (z)
[
ANLL
k → 0 , Li(z)→ `i(z)

]
. (6.240)

Note the strict similarity between Eqs. (6.238) and (6.76). This has to be expected, since both
of these expressions are O(α3) approximations of the PDF, that retain either some (Eq. (6.238))
or all (Eq. (6.76)) of the terms that are singular for z → 1.

We have determined the coefficients ALL
k and BLL

k,i for k ≤ 3, and ANLL
k and BNLL

k,i for k ≤ 2,
by means of a direct computation. The results for k = 0 are particularly interesting since, in
view of Eq. (6.233), they must be related to the initial conditions of Eqs. (6.3) and (6.6). We
have obtained:

ALL
0 = 1 , (6.241)

ANLL
0 = 2 + 3

2 L0 , (6.242)

BNLL
0,0 = 2 (L0 − 1) , (6.243)

BNLL
0,1 = −4 , (6.244)

where L0 has been defined in Eq. (6.335). With the result of Eq. (6.241), KLL
0 (z) is indeed

identical to Eq. (6.3). However, by replacing the results of Eqs. (6.242)–(6.244) into Eq. (6.237),
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KNLL
0 (z) turns out not to coincide with Γ[1]

e− (z) of Eq. (6.6). This is hardly surprising: when
working in the large-z region, one is entitled to set z = 1 in all of the polynomial terms that
appear in the numerators. Therefore, while KNLL

0 (z) should not necessarily be equal to Γ[1]
e− (z),

it must be equal to the z → 1 asymptotic form of the latter – if that were not the case, the
large-z solution would not be compatible with the initial conditions from which it supposedly
originates. In order to obtain the asymptotic expression of the initial condition, one cannot set
z = 1 in all of the numerators of the latter right away, since Γ[1]

e− (z) is not an ordinary function,
but a distribution. Before doing so, one must first pull out the 1 + z2 factors from the plus
distributions in Eq. (6.6). This can be done by exploiting the following identities:

1 + z2

(1− z)+
=

(
1 + z2

1− z

)
+
− 3

2 δ(1− z) , (6.245)

(1 + z2)
(

log (1− z)
1− z

)
+

=
(

1 + z2

1− z log(1− z)
)

+
+ 7

4 δ(1− z) . (6.246)

After having done this, one can finally let 1 + z2 → 2 in the numerators. It is a matter of simple
algebra to show that this procedure leads to the expected result:

Γ[1]
e− (z) z→1−→ KNLL

0 (z) . (6.247)

In summary, we have thus proven that the solution of Eq. (6.103) embeds the initial conditions
of Eqs. (6.3) and (6.6).

We conclude this appendix by reporting the results for the coefficients with k > 0. We have
obtained what follows:

ALL
1 = 3

2 , (6.248)

ANLL
1 = 27

8 + π2

6 − 2ζ3 − 4πb0 −
3πb1
b0
− nF

18 (3 + 4π2)

+
(

9
4 −

2π2

3 − 3πb0
)
L0 (6.249)

ALL
2 = 9

8 −
π2

3 , (6.250)

ANLL
2 = 45

16 +
(

4b20 + 3b1 −
5
12

)
π2 + 2π4

45 − (11− 10πb0) ζ3 −
(

51
8 + 5π2

6

)
πb0

−
(

9
2 −

4π2

3

)
πb1
b0
− nF

(
1
4 −

11π2

27 − πb0
6 − 2π3b0

9

)
+

(
27
16 −

3π2

2 − 9πb0
2 + 3π2b20 + 4π3b0

3 + 8ζ3
)
L0 , (6.251)

ALL
3 = 9

16 −
π2

2 + 8ζ3
3 , (6.252)

and:

BLL
k,i = bLL

S, k,i = bLL
NS, k,i , (6.253)

BNLL
k,i = bNLL

S, k,i = bNLL
NS, k,i , (6.254)
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with bLL
S, k,i, bLL

NS, k,i, bNLL
S, k,i and bNLL

NS, k,i given in Appendix 6.B. We point out that Eqs. (6.253)
and (6.254) hold for all values of k and i we have considered here. This is remarkable, because
it tells one that with the expressions obtained in this chapter all of the logp(1− z)/(1− z)
terms in the PDF are the same regardless of whether one obtains them from the recursive
solution, or by expanding the asymptotic solution. In general, one expects the logarithms
from the latter to coincide with those of the former only for the larger values of p at any
given k. The result obtained here ultimately stems from keeping some formally subleading
contributions in the procedure of Sec. 6.4.2. In particular, it is important that the numerators
in Eqs. (6.96) and (6.97) be 1 + x2 rather than 2 (which would be a perfectly fine choice in the
asymptotic region). Actually, it turns out that the use of 1 + x2 is essential in the determination
of the endpoint contributions in the plus distributions of Eqs. (6.96) and (6.97), which in turn
induce (some of) the z-independent terms in Eqs. (6.98) and (6.99). Conversely, away from the
endpoints the replacement of 1 + x2 with 2 leads to power-suppressed terms at z → 1.

6.6.2 Photon

In the case of the photon one needs to employ Eq. (6.214). We start by observing that the
Taylor series in t and α of such a quantity leads order by order to integrable singularities; as
expected, there is therefore no endpoint contribution, and the expansion of the large-z solution
can be expressed in terms of ordinary functions. Before turning to the explicit form of the
latter, we point out that the t0 term in the expansion of Eq. (6.214) is equal to Γγ,5(z), since
the contributions of the Γγ,j(z) with j ≤ 4 terms mutually cancel (that of j = 1 (j = 3) against
that of j = 2 (j = 4)). One thus recovers the initial conditions of Eqs. (6.3) and (6.7), which
is a first consistency check on Eq. (6.214). We now write the expansion of the large-z photon
PDF in the same way as was done in Eq. (6.238), but with the Kk functions defined as follows:

KLL
k (z) = (1− δk0)

iLL
max(k)∑
i=0

CLL
k,i qi(z) , k ≥ 0 , (6.255)

KNLL
k (z) =

iNLL
max (k)∑
i=0

CNLL
k,i qi(z) , k ≥ 0 . (6.256)

having introduced the qi(z) functions in Eq. (6.70). It is a matter of algebra to arrive at the
final results:

CLL
k,i = cLL

γ, k,i , (6.257)
CNLL
k,i = cNLL

γ, k,i , (6.258)

with cLL
γ, k,i and cNLL

γ, k,i given in Appendix 6.B. As was the case for their singlet and non-singlet
counterparts (Eqs. (6.253) and (6.254)), Eqs. (6.257) and (6.258) have the property of holding
for all of the k and i values considered here. Thus, the same remarks done previously are valid
here as well — with the obvious exception that they apply to the logp(1− z) terms rather than
to the logp(1− z)/(1− z) ones relevant to the singlet and non-singlet cases.
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6.7 Additive matching for analytical solutions

The best analytical prediction is obtained by matching the recursive solution of Eq. (6.59), that
is valid for all z values but in practice can be computed only up to a certain O(αn) (here, n = 3),
with the solutions of Eqs. (6.103) (for singlet and non-singlet) and (6.214) (for photon), that
retain all orders in α but are sensible only when z ' 1. In order to distinguish these two classes
of solutions, we now denote them as follows:

Γrec(z) = Γ(z)
[
Eq. (6.59)

]
, (6.259)

Γasy(z) = Γ(z)
[
Eq. (6.103)

]
non−singlet , (6.260)

Γasy(z) =
(

Γ(z)
[
Eq. (6.103)

]
Γγ(z)

[
Eq. (6.214)

]) singlet−photon . (6.261)

We shall henceforth consider the case of NLL solutions with running α, which constitutes our
most accurate scenario. However, the procedure is unchanged in the case of NLL solutions
with fixed α, or in the case of LL solutions. We remind the reader that Eq. (6.59) implicitly
encompasses the non-singlet, singlet, and photon cases by means of the JLL

k and JNLL
k functions

(see Sec. 6.3).
We define the matched PDFs with the additive formula7:

Γmtc(z) = Γrec(z) +
(

Γasy(z)− Γsubt(z)
)
G(z) , (6.262)

where G(z) is a largely arbitrary function that must obey the following condition

lim
z→1

G(z) = 1 , (6.263)

and that might optionally be used to power-suppress at small z the difference in round brackets
in Eq. (6.262) – we shall give more details on this point later. The quantity Γsubt(z) (that we
call “subtraction term”) is responsible for removing the double counting, i.e. the contributions
which are present both in the recursive and in the asymptotic solutions. We shall eventually
construct it explicitly, but we anticipate the obvious fact that it must feature the dominant
z → 1 contributions to the PDF (which, in turn, are present in both the recursive and the
asymptotic solutions, as is discussed in Sec. 6.6).

Before proceeding we stress that, although general, the arguments that follow from Eq. (6.262)
are best understood if the PDFs are strongly peaked at z → 1, which is indeed what happens
for the singlet and non-singlet components, but not for the photon (at least to a certain extent).
Thus, we shall first understand the two former cases, and return to the latter one only towards
the end of this section.

We want the matched PDF to coincide with the asymptotic or the recursive solution for
those z values appropriate for either of the latter two quantities. This is equivalent to requiring:

Γmtc(z) ∼ Γasy(z) z ' 1 , (6.264)
Γmtc(z) ∼ Γrec(z) z elsewhere . (6.265)

7Additive matching has been considered in Refs. [196,204,205]; Refs. [194,195] adopt a multiplicative one.
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Given Eq. (6.263), Eq. (6.264) is satisfied when:∣∣∣Γrec(z)− Γsubt(z)
∣∣∣� ∣∣∣Γasy(z)

∣∣∣ , z ' 1 . (6.266)

Conversely, there are two ways in which the behaviour in Eq. (6.265) can be achieved.

a) G(z) can be expanded in series around z = 0, and is such that:

lim
z→0

G(z) = 0 , (6.267)

in addition to satisfying Eq. (6.263).

b) One has: ∣∣∣Γasy(z)− Γsubt(z)
∣∣∣� ∣∣∣Γrec(z)

∣∣∣ , (6.268)

for small and intermediate z values. When Eq. (6.268) holds, one can set:

G(z) ≡ 1 . (6.269)

The option of item a) stems from the observation that both Γasy(z) and Γsubt(z) are only
sensible when the logp(1− z) terms they contain are large. When this is not the case, i.e. at
small- and intermediate-z values, one can suppress them (in fact, one must, if Eq. (6.265) is to be
fulfilled) by means of power-suppressed terms, here parametrised by G(z), without affecting the
formal accuracy of the matched PDF. However, this has the potential drawback of introducing
in Γmtc(z) a dependence on the arbitrary quantity G(z), which must remain small in order
not to lose predictive power. This issue is avoided if the option of item b) is viable. This has
the drawback that it relies on the condition in Eq. (6.268), that might be problematic since it
constrains Γsubt(z) in a z region which is not the natural domain of such a function.

Although there is significant freedom in the construction of the subtraction term, the re-
cursive and asymptotic solutions provide us with two obvious candidates. Namely, we can set
either

Γsubt(z) ≡ ΓR
subt(z) = Γ(z)

[
Eq. (6.76)

]
(6.270)

or
Γsubt(z) ≡ ΓA

subt(z) = Γ(z)
[
Eq. (6.238)

]
. (6.271)

In other words: with Eq. (6.270) we use all of the contributions to the recursive solution which
are non-vanishing when z → 1, while with Eq. (6.271) we employ the O(α3) expansion of
the asymptotic solution. Therefore, as it follows from the discussion in appendix 6.6, ΓA

subt(z)
essentially contains a subset of the terms present in ΓR

subt(z). More precisely:

ΓR
subt(z) ←→

{
`i(z), qi(z)

}
≡
{

logi(1− z)
1− z , logi(1− z)

}
, (6.272)

ΓA
subt(z) ←→

{
`i(z)

}
≡
{

logi(1− z)
1− z

}
. (6.273)
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Figure 6.2: Ratio of the l.h.s of Eq. (6.266) over its r.h.s. (without the absolute values), for
the two choices of the subtraction term (Eq. (6.270), left panel; Eq. (6.271), right panel), and for
three different hard-scale values: µ = 0.01 GeV (dot-dashed green), µ = 1 GeV (dashed blue),
and µ = 100 GeV (solid red). As is indicated, the scale on the y axis of these plots is in units
of 10−4.

By construction (see Eq. (6.68)), we have

lim
z→1

(
Γrec(z)− ΓR

subt(z)
)

= 0 , (6.274)

and therefore Eq. (6.266) automatically holds when the subtraction term is defined by means of
the recursive solution. Conversely,

Γrec(z)− ΓA
subt(z) ' α q2(z) z→1−→ ∞ . (6.275)

However, in spite of this, Eq. (6.266) holds also in this case, since:

Γrec(z)− ΓA
subt(z)

Γasy(z) ' q2(z) + . . .

`2(z) + . . .

z→1−→ 0 . (6.276)

The conclusion is that Eq. (6.266) is satisfied with both choices of the subtraction term. The
difference between adopting ΓR

subt(z) or ΓA
subt(z) is that with the former function the matched

PDF will converge towards the asymptotic solution at z values relatively smaller than those
relevant to the latter function. This can be seen in Fig. 6.2, where the ratio of the l.h.s. over
the r.h.s. of Eq. (6.266) (without the absolute values) is plotted as a function of − log10(1− z)
for the two choices of the subtraction term considered here, and for three different hard scales
µ. Note that the scale on the y axis of the plots in Fig. 6.2 is in units of 10−4. The curves in
Fig. 6.2 are relevant to the non-singlet component. We point out that their analogues for the
singlet component are qualitatively and quantitatively very similar to those shown here. Apart
from being in keeping with the expectations emerging from Eqs. (6.274)–(6.276), Fig. 6.2 shows
that, even in the case of Eq. (6.270), the matched PDF will attain its asymptotic form only
for values of z which are extremely close to one; in other words, non-logarithmic contributions
are almost always important. This being the case, by choosing ΓA

subt(z) as a subtraction term
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Figure 6.3: Same as in Fig. 6.2, for Eq. (6.268). As is indicated, the scale on the y axis of the
plot on the right panel is in units of 10−4.

rather than ΓR
subt(z) (which, as was anticipated, “delays” the onset of the asymptotic regime in

the matched PDF) one renders the transition between the asymptotic and recursive solutions
less abrupt; this turns out to be beneficial in order to reproduce the results of the numerical
evolution.

As far as the small- and intermediate-z region is concerned, we observe that:

Γasy(z)− ΓR
subt(z) = O(α) , (6.277)

Γasy(z)− ΓA
subt(z) = O(α4) . (6.278)

Equation (6.277) implies that it is unlikely that, if the subtraction term is defined by means
of the recursive solution, one can avoid the use of the G(z) function. Conversely, Eq. (6.278)
implies that the definition by means of the asymptotic solution has a better chance of satisfying
Eq. (6.268), thus bypassing the need to introduce G(z). Note that the difference in Eq. (6.278)
is of O(α4) as a direct consequence of the fact that we have computed ΓA

subt(z) to O(α3) (see
Eq. (6.238)). In Fig. 6.3 we plot the ratio of the l.h.s. over the r.h.s. of Eq. (6.268) (without
the absolute values), by using the same layout as in Fig. 6.2. In order to be definite, we have
considered again the non-singlet component in Fig. 6.3, and have verified that the singlet one
gives results which are extremely similar to those of the non-singlet. Figure 6.3 confirms our
expectation based on Eqs. (6.277) and (6.278).

We now turn to discussing the case of the photon PDF, which is quite different from that
of the singlet and the non-singlet. The starting point is the same as for the latter PDFs,
namely the definition of the subtraction term with either Eq. (6.270) or (6.271), since those
formulae are the general parametrisations of the perturbative expansion of the recursive or the
asymptotic solutions, respectively, whose actual values are determined by the parameters specific
to the particle which is being considered. Indeed, in the case of the photon, the analogues of
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Figure 6.4: Plots assessing the validity of Eq. (6.268) (left panel) and Eq. (6.266) (right
panel), in the case of the photon PDF. See the text for details.

Eqs. (6.272) and (6.273) are:

ΓR
subt(z) ←→

{
qi(z)

}
, (6.279)

ΓA
subt(z) ←→

{
qi(z)

}
. (6.280)

Actually, because of Eqs. (6.257) and (6.258), one can make a stronger statement, namely:

ΓR
subt(z) = ΓA

subt(z) . (6.281)

We stress that Eq. (6.281) is not a property inherent to the photon PDF, but a consequence
of having been able to keep the relevant subleading terms in the computation of its large-z
form as carried out in Sec. 6.5. In order to be definite, for consistency with the case of the
singlet/non-singlet we shall label the subtraction term with “A” here.

The analogues of the right-hand side panels of Fig. 6.2 and of Fig. 6.3 are presented in the
right and left panels of Fig. 6.4, respectively. We start from the right-hand side one, in order
to assess the validity of Eq. (6.266). Unfortunately, it turns out that at large z’s the NLL
photon PDF becomes negative in a certain range, and it crosses twice the zero. For this reason,
we cannot consider the ratio of the two sides of Eq. (6.266) as was done in Fig. 6.2, but only
plot separately Γrec(z)− Γsubt(z) and Γasy(z); these two quantities are displayed in Fig. 6.4
by adopting identical patterns (each associated with a different hard scale µ), with the curves
relevant to Γasy(z) overlaid by full circles. Furthermore, in order for the latter curves to fit into
the layout, they have been multiplied by a constant factor equal to 10−3. The plot clearly shows
how Eq. (6.266) is safely fulfilled8.

We now consider the left panel of Fig. 6.4, in order to assess the validity of Eq. (6.268); given
that for all of the z values employed in the plot the photon PDFs is positive, we can compute
the ratio of the two sides of Eq. (6.268) (without the absolute values) as was done previously
in Fig. 6.3. It is immediate to see that the conclusions are the opposite of those valid in the

8Strictly speaking, no such conclusion is possible in an extremely narrow neighbourhood of the points at which
the PDF crosses zero, where it is however not relevant, since all quantities of interest are vanishingly small there.
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Figure 6.5: Study of the dependence of the matched photon PDF upon the parameters of the
matching function G(z), defined in Eq. (6.283). We have set µ = 100 GeV.

cases of the singlet and non-singlet – namely, in a very large range in z the subtraction term
and the asymptotic solution do not agree with each other9. Thus, in the case of the photon the
use of a damping function G(z) is unavoidable. In order to define it, it is useful to introduce
the function:

ẑ(z) = − log10(1− z) , (6.282)

by means of which we set:

G(z) =


1 ẑ1 ≤ ẑ(z) ,
Gp

(
ẑ(z)−ẑ0
ẑ1−ẑ0

)
ẑ0 ≤ ẑ(z) < ẑ1 ,

0 ẑ(z) < ẑ0 ,

Gp(v) = vp

vp + (1− v)p . (6.283)

This is a smooth function that obeys Eqs. (6.263) and (6.267), and where ẑ0, ẑ1, and p are
free parameters. The physical meaning of the parameters ẑ0 and ẑ1 is that, for z such that
ẑ(z) < ẑ0 (ẑ(z) > ẑ1), the matched PDF coincides with the recursive (the asymptotic) solution.
As a matter of fact, Eqs. (6.282) and (6.283) stem from the observation that it is ẑ(z), and not
z, the natural variable to carry out the matching, and this is because the large-z behaviour of
the PDFs is achieved when logarithmic terms grow much larger than non-logarithmic ones.

In principle, the parameters ẑ0, ẑ1, and p are unconstrained. In order to choose them
sensibly, we plot in Fig. 6.5 the asymptotic and recursive solutions as solid black and red curves,
respectively (both are multiplied by a factor of 10−2, for reasons that will soon become clear). For
the matching to work reasonably well, the transition between the recursive and the asymptotic
solutions must occur in a region where these two predictions are as close as possible to each
other (which we interpret as the signal that both give a reasonable description of the “true”
photon PDF). From Fig. 6.5, we gather that such a region is 2 . ẑ . 6; this suggests to set
ẑ0 = 2 and ẑ1 = 6. However, it is clear that there is (and there must be) a certain flexibility in

9See the comments after Eq. (6.212), for a discussion on the origin of this behaviour.
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these choices. The agreement between the asymptotic and recursive solutions quickly worsens
in the range z ∈ (1, 2), which implies that ẑ0 = 1 must be considered as an extreme choice. On
the other hand, for ẑ > 6 the asymptotic and recursive solutions do tend to stay relatively close
to each other, to the extent that even ẑ1 = 10 appears to be an acceptable choice. As far as p is
concerned, the larger this parameter the more abrupt is the transition between the two regimes.
We have therefore opted to employ p = 2, which essentially corresponds to the slowest transition
compatible with the derivatives of G(z) being continuous. In order to assess the impact of the
choices of ẑ0 and ẑ1 on the matched PDF, we have computed the latter for several values of these
parameters. In Fig. 6.5 we display as dashed curves the differences between any of the matched
predictions (relevant to (ẑ0, ẑ1) = (1, 5), (3, 5), (1, 7), (3, 7), and (1, 10)) minus the one obtained
with (ẑ0, ẑ1) = (2, 6). For comparison, we also show the differences between the asymptotic
and recursive solutions minus the (ẑ0, ẑ1) = (2, 6) matched PDF as black and red dot-dashed
curves, respectively. We see that the differences between any two pairs of matched predictions
are roughly in the range (−2, 3) · 10−4, i.e. at least a factor 25 smaller than the recursive and the
asymptotic solutions. While this statement progressively loses validity when moving towards
ẑ = 8 (where the asymptotic solution, which is the appropriate one in this region, crosses zero),
it also becomes less relevant, since indeed all quantities of interest tend to become negligible
in absolute value. Having said that, it is important to bear in mind that the dependence on
the matching-function parameters is a genuine uncertainty that affects the matched predictions;
plots such as those in Fig. 6.5 help assess its size, and should be re-produced whenever new
conditions become relevant (specifically, for hard-scale values significantly different w.r.t. those
considered in Fig. 6.5). We finally point out that we have repeated the exercise by using p = 3
and p = 4; the overall uncertainties are similar to those obtained with p = 2.

In summary, our best analytical results are obtained with the matching formula of Eq. (6.262).
In the case of the singlet and the non-singlet, we employ Eq. (6.271) for the definition of the
subtraction term, and a constant G(z) function as in Eq. (6.269). In the case of the photon, the
definition of the subtraction term is still given by Eq. (6.271) – however, there are more lim-
ited possibilities here, owing to Eq. (6.281). The matched photon PDF does need a non-trivial
matching function: we adopt that of Eq. (6.283), with ẑ0 = 2, ẑ1 = 6, and p = 2.

6.8 Numerical solutions for the PDFs

The numerical evolution for the PDFs is achieved by first solving the evolution equation for the
evolution operator in Mellin space. As is discussed in Sec. 1.6, the introduction of the singlet
and non-singlet combinations, Eq. (1.74), allows for a decoupling of the evolution equations
that is well-suited for a numerical implementation. As has been done thus far, in the following
we shall implicitly refer to the two-dimensional singlet-photon case, keeping in mind that the
non-singlet case is obtained by considering a one-dimensional flavour space.

The numerical solution of Eq. (6.18) for the evolution operator EN is obtained by means of a
discretised path-ordered product [206]. The evolution range [0, t] is partitioned into n intervals
[ti, ti+1], with t0 = 0 and tn = t, and the evolution operator is written as follows:

EN (t) =
0∏

i=n−1
EN (ti+1, ti) . (6.284)

The product on the r.h.s. of Eq. (6.284) must be understood as a product among matrices. Thus,
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by reading the product from left to right one finds decreasing values of the index i. The Magnus
expansion of Sec. 6.5 provides a formal solution to the evolution equation, see Eq. (6.148). If
the interval ∆ti = ti+1 − ti is small enough, we are allowed to discard the Ωk,N (t) terms with
k > 1 in the argument of the exponent:

EN (ti+1, ti) = exp
(∫ ti+1

ti

MN (α(t̄)) dt̄
)
EN (ti, ti−1) . (6.285)

In the same limit, an approximation of the integral appearing in Eq. (6.285) by means of the
trapezoidal rule is also justified:∫ ti+1

ti

MN (α(t̄)) dt̄ ' MN (α(ti+1)) + MN (α(ti))
2 ∆ti . (6.286)

By iteratively replacing Eq. (6.285) in Eq. (6.284), we eventually obtain for the evolution oper-
ator:

EN (t) =
0∏

i=n−1
exp

(
MN (α(ti+1) + MN (ti)

2 ∆ti
)
. (6.287)

MN depends both on the accuracy and on the subtraction scheme: its explicit expression, in MS
and at NLO, is implicitly given in Eq. (6.18). The exponential in Eq. (6.287) can be evaluated
by means of a diagonalisation procedure. However, in the case of 2×2 matrices, it is possible to
write down a closed expression for the exponential, well suited for a numerical implementation:

exp
(
a b

c d

)
= e(a+d)/2

D

(
e11 e12
e21 e22

)
, (6.288)

with:

D =
√

(a− d)2 + 4bc , (6.289)

e11 = D cosh
(
D

2

)
+ (a− d) sinh

(
D

2

)
, (6.290)

e12 = 2b sinh
(
D

2

)
, (6.291)

e21 = 2c sinh
(
D

2

)
, (6.292)

e22 = D cosh
(
D

2

)
+ (d− a) sinh

(
D

2

)
. (6.293)

Finally, in order to invert the PDFs from the Mellin to the z space, we employ a numerical
algorithm based on the so-called Talbot path. Details on the implementation of this method
can be found in Ref. [207].

The computer program that implements what has been described thus far was used to obtain
all of the numerical results presented in this chapter. The code can be downloaded at:

https://github.com/gstagnit/ePDF

In the non-singlet case one can devise an alternative procedure. Namely, one can exploit
the analytical N -space solution for the evolution operator, given in Eq. (6.20), multiply it by
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Figure 6.6: Electron (solid red), photon (dashed blue), and positron PDFs (dot-dashed green)
PDFs at µ = 100 GeV. The electron PDF is multiplied by a factor (1 − z) in the plot on the
right panel.

the Mellin-transformed initial conditions, and then invert the result thus obtained back to the
z space by means of a numerical contour integration. We have implemented this strategy in a
computer program10 fully independent from the one described above, and verified that the two
are in perfect agreement.

6.9 Results

In this section we present our predictions for the PDFs, by computing them both with the
numerical code described in Sec. 6.8, and by evaluating the analytical formulae; these are always
the matched ones. We compare these two classes of predictions, mutually validating them in the
process. Unless explicitly indicated, all results are NLL-accurate with running α, and all have
been obtained by setting µ0 = m.

We begin by plotting in Fig. 6.6 the electron, photon, and positron PDFs, computed at
µ = 100 GeV with the numerical code. The left panel shows these quantities in the full z ∈ (0, 1)
range, while the right panel is a zoom to the large-z region, where we consider ẑ ∈ (1, 15) (see
Eq. (6.282) for the definition of ẑ). Owing to the much faster growth of the electron PDFs in
this region w.r.t. that of the other two partons, we have multiplied this PDF by a factor equal
to (1− z), in order for all of the three curves to fit into the same layout. Figure 6.6 renders it
manifest that the production of heavy (relative to the collider c.m. energy) objects is dominated
by the partonic lepton whose charge is the same as that of the particle lepton it stems from11

(in Eq. (6.1), one has the implicit constraint z+z− ≥M2/S, with M and
√
S the mass of the

object produced and the collider c.m. energy, respectively). Note that from the right panel of
Fig. 6.6, given that the solid-red and dashed-blue curves are roughly of the same order, and that
the former includes the (1− z) factor, one can immediately see that the photon PDF is smaller
than the electron PDF by a number of orders of magnitude equal to the value of ẑ. Conversely,

10This builds upon the code originally written by the authors of Ref. [198].
11The reader must bear in mind that all our results are obtained by assuming an electron particle. In the case

of a positron particle, the roles of the electron and positron partons are simply reversed.
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by producing lighter objects and/or by increasing the collider energy, the contribution(s) of the
incoming photon(s) become(s) important.

In view of the smallness of the positron PDF as is documented in Fig. 6.6, it is more con-
venient to present our findings in terms of the singlet and the non-singlet PDFs rather than
by means of the electron and positron ones. This is what we shall do in the remainder of this
section.

In order to establish the level of agreement between our numerical and analytical predictions,
we plot in figures 6.7, 6.8, and 6.9 the ratios of the latter over the former, minus one, in the
cases of the non-singlet, singlet, and photon, respectively. In each plot, there are three curves,
corresponding to three different choices of hard scales: µ = 0.01 GeV (dot-dashed green curves),
µ = 1 GeV (dashed blue curves), and µ = 100 GeV (solid red curves). An overarching observation
is that, in all of the cases bar for the photon at large z’s (an exception to which we shall
return later), the µ = 100 GeV results are those which display the largest analytical-numerical
disagreements. However, even in this worst-case scenario, the level of agreement is excellent,
being typically of the order of 10−5–10−4 (relative); the largest disagreements are to be found
at small z’s in the case of the singlet (because of the presence of un-resummed log z terms12). In
keeping with the previous remark relevant to the hard-scale dependence, the case of the photon
at z ' 1 constitutes an exception: from the right panel of Fig. 6.9 we see that the analytical
and numerical predictions agree at the level of 10−3 (10−2) at µ = 100 GeV (µ = 0.01 GeV) for
2 . ẑ . 6 ; furthermore, the behaviour at ẑ > 6 might seem to suggest that the z → 1 limits
of the analytical and numerical computations are different. We shall show in the following (see
Fig. 6.13) that this is in fact not the case. For the time being, the crucial thing to bear in mind
is that, in the z region we are discussing, the photon PDF is very small in absolute value and,
more importantly, smaller than the electron PDF by several orders of magnitude. Thus, even a
relatively large discrepancy of 0.1–1% between the numerical and analytical photon PDFs will
be quite irrelevant. The general conclusion, which applies to all partons, is therefore that the
analytical formulae appear to be perfectly adequate, and can be employed in calculations of
cross sections for phenomenological purposes.

We now turn to assessing the effects on the PDFs of the NLL corrections, by comparing
the NLL results with their LL counterparts. While this will fully account for the predictions
obtained here for the first time, it is important to bear in mind that the PDFs are unphysical
quantities, and that beyond LL cancellations do occur (in particular, in MS) between them and
the short-distance cross sections. Thus, an increase or decrease by a factor X of an NLL PDF
w.r.t. an LL one will most definitely not translate into a corresponding increase or decrease of
the NLO physical cross section w.r.t. its LO counterpart. In the main frames of Figs. 6.10,
6.11, and 6.12, we plot the ratios of the NLL PDFs over the LL ones, both computed with the
numerical code. As was done previously, all figures feature three curves, that correspond to
different choices of hard scales; the same scale values, and the same graphical patterns, are used
here as in Figs. 6.7–6.9. All the figures have an inset, which displays the double ratio (minus
one):

PDFNLL

PDFLL

∣∣∣∣
an

/
PDFNLL

PDFLL

∣∣∣∣
num
− 1 . (6.294)

The agreement between the numerical and analytical predictions is again extremely good, es-
pecially at large z’s; once more, the photon in this region is the (relative) exception to that

12Techniques to resum such logarithms exist, see e.g. Refs. [208,209].
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Figure 6.7: Comparison between the numerical and analytical predictions for the non-singlet,
for three different hard-scale choices.
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Figure 6.8: As in Fig. 6.7, for the singlet.
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Figure 6.10: Main frames: ratios of NLL over LL PDF, as computed with the numerical code,
for the non-singlet, and for three different hard-scale choices. Insets: ratio of the ratio shown in
the main frame, over the same quantity computed analytically, minus one.
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Figure 6.11: As in Fig. 6.10, for the singlet.
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Figure 6.12: As in Fig. 6.10, for the photon.
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general rule, on which we shall comment later. The agreement becomes marginally worse with
increasing µ, but this effect is less evident w.r.t. that in the case of the absolute predictions of
Figs. 6.7–6.9. Interestingly, the size of the NLL effects decreases with the hard scale. This is
particularly easy to understand in the large-z region in the case of the singlet (or non-singlet),
since it can be directly read from Eq. (6.103). As was already remarked there, this behaviour is
driven by Eq. (6.104), which implies that: a) the coefficient of the log(1−z) term is much larger
than that of the log2(1− z) term up to extremely large values of z; b) such a coefficient, being
proportional to 1/α(µ), decreases with µ. These two effects can clearly be seen in the main
frames of the right panels of Figs. 6.10 and 6.11, where the various lines are almost straight
ones, but relatively less so at larger values of the hard scales. Keeping in mind the general
observation made above on the unphysical nature of the PDFs, we point out that the natural
applications of the quantities computed here involve scales that are large.
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-2.0 10-5
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LL: (an/num - 1) * 10-2

Figure 6.13: Behaviour of the photon PDF at very large z values, where the analytical and
numerical predictions are compared. We have set µ = 100 GeV.

We now go back to commenting on the large-z behaviour of the photon PDF. We have
already remarked in Fig. 6.9 that such a PDF in this region is close to zero in absolute value,
and orders of magnitude smaller than its electron counterpart. On top of that, for the specific
issue of the NLL vs LL results, the comparison between Eqs. (6.214) and (6.228) (or between
their over-simplified forms of Eqs. (6.227) and (6.231)) shows that, at variance with the case
of the electron (Eqs. (6.103) and (6.106)), the NLL asymptotic photon PDF does not factorise
the functional form relevant to its LL version. Hence, larger differences in the matching region
have to be expected between the NLL and LL photon PDF, which are larger than those for the
electron.

At the right end of the z range in Fig. 6.12 we see again the kind of pattern as in the same
region of Fig. 6.9, which might cast doubts on the agreement between the z → 1 limits of the
analytical and numerical predictions. In order to address this concern, in Fig. 6.13 we plot the
photon PDF in a much more extended z range w.r.t. what was done so far. The blue and red
solid curves are the differences between the analytical and numerical results computed at the
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LL and NLL, respectively; the dashed curves of the same colours are the corresponding PDFs,
multiplied by an overall constant factor equal to 10−3; finally, the blue dot-dashed curve is the
rescaled ratio of the analytical over the numerical LL results, minus one, which can be sensibly
computed owing to the fact that the LL PDF does not vanish for values of z 6= 1. Apart from
the similarity between the LL and NLL differences, the key message of Fig. 6.13 is that at z → 1
the analytical and numerical predictions do tend to the same value, but in a much slower way
w.r.t. the case of the singlet/non-singlet. In other words, the onset of the true asymptotic regime
occurs at much larger z values for the photon than for the singlet or non-singlet. This needs
not be surprising, owing to the mechanism that governs the asymptotic photon behaviour, as is
documented in Sec. 6.5. An improvement of the analytical large-z PDF computed here would
require keeping all terms suppressed by powers of N−2 in Mellin space, an extremely involved
computation which is not justified in view of the smallness of the photon PDF in this region.

6.A Numerical integrals in the recursive solutions

In the course of the recursive procedure, we have found that some integrals relevant to J NLL
2

(i.e. the function associated with the O(αt2) term in the representation of the PDFs) are not
easily computable analytically. We have therefore opted to limit ourselves to obtaining their
z → 1 leading terms analytically, while evaluating all of the remaining terms numerically, so
that the latter contribute only to ĴNLL

2 (we point out that an analogous strategy has already
been adopted in Ref. [196]). More precisely, let us consider the generic modified-convolution
integral of Eq. (6.27). We distinguish two possibilities: either g(x) is a plus distribution, or it is
an ordinary function. Notation-wise, these two cases are written as follows:

plus distribution : g(x) =
[
ĝ(x)

]
+
, (6.295)

ordinary function : g(x) . (6.296)

In the case of Eq. (6.295), we have:[
ĝ
]
+⊗ zh =

[
ĝ
]
+⊗ zh

∣∣∣
end

+
[
ĝ
]
+⊗ zh

∣∣∣
bulk

, (6.297)

where we have defined the endpoint and bulk contributions, respectively, as follows:

[
ĝ
]
+⊗ zh

∣∣∣
end

= −h(z)
∫ z

0
dx ĝ(x) , (6.298)

[
ĝ
]
+⊗ zh

∣∣∣
bulk

=
∫ 1

z

dx ĝ(x)
[
h
( z
x

)
− h(z)

]
=

∫ 1

0
dy (1− z) ĝ

(
1− (1− z)y

)[
h

(
z

1− (1− z)y

)
− h(z)

]
. (6.299)

These equations can also be used in the simpler case of Eq. (6.296): one simply sets the endpoint
contribution equal to zero, and computes Eq. (6.299) by removing the subtraction term h(z)
and with the formal replacement ĝ → g there.

The endpoint contribution of Eq. (6.298) is always computed analytically, and its results
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are included in J̄NLL
2 (z) and/or ĴNLL

k (z), according to the behaviour of h(z) at z → 1. As far
as Eq. (6.299) is concerned, for the sake of the forthcoming discussion let us re-write it more
compactly as follows:

F (z) =
∫ 1

0
dy f(y, z) . (6.300)

If the integral in Eq. (6.300) were strongly convergent, then we might obtain its contribution to
the PDF (see Eq. (6.26)) by means of a derivation under the integral sign, namely:

−∂F (z)
∂z

= −
∫ 1

0
dy

∂f(y, z)
∂z

. (6.301)

Unfortunately, the strong convergence of the integral is not guaranteed, given that F (z) in
general is logarithmically divergent at z → 1. However, the contributions that are non vanishing
at z = 1 are also easy to compute analytically; such computation can be carried out directly
at the differential level of Eq. (6.301), and stems from expanding the integrand on the r.h.s. of
that equation in a series of z around 1. The latter must include all terms that result in either
a logarithmically-divergent or a constant non-null term at z → 1, which typically implies up to
(1− z)0 contributions. In this way we arrive at the following identity:

−∂F (z)
∂z

= −
[
∂F (z)
∂z

− ∂F (z)
∂z

∣∣∣∣
asy

]
− ∂F (z)

∂z

∣∣∣∣
asy

, (6.302)

with:
∂F (z)
∂z

∣∣∣∣
asy

=
∫ 1

0
dy

∂f(y, z)
∂z

∣∣∣∣
exp

, (6.303)

having denoted by ∂f/∂z|exp the aforementioned series expansion. The integral in Eq. (6.303)
is computed analytically, and its result added to J̄NLL

2 (thus, given Eq. (6.72), it contributes to
cNLL
2,i for some i, depending on h(z); there are no contributions to bNLL

2,i ):

− ∂F (z)
∂z

∣∣∣∣
asy
−→ J̄NLL

2 (z) . (6.304)

Conversely, the quantity in square brackets in Eq. (6.302), where the rightmost term is regarded
as a regularising factor, is computed numerically13, and eventually included in ĴNLL

2 :

−

[
∂F (z)
∂z

− ∂F (z)
∂z

∣∣∣∣
asy

]
≡ −

∫ 1

0
dy

(
∂f(y, z)
∂z

− ∂f(y, z)
∂z

∣∣∣∣
exp

)
−→ ĴNLL

2 (z) . (6.305)

We list here the pairs ĝ (or g) and h that we handle in the way we have just described:

ĝa(v) = 1 + v2

1− v , ha(v) = log2(1− v) log v , (6.306)

ĝb(v) = 1 + v2

1− v , hb(v) = log(1− v)Li2(v) , (6.307)

13These are one-dimensional integrations of regularised integrals: the routine gsl_integration_qag of the GSL
library is employed, which guarantees a fast and reliable convergence.
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ĝc(v) = 1 + v2

1− v , hc(v) = log2(v) log(1 + v) , (6.308)

ĝd(v) = 1 + v2

1− v , hd(v) = log(v) log2(1 + v) , (6.309)

ĝe(v) = 1 + v2

1− v , he(v) = log(v)Li2(−v) , (6.310)

ĝf (v) = 1 + v2

1− v , hf (v) = log(1 + v)Li2(−v) , (6.311)

ĝg(v) = 1 + v2

1− v , hg(v) = log(1 + v)Li2
(

1
1 + v

)
, (6.312)

ĝh(v) = 1 + v2

1− v , hh(v) = Li3(1− v) , (6.313)

ĝi(v) = 1 + v2

1− v , hi(v) = Li3(−v) , (6.314)

ĝj(v) = 1 + v2

1− v , hj(v) = Li3
(

1
1 + v

)
, (6.315)

ĝk(v) = 1 + v2

1− v log(1− v) log v , hk(v) = log(1− v) , (6.316)

gl(v) = 1 + v2

1 + v
log2 v , hl(v) = log(1− v) , (6.317)

gm(v) = 1 + v2

1 + v
log v log(1 + v) , hm(v) = log(1− v) , (6.318)

gn(v) = 1 + v2

1 + v
Li2(−v) , hn(v) = log(1− v) , (6.319)

go(v) = 1
v
, ho(v) = log v log2(1 + v) , (6.320)

gp(v) = 1
v
, hp(v) = log(1 + v)Li2(−v) , (6.321)

gq(v) = 1
v
, hq(v) = log(1 + v)Li2

(
1

1 + v

)
, (6.322)

gr(v) = 1 , hr(v) = Li3(1− v) , (6.323)

gs(v) = 1
v
, hs(v) = Li3(1− v) , (6.324)

gt(v) = 1 , ht(v) = Li3
(

1
1 + v

)
, (6.325)

gu(v) = 1
v
, hu(v) = Li3

(
1

1 + v

)
, (6.326)

gv(v) = 1
v

log2(1− v) , hv(v) = log(1− v) . (6.327)

We stress again that each of these pairs will contribute to both Eq. (6.304) and (6.305). We
denote generically either of these contributions as follows:

Jnum
ρ (z) ←→

(
ĝρ, hρ

)
or

(
gρ, hρ

)
, ρ = a, . . . v . (6.328)
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These will enter J̄NLL
2 (z) and ĴNLL

2 (z) as linear combinations with identical coefficients (owing
to Eq. (6.302)), which however do depend on the flavour structure. Explicitly:

non− singlet :
∑
ρ

wNS,ρ J
num
ρ (z) = (6.329)

4 Jnum
a + 4 Jnum

b + 4 Jnum
h + 2 Jnum

c + 4 Jnum
d + 4 Jnum

e + 4 Jnum
f

− 4 Jnum
g − 4 Jnum

i + 8 Jnum
j − 4 Jnum

k − 2 Jnum
l + 8 Jnum

m + 8 Jnum
n ,

singlet :
∑
ρ

wS,ρ J
num
ρ (z) = (6.330)

4 Jnum
a + 4 Jnum

b + 4 Jnum
h − 2 Jnum

c − 4 Jnum
d − 4 Jnum

e − 4 Jnum
f

+ 4 Jnum
g + 4 Jnum

i − 8 Jnum
j − 4 Jnum

k + 2 Jnum
l − 8 Jnum

m

− 8 Jnum
n − 24nF Jnum

r ,

photon :
∑
ρ

wγ,ρ J
num
ρ (z) = (6.331)

− 8 Jnum
o − 8 Jnum

p + 8 Jnum
q + 8 Jnum

s + 16 Jnum
t − 16 Jnum

u − 4 Jnum
v .

The results of these linear combinations when the Jnum
ρ contributions are computed analytically

as in Eq. (6.304) are the following:∑
ρ

wNS,ρ J
num
ρ (z) = −2

3π
2 log(1− z) + 4

3π
2 + 10 log(2)2 , (6.332)

∑
ρ

wS,ρ J
num
ρ (z) = 2

3π
2 log(1− z) + 4π2 − 10 log(2)2 , (6.333)

∑
ρ

wγ,ρ J
num
ρ (z) = −4 log3(1− z) + 4

3π
2 log(1− z) + 4

3π
2 log(2)− 4 log(2)3 − 8ζ3 .

(6.334)

As was anticipated, the results on the r.h.s. of Eqs. (6.332)–(6.334) do not contribute to any
of the bNLL

2,i coefficients, while they enter the coefficients cNLL
2,1 and cNLL

2,0 (singlet and non-singlet),
and cNLL

2,3 , cNLL
2,1 , and cNLL

2,0 (photon).

6.B Coefficients of recursive solutions

In this appendix we report the results for the coefficients that enter Eq. (6.71) and Eq. (6.72).
Note that the NLL coefficients do already include the r.h.s. of Eqs. (6.332)–(6.334). All of the
coefficients that do not appear below are understood to be equal to zero. In the NLL coefficients,
we employ the following shorthand notation:

L0 = log µ2
0

m2 . (6.335)
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6.B.1 LL coefficients

• Non-singlet:
bLL

NS, 1,0 = 2 , (6.336)

cLL
NS, 1,0 = −2 , (6.337)

bLL
NS, 2,1 = 8 , (6.338)

cLL
NS, 2,1 = −8 , (6.339)

bLL
NS, 2,0 = 6 , (6.340)

cLL
NS, 2,0 = −2 , (6.341)

bLL
NS, 3,2 = 24 , (6.342)

cLL
NS, 3,2 = −24 , (6.343)

bLL
NS, 3,1 = 36 , (6.344)

cLL
NS, 3,1 = −12 , (6.345)

bLL
NS, 3,0 = 27

2 − 4π2 , (6.346)

cLL
NS, 3,0 = 9

2 + 4π2 . (6.347)

• Singlet:

bLL
S, k,i = bLL

NS, k,i ∀ k , i , (6.348)
cLL

S, k,i = cLL
NS, k,i ∀ k , i . (6.349)

• Photon:
cLL
γ, 1,0 = 1 , (6.350)

cLL
γ, 2,1 = 2 , (6.351)

cLL
γ, 2,0 = 3

2 −
2
3nF , (6.352)
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cLL
γ, 3,2 = 4 , (6.353)

cLL
γ, 3,1 = 6− 4

3nF , (6.354)

cLL
γ, 3,0 = 9

4 −
2
3π

2 − nF + 4
9n

2
F . (6.355)

6.B.2 NLL coefficients

• Non-singlet:
bNLL

NS, 0,1 = −4 , (6.356)

cNLL
NS, 0,1 = 4 , (6.357)

bNLL
NS, 0,0 = 2 (L0 − 1) , (6.358)

cNLL
NS, 0,0 = −2 (L0 − 1) , (6.359)

bNLL
NS, 1,2 = −12 , (6.360)

cNLL
NS, 1,2 = 12 , (6.361)

bNLL
NS, 1,1 = −14 + 8L0 + 8πb0 , (6.362)

cNLL
NS, 1,1 = 10− 8L0 − 8πb0 , (6.363)

bNLL
NS, 1,0 = 1− 20

9 nF + 4πb0 −
4πb1
b0

+ 4
3π

2 + L0(6− 4πb0) , (6.364)

cNLL
NS, 1,0 = −2 + 32

9 nF − 4πb0 + 4πb1
b0
− 4

3π
2 + L0(−2 + 4πb0) , (6.365)

bNLL
NS, 2,3 = −32 , (6.366)

cNLL
NS, 2,3 = 32 , (6.367)

bNLL
NS, 2,2 = 12(−5 + 2L0 + 4πb0) , (6.368)

cNLL
NS, 2,2 = −12(−3 + 2L0 + 4πb0) , (6.369)

182



6.B. Coefficients of recursive solutions

bNLL
NS, 2,1 = −17− 160

9 nF + 56πb0 −
32πb1
b0

+ 40
3 π

2 − 16π2b20 − 4L0(−9 + 8πb0) , (6.370)

cNLL
NS, 2,1 = −7 + 208

9 nF − 32πb0 + 32πb1
b0

− 40
3 π

2 + 16π2b20 + 4L0(−3 + 8πb0) , (6.371)

bNLL
NS, 2,0 = 9− 24πb1

b0
− 4πb0 + 6π2 + 8π2b1 − 8π2b20 −

16
3 π

3b0 − 40ζ3

+L0

(
27
2 − 24πb0 − 4π2 + 8π2b20

)
+ nF

(
40πb0

9 − 2
9(33 + 4π2)

)
, (6.372)

cNLL
NS, 2,0 = −4− 10

3 π
2 + 8π2b20 + 8πb1

b0
− 8π2b1 + 14πb0 + 16

3 π
3b0

+nF
(

22
9 −

64
9 πb0 + 8

9π
2
)

+ L0

(
9
2 + 8πb0 + 4π2 − 8π2b20

)
+ 40ζ3 . (6.373)

• Singlet:

bNLL
S, k,i = bNLL

NS, k,i ∀ k , i , (6.374)
cNLL

S, k,i = cNLL
NS, k,i ∀ k , i . (6.375)

• Photon:
cNLL
γ, 0,0 = (L0 − 1) , (6.376)

cNLL
γ, 1,2 = −3 , (6.377)

cNLL
γ, 1,1 = −7 + 2L0 −

4
3nF , (6.378)

cNLL
γ, 1,0 = −4 + nF

(
−26

9 −
2
3L0

)
+ 2πb0 −

2πb1
b0

+ L0

(
3
2 − 2πb0

)
, (6.379)

cNLL
γ, 2,3 = −6 , (6.380)

cNLL
γ, 2,2 = −37

2 + 4L0 −
2
3nF + 10πb0 , (6.381)

cNLL
γ, 2,1 = −37

2 + 8
9n

2
F + 18πb0 −

8πb1
b0

+ 2π2

+L0(6− 8πb0)− 4
3nF (5 + L0 − 2πb0) , (6.382)
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cNLL
γ, 2,0 = −45

8 +
(

52
27 + 4

9L0

)
n2
F + 4πb0 + 11

6 π
2 − 4π2b20 −

6πb1
b0

+ 4π2b1

+nF
(
−23

6 + 40πb0
9 + 8πb1

3b0
+ 2

9π
2 − L0 + L0

8πb0
3

)
+L0

(
9
4 − 6πb0 −

2
3π

2 + 4π2b20

)
− 6ζ3 . (6.383)

6.C Splitting functions for QED

In this appendix we report explicit expressions for the LO and NLO splitting functions in
QED [210]. The analogous LO and NLO splitting functions in QCD can be found on standard
textbooks [14]. The notation adopted here is the same of Sec. 1.6. Consistently with the rest
of the chapter, nF denotes the number of lepton families. Note that each charged lepton has a
charge squared equal to unity.

6.C.1 Leading order

The LO splitting functions are:

P
[0]
NS = P

[0]
ΣΣ =

(
1 + x2

1− x

)
+

= −(1 + x) + 2
(1− x)+

+ 3
2 δ(1− x) , (6.384)

P
[0]
Σγ = 2nF [x2 + (1− x)2] , (6.385)

P
[0]
γΣ = 1 + (1− x)2

x
, (6.386)

P [0]
γγ = −2

3nF δ(1− x) . (6.387)

6.C.2 Next-to-leading order

At NLO the lepton-lepton valence, lepton-antilepton valence and singlet splitting functions are:

PV,[1]
ee =

{
−
[

3
2 ln x+ 2 ln x ln(1− x)

]
pee(x)−

(
3
2 + 7

2x
)

ln x

− 1
2(1 + x) ln2 x− 5(1− x)

}
+ nF

{
−
[

10
9 + 2

3 ln x
]
pqq(x)− 4

3(1− x)
}

+ δ(1− x)
{(

3
8 −

π2

2 + 6ζ3
)
− nF

(
1
6 + 2π2

9

)}
, (6.388)

P
V,[1]
eē = 4(1− x) + 2(1 + x) ln x+ 2pee(−x)S2(x) , (6.389)

P S,[1]
ee = 20

9x − 2 + 6x− 56
9 x

2 +
(

1 + 5x+ 8
3x

2
)

ln x− (1 + x) ln2 x , (6.390)

184



6.C. Splitting functions for QED

with:
pee(x) = 1 + x2

(1− x)+
, (6.391)

S2(x) = −2Li2(−x) + 1
2 ln2 x− 2 ln x ln(1 + x)− π2

6 . (6.392)

Note that at NLO P S
ee = P S

eē. Thus the non-singlet and the singlet combinations of splitting
functions, Eq. (1.76) and Eq. (1.79) respectively, read:

P
[1]
NS = PV,[1]

ee − PV,[1]
eē , (6.393)

P
[1]
ΣΣ = PV,[1]

ee + P
V,[1]
eē + 2nFP S,[1]

ee . (6.394)

Eqs. (6.393)-(6.394) can be cast in the following form:

P [1] = P
[1]
R + P

[1]
+

2
(1− x)+

+ P
[1]
δ δ(1− x) (6.395)

with a the regular term, a the term proportional to a plus prescription and a term proportional
to a delta function. By an explicit computation, for the regular parts we obtain:

P
[1]
NS,R =

{
−
[

3
2 ln x+ 2 ln x ln(1− x)

]
(−1− x)−

(
3
2 + 7

2x
)

ln x

− 1
2(1 + x) ln2 x− 5(1− x)− 4(1− x)− 2(1 + x) ln x− 2

(
−1 + x+ 2

1 + x

)
S2(x)

}

+ nF

{
−
[

10
9 + 2

3 ln x
]

(−1− x)− 4
3(1− x)

}
, (6.396)

P
[1]
ΣΣ,R =

{
− 1 + x+

(
1
2 −

3
2x
)

ln x− 1
2(1 + x) ln2 x

−
[

3
2 ln x+ 2 ln x ln(1− x)

]
(−1− x) + 2

(
2

1 + x
− 1 + x

)
S2(x)

}

+ nF

{
− 16

3 + 40
3 x+

(
10x+ 16

3 x
2 + 2

)
ln x

− 112
9 x2 + 40

9x − 2(1 + x) ln2 x−
[

10
9 + 2

3 ln x
]

(−1− x)
}
, (6.397)

while the distributional parts are the same for the two functions:

P
[1]
NS,+ = P

[1]
ΣΣ,+ = −

[
3
2 ln x+ 2 ln x ln(1− x)

]
− nF

[
10
9 + 2

3 ln x
]
, (6.398)

P
[1]
NS,δ = P

[1]
ΣΣ,δ =

(
3
8 −

π2

2 + 6ζ3
)
− nF

(
1
6 + 2π2

9

)
. (6.399)
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The remaining NLO splitting functions are:

P
[1]
Σγ =nF

{
4− 9x− (1− 4x) ln x− (1− 2x) ln2 x+ 4 ln(1− x)

+
[
2 ln2

(
1− x
x

)
− 4 ln

(
1− x
x

)
− 2

3π
2 + 10

]
peγ(x)

}
, (6.400)

P
[1]
γΣ =

{
− 5

2 −
7
2x+

(
2 + 7

2x
)

ln x−
(

1− 1
2x
)

ln2 x− 2x ln(1− x)

−
[
3 ln(1− x) + ln2(1− x)

]
pγe(x)

}
+ nF

{
− 4

3x−
[

20
9 + 4

3 ln(1− x)
]
pγe(x)

}
,

(6.401)

P [1]
γγ = nF

{
− 16 + 8x+ 20

3 x
2 + 4

3x − (6 + 10x) ln x− (2 + 2x) ln2 x

}
− nF δ(1− x) , (6.402)

with:

peγ(x) = x2 + (1− x)2 , (6.403)

pγe(x) = 1 + (1− x)2

x
. (6.404)
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In the thesis, we have investigated several topics in Standard Model precision phenomenology for
LHC and future colliders. The concept of substructure has been the main thread running through
the various chapters of the thesis. Though the individual topics discussed differ significantly
from each other, they are intimately connected. We has seen how jet measurements provide
unique constraints on PDFs, and how more precise PDFs provide better predictions for jet
processes. Moreover, the formalism of PDFs usually adopted in QCD has been successfully
transplanted into QED, thereby providing a systematic improvement on fixed-order predictions.
In these Conclusions, we will recall the main outcomes of our studies while also broadening our
discussion towards possible directions for future analyses.

First, we concentrated on jet observables at LHC. In Chapter 2 we discussed the theoretical
predictions at various degrees of accuracy for QCD processes involving jets. In particular,
we focused on the single-jet inclusive cross section. In Chapter 3 we went on to study this
observable in great detail, concentrating on its definition. In an attempt to correct for its
non-unitarity, we proposed a set of alternative unitary weighted definitions [1]. Our study
revealed unknown features of the standard definition. It turned out that, thanks to its own
non-unitarity, the standard definition does not depend in a problematical way upon the value
of the momentum cutoff used in the jet definition. In addition, we found that the apparent
perturbative instability of the standard definition is the manifestation of an unnatural smallness
of the NLO K-factor for a value of the jet radius R ∼ 0.4, similar to the one usually used
by the experimental collaborations at the LHC. This unnatural smallness is a consequence
of an accidental cancellation between the individual contributions of the leading jet and of the
subleading jet to the total cross-section. Even if weighted definitions do not show obvious benefits
over the standard definition, those which include only the two leading jets show interesting
features. This finding indirectly confirms the observed better perturbative stability of dijet
observables.

We then moved to hadronic PDFs. In Chapter 4, within the NNPDF framework, we studied
in a systematic way the inclusion of jet measurements in a PDF fit [3]. We have found full
consistency among the constraints imposed by single-inclusive jets and dijets on PDFs, specif-
ically the gluon PDF. We have shown that NNLO corrections are crucial in order to ensure
compatibility of the jet observables with the rest of the global dataset. In addition, at NLO the
choice of central scale has a significant impact (with the scale choice ĤT for single-inclusive jets
better behaved at NLO), while at NNLO perturbative stability appears to be achieved. In a
comparative assessment of single-inclusive jets vs. dijets, we found that the dijet observable has
a more marked impact on the gluon central value. Moreover, dijet observables behave better
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perturbatively: as the perturbative order of the theory prediction increases, the data-theory
agreement clearly improves. However, the single-inclusive jet observable leads to a more signifi-
cant reduction of the gluon uncertainty. These observations could be due to theoretical reasons
but also to the nature of the current data. We expect that these issues will be settled with the
availability of more precise data, possibly for a greater variety of kinematic observables, includ-
ing more differential ones. We are waiting for the analysed data from LHC Run-II at 13 TeV, as
well as for data coming from future LHC Run-III and HL-LHC runs. Chapter 4 has been a first
step towards widening the set of jet observables used in precision PDF studies, which include
not only multi-differential jet cross-sections, but also jet substructure observables.

Chapter 5 focused on an analytical understanding of machine learning techniques used for
quarks versus gluon discrimination [4], which is a hot topic in jet substructure studies. First,
we proposed a variant of the standard N -subjettiness observable, the primary N -subjettiness
TN , which is only sensitive, at LL accuracy, to emissions of soft gluons off the original hard
parton. Thanks to the simple all-order behaviour of the observables {T1 . . .Tn}, we have been
able to determine that the optimal discriminant at LL is just a cut on Tn. The central part
of Chapter 5 was the analytical study of the LL behaviour of a perceptron that takes primary
N -subjettiness variables as inputs. We found that the ability of the neural network to find the
correct minimum actually depends on the functional form of the inputs. Namely, it succeeds
if logarithms (or square logarithms) of the N -subjettiness are passed, but it fails with linear
inputs. Furthermore, we have also found that, in the case of linear inputs, the learning rate of the
perceptron is slower than with other forms of inputs. Finally, we have considered a more realistic
framework for our analysis, with a full neutral network trained on pseudodata generated with
a general-purpose Monte Carlo parton shower. We have obtained qualitative agreement with
the perceptron analysis. The findings in Chapter 5 highlight, in a quantitative way, how having
expert-knowledge of the underlying physical phenomena helps when dealing with classification
problems that employ ML techniques. In addition, from this preliminary analysis, primary
N -subjettiness appears to be an intriguing observable worthy of further investigations; going
beyond LL accuracy for primary N -subjettiness is not only possible but desirable. Whether
or not it is possible to study more complicated network architectures analytically is an open
question. We have just begun scratching the surface of these types of calculations, and we look
forward to future work in this direction.

Finally, in Chapter 6, we devoted our attention to the computation of the electron, positron,
and photon PDFs of an unpolarised electron. QED PDFs are crucial ingredients for the high-
precision predictions needed for future e+e− colliders. We improved the accuracy of the existing
LL results to NLL accuracy, solving the DGLAP evolution by means of both numerical and
analytical methods [2]. The two solutions were shown to agree extremely well (typically, at the
10−4 level). The analytical results stem from an additive matching formula which combines a
prediction that is accurate to all orders in α for z → 1, with a prediction that is accurate up to
O(α3) in the whole z range. We found the NLL large-z asymptotic result of the electron PDF to
possess the same qualitative behaviour as that of the LL result, with the z → 1 singularity even
more pronounced than at LL because of the presence of additional log(1− z) terms. As for the
photon PDF, which at LL vanishes at z → 1, at NLL it grows logarithmically, thus exhibiting,
similarly to the electron PDF, an enhanced growth at higher orders. In view of the rapid growth
of the electron PDF at z → 1, the analytical knowledge of the PDFs is crucial in the context
of numerical computations, because it allows to adjust the integration procedure, which would
otherwise be hardly converging.
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Work is still ongoing in the continuation of Chapter 6. In Chapter 6 we worked in the MS
subtraction scheme. Some of the explicit log(1− z) logarithms in the NLL PDFs mentioned
above stem directly from this scheme choice. In an alternative factorization scheme, similar to
the DIS scheme usually adopted in QCD, in which one maximally simplifies the PDFs’ initial
conditions, such logarithms are absent. Moreover, the phenomenological impact of NLL PDFs
on physical observables is still undetermined, and work is ongoing in this direction too. NLL
electron PDFs not only provide a NLL correction to processes with incoming electrons but also
allow to treat photon-initiated hard processes in the same framework.

We summarized the main results of each individual chapter in this thesis, and we now bring
the reader’s attention to some transversal topics which pervaded the thesis.

One such recurring topic was machine learning. We met neural networks in two different
contexts: in Chapter 4, when discussing the NNPDF methodology, and in Chapter 5, which is
entirely devoted to the application of ML to jet physics. Indeed, machine learning is nowadays
becoming increasingly used in the field of particle physics phenomenology. However, despite its
rapid development and the unquestionable improvements that ML brings to particle physics, it
is often met with a certain degree of suspicion, given its intrinsic black box nature. Hence, it is
extremely important — and will be even more so in the future. — to be able to test the ML
framework in environments we can control. Chapter 5 took a first step in this direction: we
anchored the applicability of ML to the solid ground of perturbative QCD. We shed a new light
on the possibility of validating the neural network by means of analytical calculations. In spirit,
the approach adopted in Chapter 5 shares similarities with closure tests like those the NNPDF
collaboration routinely performs to assess the robustness of the PDF fitting methodology.

The importance of an analytical approach was another recurring topic throughout the thesis.
Chapter 3 used an analytical approximation to the full cross section in order to highlight features
of the various definitions for the single-jet inclusive cross section. Chapter 6 found important
differences in the large-z region between the electron PDFs at NLL as compared to those at LL.
Analytic calculations have allowed us to understand these behaviours beyond what would have
been achievable numerically. As already remarked, such analytical knowledge is also crucial
when performing convolutions. Furthermore, the recursive analytical solutions allowed us to
cross-check the numerical solutions. This is vital for the degree of accuracy we aimed to reach.
Finally, the good analytical properties of the primary N -subjettiness definition paved the way
for the studies of Chapter 5.

Another leitmotiv of this thesis has been the exploration of new definitions of well-known
observables, as developed both in Chapter 3 and Chapter 5. Chapter 3 introduced alternative
unitary definitions of the single-jet inclusive cross section. Regrettably, in the end we found no
notable improvement over the standard definition; however, as a by-product of this investigation,
we revealed new features of the standard definition. In Chapter 5 we introduced the primary N -
subjettiness, a variant of the standard N -subjettiness. The new observable is more amenable to
analytical calculations and it maintains, if not exceeds, the discriminating power of the standard
definition, leading to an improvement in term of performance.

The huge amount of experimental data LHC will have collected at the end of its life will
drive the experimental community towards tremendously precise measurements. Equally precise
theoretical predictions within the Standard Model framework will then be an indispensable
prerequisite for a proper comparison. Wise use of machine learning technologies, analytical
control over numerical results, and flexibility in the choice of observables will all play a key role
in the near future of Standard Model phenomenology.
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Résumé substantiel (Français)

Dans cette thèse, nous avons étudié plusieurs sujets de phénoménologie du Modèle Standard au
LHC et aux futurs collisionneurs. Le concept de sous-structure a été le principal fil conducteur
des différents chapitres de la thèse. Bien que les thèmes abordés diffèrent sensiblement les uns
des autres, ils sont intimement liés. Nous avons vu comment les mesures des jets fournissent des
contraintes uniques sur les PDF, et comment des PDF plus précises permettent de mieux prévoir
les processus des jets. En outre, le formalisme des PDF généralement adopté dans la QCD a été
utilisé avec succès en QED, ce qui permet une amélioration systématique des prévisions d’ordre
fixe.

Tout d’abord, nous nous sommes concentrés sur les observables de jets au LHC. Dans le
chapitre 2, nous avons discuté de prédictions théoriques à divers degrés de précision pour les
processus de QCD impliquant des jets. En particulier, nous nous sommes concentré sur la section
transversale inclusive d’un seul jet. Dans le chapitre 3, nous avons étudié ce observable dans
de détail, en se concentrant sur sa définition. Dans le but de corriger son non-unitarieté, nous
avons proposé des definitions alternatives unitaires [1]. Notre étude a révélé des caractéristiques
inconnues de la définition standard. Nous avons constaté que c’est grâce à sa propre non-
unitarieté, que la definition standard ne dépend pas de manière problématique de la valeur de
la coupure sur l’impulsion utilisée dans la définition du jet. En outre, nous avons constaté que
l’instabilité perturbatrive apparente de la definition standard est la manifestation de la petite
taille accidentelle du facteur K du NLO pour une valeur du rayon du jet R ∼ 0, 4, similaire à
celle habituellement utilisée par les collaborations expérimentales au LHC. Cette petite taille
accidentelle est une conséquence d’une annulation entre les contributions individuelles du jet
de tête et du jet secondaire à la section transversale totale. Même si les définitions pondérées
unitaires ne présentent pas d’avantages évidents par rapport à la définition standard, celles qui
n’incluent que les deux principaux jets montrent des aspects interessants. Ce résultat confirme
indirectement les meilleures caractéristiques de stabilité perturbative des observables de dijet.

Nous sommes ensuite passés aux PDF hadroniques. Au chapitre 4, dans le cadre de la
collaboration NNPDF, nous avons étudié de manière systématique l’inclusion des mesures des
jets dans un fit de PDF [3]. Nous avons constaté une cohérence totale entre les contraintes
imposées par des mesures de dijet et d’un seul jet sur les PDF, en particulier la PDF du gluon.
Nous avons montré que les corrections NNLO sont cruciales pour assurer la compatibilité des
observables de jet avec le reste de l’ensemble des données. En outre, au NLO, le choix de
l’échelle centrale a un impact significatif (avec le choix d’échelle choix ĤT pour les observables
d’un seul jet donnant un meilleur comportament au NLO), tandis qu’au NNLO une stabilité
perturbatrive semble être atteinte. Dans une évaluation comparative des jets et observables
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de dijet, nous avons constaté que le dijet a un impact plus marqué sur le valeur centrale du
gluon. De plus, les observables de dijet se comportent mieux au niveau perturbatif: à mesure
que l’ordre perturbatif de la prédiction de la théorie augmente, l’accord des données avec la
theorie s’améliore nettement. Cependant, l’observable d’un seul jet conduit à une réduction
plus significative de l’incertitude sur la PDF du gluon. Ces observations pourraient être dues
à des raisons théoriques mais aussi à la nature des données actuelles. Nous espérons que ces
questions seront réglées grâce à la disponibilité de données plus précises, éventuellement pour une
plus grande variété d’observables cinématiques, notamment plus différentielles. Le chapitre 4 a
été un premier pas vers l’élargissement de l’ensemble des observables de jets utilisées dans les
études de PDF de précision.

Le chapitre 5 est focalisé sur une compréhension analytique des techniques de machine learn-
ing utilisées pour la discrimination de quark contre gluon jet [4], qui est un sujet d’actualité
dans les études sur la sous-structure des jets. Tout d’abord, nous avons proposé une variante de
l’observable N -subjettiness, le primary N -subjettiness TN , qui est seulement sensible, à préci-
sion logarithmique dominante, aux émissions de gluons soft à partir de la partie hard d’origine.
Grâce au comportement simple de tous les ordres des observables {T1 . . .Tn}, nous avons pu
déterminer que le discriminant optimal à LL n’est qu’une coupure Tn. La partie centrale du
chapitre 5 était l’étude analytique du comportement d’un perceptron qui prend des variables
primaires comme inputs. Nous avons trouvé que la capacité du réseau neuronal à trouver le bon
minimum en fait dépend de la forme fonctionnelle des inputs. En d’autres termes, il réussit si
les logarithmes (ou logarithmes carrés) du N -subjettiness sont donnés, mais il échoue avec les
inputs linéaires. De plus, nous avons également constaté que, dans le cas des inputs linéaires, le
taux d’apprentissage du perceptron est plus lent que avec d’autres formes d’inputs. Enfin, nous
avons envisagé un cadre plus réaliste pour notre analyse, avec une réseau de neurons complet
formé sur les pseudodonnées générées avec un Monte Carlo parton shower. Nous avons obtenu
un accord qualitatif avec l’analyse du perceptron. Les conclusions du chapitre 5 mettent en évi-
dence, de manière quantitative, comment la connaissance des phénomènes physiques sous-jacents
est utile pour traiter les problèmes de classification qui font appel à des techniques de ML. En
outre, d’après cette analyse préliminaire, la primary N -subjettiness semble être une observable
intéressante digne d’être approfondie; aller au-delà de la précision logarithmique dominante est
non seulement possible mais souhaitable. S’il est possible ou non d’étudier analytiquement des
architectures de réseau plus complexes est une question ouverte. Nous venons de commencer à
gratter la surface de ces types de calculs, et nous attendons avec impatience les travaux futurs
dans ce direction.

Enfin, au chapitre 6, nous avons consacré notre attention au calcul de la PDF de l’électron,
du positron et du photon PDF non polarisés. Les PDF en QED sont des ingrédients essentiels
pour les prévisions de haute précision nécessaires pour les futurs collisioneurs e+e−. Nous
avons amélioré la précision des résultats au LL existants pour atteindre la précision du NLL, et
résolu l’évolution des équations DGLAP par des moyens à la fois numériques et analytiques [2].
Les deux solutions se sont révélées très concordantes (généralement, au niveau de 10−4). Ces
résultats proviennent d’une formule d’appariement qui combine un terme exacte à toutes les
ordres en α pour z → 1, avec un qui est précis jusqu’à O(α3) dans toute la gamme des z. Nous
avons constaté que le résultat asymptotique de la PDF électronique au NLL à grande échelle
(z) a un comportement similaire a celui du résultat LL, la singularité z → 1 étant encore plus
prononcée que au LL en raison de la présence de termes supplémentaires log(1− z). Quant à
la PDF du photon, qui est nulle à LL à z → 1, à NLL elle croît de manière logarithmique,
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exposant ainsi, à l’instar de la PDF électronique, une croissance accrue aux ordres supérieures.
Compte tenu de la croissance rapide de la PDF électronique à z → 1, la connaissance analytique
des PDF est cruciale dans un contexte de haute precision car ça permet d’ajuster la procédure
d’intégration, qui, autrement, ne convergerait pas. L’impact phénoménologique des PDF NLL
sur les observables physiques est encore indéterminé, et des travaux sont en cours dans ce sens.
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