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Introduction

In the last fifteen years particle physicists have been provided with an enor-
mous amount of data. At CERN, the Large Hadron Collider (LHC) started
in 2008 and subsequent upgrades led the machine to increasingly high center
of mass energies, reaching 7 TeV in 2010 and, then, the peak of 13 TeV in
2015. Data from LHC have permitted for deep and meticulous tests of the
Standard Model, culminating with the observation of the Higgs Boson. It
was the last missing piece for a consistent formulation of the theory. Even
if deviations from Standard Model predictions have never been measured so
far, we know that it does not answer to all our questions. Gravity is not
included and it also fails in explaining the hierarchy of interaction strengths
and particle masses. Moreover, Cosmological observations suggest the pres-
ence of Dark Matter and Dark Energy, that have so far evaded our subatomic
experiments.

Through particle physicists, it is a shared opinion that we miss of a
proper phenomenological input. Consequently, we are particularly inter-
ested in producing high precision theoretical calculations and experimental
measurements within the Standard Model. Cross sections are the quantities
we are mainly interested in. A cross section tells us the expected number
of events of a certain kind in a particle collision experiment. Firstly, efforts
had been mainly directed in total cross sections, which are usually referred
to as completely inclusive cross sections. From a theoretical point of view,
such observables are the easiest we can deal with. Moreover, these are the
situations in which experiments provide the maximum possible statistics.
Subsequently, the focus has shifted on more exclusive observables, namely
differential cross sections. A differential distribution carries more theoret-
ical information than its inclusive counterpart, but it is more difficult to
compute. Experimentally, the price is a poorer statistics. The remedy for
the latter will be provided by other upgrades of LHC, precisely aiming at in-
creasing the number of events observed. After the third run of LHC, whose
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start is scheduled for the next months, another long shutdown will be used
for the installation of the High-Luminosity upgrade, which will increase the
total number of events (Luminosity) by almost a factor of ten.

In this thesis, we are interested in theoretical predictions. We consider
high energy processes in QCD with colourless final states, such as Higgs
production or the Drell-Yan. The case of strongly interacting final states
is more complicated and we will not discuss it. In the Drell-Yan process, a
lepton pair is produced with a gauge boson as intermediate state. In this
thesis we focus on the case of Higgs production, whose cross section is com-
puted in the framework of an effective field theory, in which the top quark
mass is considered much bigger than any other scale.

Cross sections in Quantum Field Theory (QFT) are calculated by means
of perturbation theory. The final result is written as a power expansion with
respect to the coupling constant, truncated at some perturbative order. The
result of such a calculation is usually called a fixed order cross section. If
the expansion parameter is small, then higher orders should give corrections
of steadily decreasing importance. And indeed one way of reducing the the-
oretical uncertainty is compute a new perturbative order. Sometimes this is
not sufficient. In some kinematical regions, the perturbative series is spoiled
by the presence of so called large logarithms. Whenever a process is charac-
terized by two or more different scales, these usually appears through their
ratio in logarithmic contributions. If two, or more, of these scales become
very different from each other, logarithms grows in an uncontrolled way,
spoiling the convergence of the perturbative series. These large logarithms
need to be resummed to all perturbative order.

Resummation Theory is the solution to this problem. We are particu-
larly interested in Threshold Resummation, devoted to the summation of
logarithms arising in the threshold region. The threshold kinematic config-
uration is defined by a partonic centre of mass energy which is just enough
to produce the final state. An emitted gluon is obliged having vanishing
energy, that is it becomes soft. The energy of a soft gluon and the invariant
mass of the final state are very different and it gives rise to large logarithms.
Threshold resummation for inclusive observables has been achieved long
ago. Results are also available for distribution differential in rapidity, Y , or
transverse momentum, pT , of the final state. On the contrary, there are no
available resummation prescriptions for completely differential distributions,

6



Contents

that is differential in both, the transverse momentum and rapidity:

d2σ

dpTdy
.

The purpose of this thesis is understanding the general structure of soft
large logarithms in completely differential distribution. We organize the
work as follows. Chapter 1 consists of a general overview of QCD. We
present the parton model in its historical formulation and discuss the effect
of QCD corrections to the LO. In Chapter 2 we describe threshold resumma-
tion. We want to highlight the general strategy and present known results.
In particular, we introduce the Mellin and the Mellin-Fourier transform as
tools to factorize the partonic cross section from the PDFs and to single
out the threshold region. These transforms need to be taken with respect
to proper partonic variables. Then, we describe resummation formulae for
inclusive and single differential cross sections. In Chapter 3 we consider
the completely differential distribution for Higgs production at NLO, using
results from ref.[16]. We describe the kinematic of the process and its fac-
torization properties under a Mellin-Fourier transform. Understanding the
kinematic is a fundamental step in order to find the proper soft limit. We
expect soft large logarithms to appear, in Mellin-Fourier reciprocal space, as
logarithms of the conjugated variables (N,M). We then perform a change
of variable of the NLO partonic cross section, expressing it as a function
of the Mellin-Fourier integration variables. In Chapter 4 we consider the
problem of explicitly computing the double transform. We presents three
results. First, we compute a double Mellin transform of the rapidity cross
section at NLO and verify that it agrees with the - already known - general
resummation formula. We note that a double Mellin transform is simply re-
lated to the Mellin-Fourier one by a linear transformation of the reciprocal
space variables. Then, we come back to the fully differential distribution
and compute the double transform by first taking the small-pT limit. The
small-pT simplify the kinematic, since it approaches the pT integrated one.
Finally, we deal with the full problem of fixed pT and Y . We perform a
suitable expansion of the integrand and then we compute the double trans-
form on the first relevant order. We formulate a conjecture for the complete
series and make a check of consistency with our first order result.
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Chapter 1

QCD and the Parton Model

This chapter is devoted to a general review of basic Quantum Chromody-
namics. Our intention is to set up the framework for the next chapters,
trying to outline the general structure of a perturbative calculation. Con-
sequently, we do not give proofs of the mentioned theorems and we do not
make explicitly computations either. The interested reader is referred to
literature.

1.1 QCD lagrangian

Quantum ChromoDynamics (QCD) is the quantum field theory that de-
scribes strong interactions in the contest of the Standard Model of elemen-
tary particles. QCD is formulated as a gauge theory, with SU(3) gauge
symmetry group. It introduces spin-1/2 particles, called quarks, as elemen-
tary constituents of hadronic matter. Interactions are mediated by gluons,
gauge bosons described by vector fields. The lagrangian of the theory is
given by

L =
∑

flavour

q̄a (i /D −mq)ab qb −
1
4F

a
µνF

µν,a, (1.1)

where repeated indexes are supposed to be summed over. We have intro-
duced some operators:

• qa is the Dirac spinor field associated to quark and its antiparticle,
with colour charge index a.

• The sum over flavour has to be understood as a sum over different q
fields.
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CHAPTER 1. QCD AND THE PARTON MODEL

• Dµ = ∂µ − igsλaAaµ is the covariant derivative, where Aaµ, a = 1 . . . 8,
are the vector gauge fields representing gluons, {λa} is a basis for
a representation of su(3) Lie algebra and gs is the theory coupling
constant.1

• The field strength tensor is given by F aµν = ∂µA
a
ν−∂νAaµ+gsfabcAbµAcν .

Any matrix representation of a Lie algebra must satisfy commutation
relations

[ta, tb] = i fabc tc. (1.2)

The set of numbers fabc are called the structure constants of the algebra2

and the ta’s are elements of the algebra.

Importantly, in the field strength tensor there is a term which is bilinear
in fields and proportional to the structure constants. It leads to interaction
vertices with three or four gluons. Such term vanishes in an abelian theory.
As a consequence, whereas gluons may interact with each others, photons
cannot, being electromagnetic interactions built with the U(1) symmetry
group, which is abelian.

We have not said yet what the attribute gauge means. First, we require
that quark fields transform in the fundamental three-dimensional unitary
representation of SU(3), for which the set of matrices {λa} may be chosen
as the well-known Gell-Mann matrices. More in general, a n-dimensional
object is said to transform in the n-dimensional representation of a group
G if it obeys the rule

ψi 7−→ ψ
′
i = [g]ij ψj ∀g ∈ G, (1.3)

where g is the abstract group element and [g]ij is its matrix representation.
For each quark fields, that is for each flavour, we consider a local version

of this transformation law

ψi(x) 7−→ ψ
′
i(x) = exp(iθa(x)λa)ij ψj(x). (1.4)

Here θa(x) is a function which selects an element of the group for any space-
time point. Eq.(1.4) if what we call a (local) gauge transformation. Note

1In the following we will use the more common parameter αs = g2
s

4π2In a certain way, these are the most important features of a Lie group. Indeed, given
a representation of the algebra, if the exponential map is surjective, which is the case of
SU(n), then we also have a group representation.
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1.1. QCD lagrangian

that the group elements have been written as the exponential of suitable
algebra counterparts.

The lagrangian in Eq.(1.1) is built as a gauge invariant quantity, namely
its variation vanishes under the local action of SU(3), provided that also
the Aaµ fields transform accordingly. In particular they must transform in
the eight-dimensional - adjoint - representation.
This is how a gauge theory is built in general: given a unitary representa-
tion of a symmetry group and an array of Dirac fermions which transform
locally as in Eq.(1.4), then the requirement of invariance of the lagrangian
forces the introduction of corrective gauge fields transforming in the adjoint
representation.

The adjoint representation has dimension which is equal to the group
dimension. As a consequence, the number of gauge bosons is fixed by
the dimensionality of the group. For strong interactions dim(GQCD) =
dim(SU(3)) = 8 and we have eight different gluons g. The other Stan-
dard Model example is given by Electroweak interactions, with GEW =
SU(2) ⊗ U(1) symmetry group. Since dim(GEW ) = 4 then there are four
gauge bosons: the photon γ, the Z0 and the charge couple W±.
A basis for the adjoint representation is given by

[Ta]bc = −ifabc. (1.5)

Its a general result in Lie Group theory that the structure constants give
a full description of the adjoint representation. The last thing to do is giving
a proper dynamic to gauge fields. This is what the field strength tensor term
provide for.
It is not difficult, though not very insightful, to verify the invariance of
Eq.(1.1). This is made particularly simple if one considers infinitesimal
transformations.
The important message here is that this local invariance principle underpins
the construction of each theories in the Standard Model.

The number of flavour is a phenomenological input: there are nf = 6
flavour of quarks, carrying fractional charges and different in masses. We
will consider high energy processes in which all quarks’ masses are negligible,
apart from mtop which is quite large if compared with the others.3

3Actually, it is also large if compared weak bosons and, importantly, the Higgs Boson.
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CHAPTER 1. QCD AND THE PARTON MODEL

flavour d u s c b t
name down up strange charme bottom top
charge -1/3 2/3 -1/3 2/3 -1/3 2/3
mass ≈ 5.0Mev ≈ 2.5Mev ≈ 0.1Gev ≈ 1.3Gev ≈ 4.2Gev ≈ 173Gev

Table 1.1: Quarks in the Standard Model

1.1.1 Gauge theory quantization

It is far from the purposes of this thesis to dwell in a detailed treatment
of gauge theories quantization procedure, which is a rather sophisticated
topic, especially if a non abelian symmetry is involved, as in our case. We
just want to outline the difficulties, outline the general solution and explain
the main consequences. For more details, we refer the Reader to Refs. [13,
22].

Although the gauge principle is a very powerful constructive tool, it leads
to some trouble in the quantization procedure. This becomes completely
manifest when the functional approach is pursued. The naive application
of the Feynman path integral in calculating the gauge boson propagator
does not work. In particular, it is not possible to invert the quadratic form
which defines it. This is due to the fact that we are trying to perform a sum
- functional integration - over each possible field configurations, also gauge
equivalent ones, which we cannot distinguish, in the sense that the weight of
the functional sum is constant over such configurations. In other words, we
are just integrating a constant over an infinite domain, the "volume" of the
gauge group. First, we make the following observation: if the gauge group
is supposed to represent a symmetry, it should be impossible to detect a
gauge-transformed fields configuration. Observable must be gauge invariant
quantities. As a consequence, it is our right to just "fix the gauge"4, and we
expect the result to be independent from our fixing choice.

There is a very simple and illuminating way of looking at this and it
is represented by the discrete case. Consider the following two dimensional

4The procedure is indeed called gauge fixing
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1.1. QCD lagrangian

integral

I(j) = 1
I0

∫∫
R2
dx dy e−

1
2 bx

2+jx,

I0 =
∫∫

R2
dx dy e−

1
2 bx

2
.

(1.6)

I(j) is clearly ill defined in both the normalization I0 and the numerator.
I(j) could represent the generating function for a statistical theory, with
weight e− 1

2 bx
2 . The statistical moments would be given by

< xn >= dn

djn
I(j)|j=0. (1.7)

A translation along the y axis is irrelevant to the physics, in the sense that
it does not change the statistical weight, exactly as gauge transformations
do. We can just get rid of this nonphysical degree of freedom. There are
different ways of proceeding, all giving the same result: we could limit the
y-integration over a compact domain or we could add a convergence factor,
such as e−ξy2 . The easiest one is probably the following

Ireg(j) =
(
Ireg0

)−1 ∫∫
R2
dx dy δ(y − y0)e−

1
2 bx

2+jx,

Ireg0 =
∫∫

R2
dx dy δ(y − y0)e−

1
2 bx

2
,

(1.8)

which just eliminates the integral over y. Feynman path integral is just the
continuous limit of a the N -dimensional generalization of this last example.
We mentioned above, in the case of the functional integral, about an operator
which we could not invert. We can also give the same interpretation to
Eq.(1.6). It is known that the the n-dimensional purely Gaussian integral
is given by ∫

Rn
dxn e−~xA~x = (2π)n/2√

det(A)
(1.9)

where A must a n× n invertible matrix, otherwise det(A) = 0.
Now, the normalization in Eq.(1.6) can be recast in the form

I0 =
∫∫

R2
dx dy e−

1
2~xB~x, (1.10)

where
B =

(
b 0
0 0

)
, (1.11)

13



CHAPTER 1. QCD AND THE PARTON MODEL

which is clearly not invertible.

The case of a functional integral is far more complicated and we are not
going to reproduce here the gauge fixing procedure. A careful computation
leads, [12, 22], to the following adjustments in the QCD lagrangian

Lfixing = − 1
2ξ (∂µAµa)2

Lghost = −c̄a(∂µDµ
ab)cb,

(1.12)

We have introduced two novelties: ca fields are called Faddeev-Popov
ghost and they are anticommuting scalar fields. They are not physical,
meaning that we cannot observe ghost particles. Nonetheless, they play an
important role in giving physical gauge invariant results5. This last asser-
tion leads us to the other new parameter, ξ, which is completely arbitrary
and parametrizes the gauge choice. The final, measurable, result must be
independent from ξ. It is possible to prove, at any order in perturbation
theory, that this is exactly the case, provided ghosts are taken into account.

1.2 Running of the coupling: asymptotic freedom
Observables in particle physics are computed by means of perturbation the-
ory. The main idea can be summarized as follows: the power expansion
of observable with respect to some small dimensionless parameter, may be
truncated at some fixed order, still giving an accurate prediction. Higher
orders represent corrections to the approximate result.
The coupling constant of the theory is usually chosen to be the expansion
parameter. This is justified in QED, where αem ≈ 1

137 . On the contrary, at
first sight QCD seems to preclude any perturbative treatment, at least at
small energy, where the coupling αs does not satisfy the above condition. In
order to find the solution to this issue, we first need to investigate deeper
perturbation theory.
Consider an observable, Ô, computed as power series of the coupling. In
general, Ô should depend on the coupling itself, α, the kinematic of the pro-
cess and properties of the particles involved, mainly their masses and spins.
In general, we write

Ô = Ô(α, {pi,mi, si, ...}), (1.13)
5Observe that the covariant derivative, which appears in the ghost term, is in the

adjoint representation. Since structure constants are all zero in abelian theories, ghosts
decouple from gauge fields in that case. They remain as free propagators that can be
ignored. This is the case of electromagnetic interactions.

14



1.2. Running of the coupling: asymptotic freedom

and the formal perturbative series in readily given

Ô =
∞∑
n=1

Ôn({pi,mi, si, ...})αn. (1.14)

For the sake of discussion, suppose we want to deal with a process in which
all energy scales, apart from one that we call Q, are negligible. The general
expression for the observable reduces to Ô = Ô(Q;α). If we make the further
hypothesis that Ô is a dimensionless quantity, then we should write

Ô = Ô(α), (1.15)

that is Ô has reduced to a constant to be computed perturbatively.
It is well known that corrections to the tree level6 usually give rise to diver-
gent integrals for loop diagrams, due to the UV behaviour of the involved
expressions. The problem has been resolved long ago, first operationally,
by Feynman and others, and then conceptually, by Kenneth Wilson, see
[26]. The procedure through which we deal with these infinities is called
renormalization. One of the main consequences of renormalization is the
introduction of an auxiliary, although completely arbitrary, energy scale µ.
Equipped with a new scale, we can no longer rely on Eq.(1.15). It is possi-
ble to construct the dimensionless ratio Q2/µ2 on which Ô, as well as the
coupling, may depend. Instead of Eq.(1.15), we shall write

Ô = Ô(Q
2

µ2 ; α(µ2)) (1.16)

The important message here is that in renormalized quantities a new
scale dependence may appear. In this case, Ô depends on Q2. This has
been observed experimentally, for example in the ratio between the rate of
production of hadrons and that of charged leptons, in electron-positron an-
nihilation, [12].
Remarkably, the coupling constant acquire a scale dependence too. It is nec-
essary to proceed carefully: a dimensionless observable may acquire a scale
dependence, but the µ dependence should disappear in the final result7. In
fact, being µ a completely arbitrary scale, nothing that is observable can
depend on it.

6We call tree level, or Born level, the first non trivial perturbative order.
7Whenever the series is truncated, a spurious µ dependence remains in the last pertur-

bative order added.

15



CHAPTER 1. QCD AND THE PARTON MODEL

We express this by requiring the following differential equation to hold be-
yond perturbation theory

µ2 d

dµ2 Ô(Q
2

µ2 ; α(µ2)) =
[
µ2 ∂

∂µ2 + β(α(µ2)) ∂

∂α(µ2)
]
Ô = 0, (1.17)

where we have introduced the beta function

β(α(µ2)) := d

d log(µ2)α(µ2) (1.18)

Eq.(1.17) is known as Callan-Symanzik equation and it plays an impor-
tant role in Quantum Field Theory. The beta function tells us about the
scale dependence of the coupling and can be computed perturbatively as a
power series in the coupling itself

β(α(µ2)) = −β0α
2 − β1α

3 + ... (1.19)

It turns out that β is positive for QED, but it is negative in QCD. The
electromagnetic coupling is an increasing function of the energy, whereas the
strong coupling reduces as energy increases. To be more precise, the first
coefficient, β0, is given in QCD by

β0 = 11CA − 4nfTF
12π (1.20)

where CA and TF are group-related constant and nf is the number of flavour
in the theory. For SU(3) and for nf < 17 the beta function is negative.
Solving Eq.(1.18) at lowest order we get

αs(Q2) = αs(µ2)
1 + β0αs(µ2) log(Q2/µ2) (1.21)

As Q2 approaches infinity, αs vanishes. This property is called Asymp-
totic Freedom.

Here is the solution to our dilemma: it may be possible to apply pertur-
bation theory in QCD, provided we only consider processes at sufficiently
high energies. Nonetheless, we cannot avoid to deal with strongly interact-
ing initial and final states, namely hadrons. We will give the solution to this
issue in the next section.

We conclude with an important remark about the running coupling.
There is an energy scale at which Eq.(1.21) becomes bigger than unity and
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1.3. The parton model

eventually diverges. This energy scale is usually written as ΛQCD and it
is called the landau pole of the quantum theory. It is not physical, since
perturbation theory has already broken down8 at a slight bigger energy (or
smaller energy, in QED), when αs ≈ 1. Below (Above) that threshold, QCD
(QED) phenomena are inevitably non perturbative. That is the region where
confinement takes place and quarks and gluons bound themselves in hadronic
matter. We are now ready to explain how we can describe hadrons.

1.3 The parton model
We are interested in processes involving hadrons in initial and final states.
A first model was proposed by Feynman and it is usually referred to as the
Naive Parton Model. Though this is the old approach to the matter, for ped-
agogical reasons we present it here in its original formulation. The starting
point is the assumption that even if we are not able to describe hadrons in
a non-perturbative way, nonetheless they are made up of elementary par-
tons. Consequently, in order to compute hard scattering process, we can
try to describe this initial state in terms of elementary partons. As first
example, consider a process in which an electron exchange a photon of high
virtuality with a proton and produces hadrons as final states. This process
is schematically depicted in Figure 1.1a and it is called DIS (Deep Inelas-
tic Scattering). It has been studied both, theoretically and experimentally,
since the 1960s. Although it is the simplest process involving hadron in the
initial state, yet its description gives a complete overview of the techniques
used in more intricate situations.

In the parton model we assume that each parton carries a fraction zi of
the total momentum p of the proton, that is

p =
∑
i

zip =
∑
i

p̂i

0 ≤ zi ≤ 1 and
∑
i

zi = 1
(1.22)

Also, each parton is perfectly collinear to the hadron it comes from.
Moreover, we need to neglect parton masses, otherwise Eq.(1.22) makes no
sense. We define fpi (z, i) to be the probability density of extracting a parton
i = qf , g, γ, ..., with momentum fraction zi, from the proton. These Parton
Distribution Functions, PDFs, contain all the non-perturbative information.

8Note that also Eq.(1.21) does not hold anymore, because it is a perturbative solution
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CHAPTER 1. QCD AND THE PARTON MODEL

e−

e−

γ

Xp

(a) DIS representation

e−

e−

γ

q

X
p

(b) DIS in the parton model

Figure 1.1: A graphic representation of DIS and the parton model

PDFs cannot be calculated perturbatively and need to be extracted from
data9.

Then, in order to calculate the cross section of the process, we assume
the following decomposition to hold

σ(p) =
∑
i

∫ 1

0
dz fi(z)σ̂(zp) (1.23)

where σ is the cross section for the process we are interested in and σ̂
is the cross section for the partonic process. In our example the process
is e + p −→ e + X and the partonic cross section refers to the process
e + pi −→ e+X.
Whereas the former is not calculable in perturbative-QCD, on the contrary
the latter is, provided the energy scale of the partonic process lies in the
perturbative region of the running coupling.
Some considerations are necessary:

• If we want our model to be predictive, PDFs must be process indepen-
dent. Once they have been fitted, it must be possible to use them in
any other process involving the same initial hadron10.

• PDFs obey sum rules. For a proton, we require that∫ 1

0
dz
[
fu(z)− fū(z)

]
= 2 and

∫ 1

0
dz
[
fd(z)− fd̄(z)

]
= 1, (1.24)

9Or computed with other techniques, for example studying QCD on the lattice.
10Of course the parton distribution of a proton will be different to that of neutron, for

example.
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1.4. QCD corrections to DIS

which reproduce the description of a proton as p = uud. The conser-
vation of total longitudinal momentum holds as well

∑
i

∫ 1

0
dz zfi(z) = 1. (1.25)

We shall address the problem of the survival of the parton model after
QCD corrections have been added. In the next section we will see how QCD
corrections lead to an improved formulation of the parton model (which re-
duces to the original formulation at Leading Order).

1.4 QCD corrections to DIS
In this section we retain DIS as example and look into QCD correction to
the Leading Order calculation. We also have to explain in more detail what
Leading Order means in QCD calculations. DIS is an electromagnetic ini-
tiated process, so it starts with a cross section proportional to α2

em. The
Leading Order (LO) contains no power of αs. What we add at Next to
Leading Order (NLO) are not electromagnetic corrections, rather we con-
sider QCD corrections, being αs � αem. In general, it is not obvious a priori
what is a LO calculation in term of powers of the QCD coupling. It depends
on the process considered. For DIS, as well as for Drell-Yan (see next chap-
ter), the LO has no power of αs. On the contrary, for Higgs production, the
LO is proportional to α4

s. For a generic process X, wi write

σX = σLOX αks + σNLOX αk+1
s +O(αk+2

s ). (1.26)

We are ready to consider QCD corrections for DIS. In the naive parton model
a quark is extracted from a proton and it scatters, via photon exchange, with
the incoming lepton. Usually, however, both the incoming quark and the
outgoing one radiate one or more gluons. Real emission corrections of order
O(αs) are shown in Figures 1.2a, 1.2b.

Moreover, virtual diagram should be taken into account. In particular,
the self energy diagram for both quark lines and the photon vertex correc-
tion, Figure. 1.2c, 1.2d.

Once these terms have been included, the calculation gives rise to two
classes of divergences:
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Figure 1.2: QCD correction to DIS

• Ultraviolet (UV) divergences in loop integrals, as we pointed out in
Section 1.2.

• Infrared and Collinear (IR) divergences in both, loop integrals and
phase space integrals for real emissions.

We have already explained how UV divergences are controlled by renor-
malization. On the contrary, IR divergences are the big novelty. First of all
we should say where they come from. Consider the diagram in Figure 1.2b
and let the four momenta r of the emitted gluon approaching zero. Accord-
ing to Feynman rules, a propagator with momentum k is associated to the
virtual quark

i (/k −m)
k2 −m2 + iε

. (1.27)

The denominator Eq.(1.27) vanishes when the on-shellness condition is
satisfied, that is when the particle’s virtuality reduces to zero as it was a
real one. A vanishing momentum r realizes such condition, in fact

l = k + r −→ k as r → 0, (1.28)

and l is on-shell, being the outgoing quark a real particle. The propagator
blows up when the emitted gluon carries a very small energy. We will refer
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1.4. QCD corrections to DIS

to radiated partons with vanishing energy as soft partons. There is more:
we are considering high energy processes in which all masses may be ne-
glected. In a massless theory, the emitted particle may become collinear to
the emitting one, that is it has vanishing transverse momentum11.
In this case we have

r = zk, l = k − r = (1− z)k, (1.29)

z being the fraction of momenta carried by the gluon. In both cases, Eqs.
(1.28,1.29),

k2 −→ m2 = 0, (1.30)

and the propagator diverges.

An analogous situation can be found in loop diagram integrals.

For some of these divergences, the machinery of perturbation theory fixes
itself. The Kinoshita - Lee - Nauenberg Theorem ensures the soft finiteness
of any theory in the Standard Model, see [18, 19]. It states indeed that soft
singularities always cancel between real and virtual contribution.
On the other hand, for what concerns collinear divergences, only a partial
cancellation takes place and we have to deal with them.
The solution to this problem its very similar to the renormalization proce-
dure. In the Naive Parton Model we consider PDFs in order to take into
account the non-perturbative physics. We can think to those distribution
functions as bare objects, in analogy to the bare parameter in the lagrangian.
Then, we redefine PDFs reabsorbing collinear divergences into them. Just
like renormalization procedure, an arbitrary scale µF , known as the factor-
ization scale, is introduced through the procedure.
We write, instead of Eq.(1.23), the following Improved Parton Model for-
mula:

σ(p) =
∑
i

∫ 1

0
dzfi(z, µ2

F )σ̂(zp;µ2
F , µ

2
R, αs(µ2

R)) (1.31)

This procedure need to fulfill two important properties:

• In any perturbative calculation, we need collinear divergences to fac-
torize exactly, otherwise we can not absorb them consistently;

11If the mass is not zero, collinearity is precluded by the on-shellness condition for the
radiated real particle.
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• In Section 1.3 we pointed out the necessity for PDFs to be process
independent. In order for this requirement to hold after collinear con-
tribution have been absorbed, it is necessary for such contributions to
be universal.

Theorems known as Collinear Factorization Theorems ensure that this
two facts are true, at least for a large class of processes.

There is one last thing to discuss about improved PDFs, which is their
running with energy. Any observable must be independent from the factor-
ization scale choice. This allows us to find a set of evolution equation for
the distribution functions. We will discuss this in the next section.

1.5 DGLAP evolution equations
It has been briefly anticipated at the end of the previous section, that the
µF dependence of PDFs is fixed imposing invariance of observable against it.
Moreover, the universality of distribution functions implies that also their
evolution should be universal, that is process independent. In close analogy
to Eq.(1.17), we impose

1
µ2
F

∂

∂µ2
F

O = 0, (1.32)

for a generic observable O.
A set of Nf + 1 differential equations satisfies the request. These equations
are universally known as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equa-
tions (DGLAP), independently found in 1972 by Gribov and Lipatov [17],
and than again in 1977 by Dokshitzer [11], and by Altarelli and Parisi [1]:

1
µ2
F

∂

∂µ2
F

(
fqi(x, µ2

F )
fg(x, µ2

F )

)
=

∫ 1

x

dξ

ξ

(
Pqi,qj (xξ , αs(µ2

F )) Pqi,g(xξ , αs(µ2
F ))

Pg,qj (xξ , αs(µ2
F )) Pg,g(xξ , αs(µ2

F ))

)(
fqj (ξ, µ2

F )
fg(ξ, µ2

F )

)
,

(1.33)

where Pa,b are known asAltarelli-Parisi(AP) splitting functions, to be under-
stood as the probability of a parton a emitting collinear stuff and resulting
in a parton b. The splitting functions are universal and can be computed
perturbatively as

Pa,b(x, αs) = αsP
(0)
a,b (x) + α2

sP
(1)
a,b (x) + α3

sP
(2)
a,b (x) + . . . (1.34)
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1.6. Hadron collisions

As an example, we consider the Pgg which is given, at lowest order, by

Pgg(x) = 2CA
[ x

(1− x)+
+ 1− x

x
+ x(1− x)

]
+ β0δ(1− x), (1.35)

where β0 is the first coefficient of the beta function, Eq.(1.18). Apart from
the customary delta distribution, there is a term proportional to a plus pre-
scription. The definition of plus distributions and their properties can be
found in Appendix [A.2]

Finally, splitting functions satisfy numerous constraints due to symme-
tries. For example, charge conjugation invariance and SU(Nf ) flavour sym-
metry imply that

Pqi,qj = Pq̄i,q̄j , Pqi,q̄j = Pq̄i,qj , Pg,qi = Pg,q̄i , (1.36)

and they are also flavour independent.

Solution of the DGLAP equations corresponds to the resummation of
collinear logs up to a desired scale Q2. The DGLAP equations and their
solution are not indispensable topics for this thesis. Nonetheless, there is
one last rehashing we want to show which will appear again in what fol-
lows. First, we note that Equations. (1.33) are written in the form of a
convolution, that is

∂

∂ logµ2 f(x, µ2) =
∫ 1

x

dξ

ξ
P
(x
ξ
, µ2

)
f(ξ, µ2) ≡ P ⊗ f(x, µ2). (1.37)

This integral product factorizes under a particular integral transform, the
Mellin Transform, defined in Appendix. [A.1]. Computing the Mellin trans-
form on both side, we get

∂

∂ log(µ2) f̃(N,µ2) = P̃ (N,αs(µ2))f̃(N,αs(µ2)) (1.38)

In this particular case, the Mellin transform has reduced the problem of
solving a integro-differential equation into the simpler task of solving differ-
ential equation of the first order.

1.6 Hadron collisions
Although DIS would be sufficient to proceed with general resummation the-
ory, it is however useful to extend the (improved) parton model to a generic
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CHAPTER 1. QCD AND THE PARTON MODEL

process involving two hadrons in the initial state. We have seen how cross
sections are computed in perturbative-QCD (pQCD). We explicitly consid-
ered DIS as an example, giving Eq.(1.31) as main formula. We want to
extend (1.31) to the more difficult case of hadron collisions. The practical
reason is obvious, being LHC a hadron collider. In turn, the phenomenolog-
ical interest arises from the necessity of assessing QCD as the fundamental
theory of strong interactions.
Two processes have been widely studied, both theoretically

• The Drell-Yan process: pp −→ γ∗/Z∗ −→ ll̄ + X. A lepton pair is
produced in proton-proton pp collision with a gauge boson as interme-
diate state. This is a benchmark for the study of gauge bosons, and
it has been a fundamental step in experimentally assessing QCD as a
whole12.

• Higgs production: pp −→ H +X. In this case the object of interest is
the Higgs boson and its coupling to quarks. Reasons for studying this
process are due to the interest in the Higgs boson itself.

Both processes are well suited for the study of resummation but, for sim-
plicity, in this thesis we will only consider Higgs production.
The generalization of Eq.(1.31) is formally straightforward. Instead of a sin-
gle parton distribution function, we consider a pair, one for each incoming
hadron, and we integrate them with a partonic cross section. If we indicate
with S the final state (lepton pairs, Higgs, ...) and with Q2 its invariant
mass, then the master formula for the inclusive cross section is readily given

σS =
∑
a,b

∫ 1

0
dx1 dx2 fa(x1;µ2

F )fb(x2;µ2
F )× σ̂ab→S(x1, x2;αs(µ2

R), Q
2

µ2
F

,
Q2

µ2
R

),

(1.39)
where x1 and x2 are the momentum fractions carried by parton a and b,
respectively. The dependence on factorization and renormalization scales
is explicitly highlighted. If we wanted to consider less inclusive observable,
such as the single differential distribution or a double differential distribu-
tion, we would have other dependencies: transverse momentum, rapidity, ...
We will consider these cases later in this thesis.

12The first prediction for Drell-Yan was obtained within the naive Parton Model and
discrepancies with data were very large (about a factor two in total cross section).It was
only after QCD was formulated and its effects were included that the prediction drastically
improved.
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1.6. Hadron collisions

The structure of Eq.(1.39) is very similar to Eq.(1.31), namely it is made
of two parts, that we recall here: PDFs embodies the non perturbative in-
formation about particle contents of hadrons13, whereas the partonic cross
section, σ̂, is given as perturbative series in the coupling.
We note that different sub-processes, that is σ̂ab→S as a, b change, contribute
with the different weights to the final result. For Drell-Yan, the main chan-
nel is quark anti-quark annihilation, qq̄ → ll̄ +X. In the case of Higgs pro-
duction, the gluon-fusion initiated process is the dominant one, gg → H+X.

We now introduce some standard notation and recast Eq.(1.39) in a
different fashion. The following manipulations are strictly suitable for com-
pletely inclusive cross section. In the case of semi-inclusive or completely
differential cross sections, a few adjustments will be necessary.
We define the variable τ as

τ = Q2

s
, (1.40)

where s is the customary Mandelstam invariant for the centre of mass energy
at hadrons level and Q2 is the invariant mass of the observed final state:
Q2 = M2

H in the case of Higgs production. The partonic counterpart z of τ
is defined as

z = Q2

ŝ
= τ

x1x2
, (1.41)

being ŝ the partonic centre of mass energy. In term of these variables, the
inclusive cross section is given by

1
τ
σH(τ) =

∑
ij

∫ 1

τ

dz

z

∫ 1

τ
z

dy

y
f

(1)
i

( τ
zy

)
f

(2)
j (y) σ̂Hij (z)

=
∑
ij

∫ 1

τ

dz

z
Lij(

τ

z
)Cij(z),

(1.42)

having defined the Parton Luminosity

Lij(x) = cij

∫ 1

x

dy

y
f

(1)
i (x

y
)f (2)
j (y). (1.43)

The Cij coefficients are usually referred to as coefficient functions. It
is just a matter of convenience to decide on normalizing the perturbative
series in such a way that C(0)

ij = δ(1− z), absorbing all numerical prefactors
into the cij coefficients which appear into the luminosity definition. From

13Assuming the parton model still being true.
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CHAPTER 1. QCD AND THE PARTON MODEL

the definitions of τ and z follows that the threshold region is identified by
τ → 1 or, at parton level, by z → 1.

We will consider less inclusive observable in the next Chapter. For now,
Eq. (1.42) is the result to keep in mind.
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Chapter 2

Resummation theory

In this chapter we briefly review the general theory of resummation. We
want to explain the motivations and the general approach. We first explain
the origin of soft large logarithms. Then, we build a very simplified argument
for resummation and we give without proof the general results for inclusive
distributions and for single differential cross sections. Finally, we present a
check of validity of one of the resummation formulae given.

2.1 Large Logarithms and Resummation

We consider from a general point of view the problem of large logarithms
and their resummation. We point out the origin of such soft enhanced terms
and explain the big idea behind resummation procedure.

2.1.1 Soft Large Logarithms: the origin

In order to understand where large logarithms come from, it is necessary to
step back and consider again the emission of n gluons by a quark line. The
process is schematically depicted in Figure 2.1.

As we have already mentioned, integration over the phase space gives rise
to divergent contributions which then cancel against loop integrals. When
the emission of n gluons is considered, the result of such a cancellation is a
term that looks like

αns

(
logk(1− z)

1− z

)
+

, 0 ≤ k ≤ an− 1, (2.1)
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1− z1 1− z2 1− z3 1− zn

1 z1 z1z2 z1 . . . zn

Figure 2.1: Emission of n gluons from a quark parton line. Each gluon
carries away a fraction (1 − zi) of the incoming energy. At the end, the
quark is left with a fraction z1 . . . zn of its original momentum.

where a = 1 for DIS and a = 2 for Drell-Yan and Higgs.
It is now clear when resummation is needed: roughly, for a value of x such
that

αs log2(1− x) ∼ 1, (2.2)

due to the fact that contributions of the form of Eq. (2.1) arise at any
perturbative order, all terms in the perturbative series become of the same
order and perturbation theory is no more reliable. We need to "resum" these
contributions.

We anticipate here that, very roughly speaking, resummation theory
provides a sort of reorganization of part of the perturbative series in powers
of αs logk(αs), for values of k from 0 to some process-dependent maximum
value (kmax = 2 for Higgs production and Drell-Yan), followed by their
exponentiation.

2.1.2 Soft Large Logarithms: resummation

Resummation of inclusive cross section has been achieved long ago, see [25,
9], and more recently using renormalization group arguments [15]. We just
want to outline here the procedure and main results.

Resummation relies on two fundamental facts: factorization in the soft
limit of both, the matrix element and the phase space, and exponentiation
of the factorized contributions.
For what concerns the matrix element factorization it can be proved that,
if Mn is the amplitude which includes the emission of n gluons, in the soft
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2.1. Large Logarithms and Resummation

limit it reduces to

Mn(z1, . . . , zn) ≈
[ 1
n!

n∏
i=1

M1(zi)
]
×M0 , (2.3)

where zi are the vanishing fraction of energy of the emitted gluons and M0
is the amplitude with no extra gluons. In QED the proof is quite simple,
whereas in QCD complications are due to the non abelian nature of strong
interactions.
On the contrary, in the same kinematic configuration, phase space does not
factorize. It gives instead a constraints of the form

dz1dz2 · · · dznδ(z − z1z2 · · · zn), (2.4)

which is clearly not factorized. Nonetheless, we observe that under a Mellin
transform phase space factorizes too. In fact, we have∫ 1

0

dz

z
zNδ(z − z1z2 · · · zn) = zN1 z

N
2 · · · zNn . (2.5)

Overall, factorization does actually take place, provided we consider it
in the reciprocal Mellin space.

We also observe that Eqs. (1.42,1.43) are in the form of a double mul-
tiplicative convolution. Then, if we take the N -th moment on both side of
Eq. (1.42), we get

σ̃H(N) =
∑
ij

L̃ij(N)C̃ij(N)

=
∑
ij

f̃
(1
i (N)f̃ (2

j (N)C̃ij(N)
(2.6)

In N -space it is also simple to isolate threshold contributions. In fact, in
the large N limit, only the region z ≈ 1 is picked up. We refer to Appendix
[A.3] for a more quantitative explanation. In N -space with large N , the
tower of logarithms of Eq. (2.1) is converted into the tower of logarithms

αns logk(N) 0 ≤ k ≤ 2n. (2.7)

In general, a plus prescription of the form of Eq. (2.1) in direct space
converts into a complicated function in N -space, which behaves, for large N,
as logk+1 (N). Regular pieces in the partonic cross section are suppressed in
the large N limit by some power of N . More details about the the behaviour
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of function and distribution under the Mellin transform are summarized in
Appendix [A.3].

Factorization of both, the matrix element and phase space, results in the
complete factorization of the coefficient function itself:

Cn(N) = 1
n! [C1(N)]n , (2.8)

where Cn is a shorthand for the coefficient function due to the emission of
n gluons. Retaining only the most divergent (leading) term, we would find

Csoft
1 (N) N�1=

∫ 1

0
dzzN−14A1

(
log(1− z)

1− z

)
+

= 2A1 log2( 1
N

) + O( 1
N

),

(2.9)

where A1 = CA/π for Higgs. Resummation of Leading Logs (LL) is almost
done. If we sum over all possible number of gluons we get the promised
exponentiation

Cres(N,αs) =
∞∑
n=0

αns [Cn(N)]soft

=
∞∑
n=0

αns
n! [Cn(N)]nsoft = exp[αsCsoft

1 (N)].
(2.10)

2.2 General Resummation Theory

The simple discussion above given can be put in a more complete form, also
taking into account effects due to the running of the coupling. We will only
give the general result with no proof.
The right expression to substitute Eq. (2.10) with, is, see [9, 25, 15],

Cres(N,αs) = g0(αs) expS
(
αs log(N), αs

)
, (2.11)

where g0 is given as a power series in the coupling and it contains all
the constant terms1 and the exponent S(λ, αs) is called Sudakov form factor

1constant in the large N limit
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and it collects all the logarithmically enhanced contributions. Its logarithmic
expansion is given by

S(λ, αs) = 1
αs
g1(λ) + g2(λ) + αsg3(λ) + · · · , (2.12)

where λ = αs log(N).
Formal expansions of the g coefficients are

g0(αs) =
∞∑
j=0

g0jα
j
s (2.13)

gk(λ) =
∞∑
j=1

gkjλ
j , g11 = 0, (2.14)

In order to better understand what NkLL accuracy means, we first ex-
pand Eq. (2.11) up to some fixed order, for example O(α2

s).
Defining L = log(N),

Cres(N,αs) =g00 + αs[g12L
2 + g21L+ g01]

+α2
s[
g2

12
2 L4 + (g12g21 + g13)L3 +

(g2
21
2 + g22 + g12g02

)
L2 +O(L)]

+O(α3
s).

(2.15)

The LL accuracy is given by the function g1 and it predicts the complete
series of logarithms2 αnsL

2n. If we included the function g2, then we would
have a NLL prediction. At NLL accuracy towers of logarithm αnsL

k with
2n− 2 ≤ k ≤ 2n are included.
We observe that in the exponential expansion, also logarithms of lower or-
der appear. It is important to point out that their coefficient cannot be
correctly predicted at this accuracy. To better understand this fact, con-
sider, for example, Eq. (2.15). It is the correct formal expansion for a NLL
prediction, written as a series up to NNLO. Without the inclusion of the
g3 function, a contribution of order α2

sL is naturally missing. We could -
incorrectly - say that the coefficient of the term α2

sL is zero. This is true
only at NLL accuracy. Moreover, if we computed the series expansion up to
O(α3

s), even if we are not considering the g3, would found terms out of the
2Actually, for LL prediction it would be sufficient to determine the g12 numerical fac-

tors.

31



CHAPTER 2. RESUMMATION THEORY

range 2n−2 ≤ k ≤ 2n due to interference of lower order gi functions. Again,
also their numerical coefficients are wrong. All these logarithms belong to
the NNLL accuracy, which need the inclusion of g3.

In general, a NpLL prediction need the inclusion of the gi function up
to i = k + 1, and the correct expansion of the g0 to the same perturbative
order. Terms up to the k-th power of ln(N), with 2(n− p) ≤ k ≤ 2n will be
correctly predicted.

A remark about the g0: though in a LL prediction g0 is completely
harmless, this is not true for a higher logarithmic accuracy. It is clear, from
Eq. (2.15), that the g0 can interfere with the gi, giving important logarithmic
terms.

The matching procedure

We conclude this section with a brief description of what is called the match-
ing procedure. In fact, the resummed expression need to be matched with
the fixed order prediction. The former, is a valid improvement only near
the threshold, whereas the latter is the correct perturbative approximation
far from the threshold region. We can’t just add together the resummed
expression and the fixed order one, because we would count twice large log-
arithms coming from low perturbative order. The right thing to do is to add
the two pieces but also subtract the fixed order expansion of the resummed
expression. This is more easily understandable in formulae

CN
pLO

NkLL (N,αs) =
p∑
j=0

αjsC
j(N) + CresNkLL(N,αs)−

p∑
j=0

αjs
j!
[djCres

NkLL
(N,αs)

dαjs

]
.

(2.16)
Eq. (2.16), or rather its inverse Mellin transform, is the final observable re-
sult.
We want now to extend this treatment to less inclusive quantities, in par-
ticular differential distribution.

2.3 Transverse Momentum Distribution

In this section we consider transverse momentum distribution for the pro-
duction of a colour singlet system

h1 + h2 −→ S +X. (2.17)
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2.3. Transverse Momentum Distribution

We indicate with pT the transverse momentum of the target system S and
with Q2 its invariant mass, whereas M2

X will be invariant mass of the extra
radiation.
Requiring the invariant mass of extra radiations to be non negative,M2

X ≥ 0,
then the integral in Eq.(1.39) is restricted to

dσS
dξp

(τ, ξp;αs(µ2
R),µ2

R, µ
2
F ) =

∑
ij

∫ 1

τ

(√
ξp+1+

√
ξp

)2 dx1 fi(x1, µ
2
F )

∫ 1

τ

(
√
ξp+1+

√
ξp

)2

x1

dx2 fj(x2, µ
2
F ) dσ̂ij

dξp
( τ

x1x2
;αs, µ2

R, µ
2
F ),

(2.18)

where ξp ≡
p2
T
Q2 . For later convenience, we define the parameter

a(ξp) :=
(√

ξp + 1 +
√
ξp
)2
. (2.19)

We are interested in finding a transformation which recast Eq.(2.18) in the
form of a convolution, as Eq.(1.42) was. That is provided by the following
rescaling of the variable τ , Eq. (1.40), and, consequently, z, Eq. (1.41)

τ ′ := τ a(ξp) z′ = z a(ξp). (2.20)

After the rescaling, we get

1
τ ′
dσ

dξp
(τ ′) =

∑
ij

∫ 1

τ ′

dz′

z′

∫ 1

τ ′
z′

dy

y
f

(1)
i

( τ ′
z′y

)
f

(2)
j (y) dσ̂ij

dξp
(z′)

=
∑
ij

∫ 1

τ ′

dz′

z′
Lij(

τ ′

z′
)Cij(z′).

(2.21)

This equation has precisely the same structure of Eq. (1.42).

Before discussing threshold resummation, it is worth to mention that a
different kind of resummation is also needed for pT -differential distribution
in some kinematic region. In fact, when the transverse momentum of the
final state approaches zero, one finds that the fixed order cross section is
actually divergent (beyond the LO). In that region a different kind of re-
summation is needed: transverse momentum or collinear resummation. We
are not going to investigate transverse momentum resummation and we refer
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the interested reader to the literature: see, for example, [10, 8] and many
others. We just mention here that, in order to perform transverse momen-
tum resummation, a two dimensional Fourier transform is the right recipe.
The Fourier transform is taken with respect to the transverse momentum.
In Fourier b-space the region of small pT is converted in the limit b→∞.

We now turn to threshold resummation at fixed pT . It was first derived at
NLL in [14, 6]. Using renormalization group arguments, [15, 5], it is possible
to write a formal decomposition for the partonic cross section. Following
the notation of Ref. [21]3,

dσ̂ij
dξp

= σ0(C0(N, ξp))ij (g0)ij(ξp) exp
[
G(N, ξp)

]
, (2.22)

where the Sudakov-like exponent is now given by

G(N, ξp) = ∆i(N) + ∆j(N) + Jk(N) + S(N, ξp), (2.23)

where k labels the recoiling partons. The decomposition in Eq.(2.23) shows
the origin of different large logarithms: ∆i(N) for the incoming partons,
Jk(N) refers to final recoiling partons and S is a sort of interference factor.
Explicitly, the various terms can be written as

∆i(N) =
∫ 1

0
dz
zN−1 − 1

1− z

∫ Q̄2(1−z)2

Q̄2

dq2

q2 A
th
i (αs(q2)), (2.24)

Jk(N) =
∫ 1

0
dz
zN−1 − 1

1− z

∫ Q̄2(1−z)

Q̄2(1−z)2

dq2

q2 A
th
k (αs(q2) +Bth

k (αs(Q̄2(1− z))),

(2.25)

S(N, ξp) = −
∫ 1

0
dz
zN−1 − 1

1− z Athk (αs(Q̄2(1− z)2)) ln

(√
ξp + 1 +

√
ξp
)2

ξp
,

(2.26)
where Q̄2 = Q2

(√
ξp + 1 +

√
ξp
)2
. We observe that, consistently with the

rescaling of the relevant dimensionless variables, namely τ and its partonic
counterpart z, also the relevant hard scale of the process, namely Q2, has
been rescaled accordingly.
The functions A and B are given as power series in αs. More detail about

3The authors of this paper try to go deeper in resummation theory, suggesting a tech-
nique for dealing consistently with both, threshold and transverse momentum resumma-
tion.
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threshold resummation for transverse momentum distribution can be found
in the references already given. Resummation results up to NNLL and, in
particular, the numerical coefficient of A and B expansions, can be found in
ref. [21].

2.4 Rapidity Distribution
In this section we consider the case of fixed rapidity. Recall that we denote
with Q the four-momentum of the final state,

Q = (Q0, ~QT , QL). (2.27)

Let’s concentrate on Higgs production, so that Q2 = M2
H .

The rapidity along the third axis of a particle with four momentum kµ,
is defined as

Y = 1
2 ln k0 + k3

k0 − k3
= 1

2 ln E + kz
E − kz

. (2.28)

The advantage of choosing rapidity instead of longitudinal momentum comes
from the facts that it transform additively under Lorentz transformations.
This is particularly useful, since we are often interested in switching between
the hadronic frame of reference and the partonic one.

We indicate with y = YH the Higgs rapidity in the hadronic frame of
reference. The centre of mass of colliding partons is shifted by an amount
which depends on the the values of x1,2, the partonic fractions of momentum.
Obviously, this shift must vanish when x1 = x2.
Computing the right Lorentz transformation, it turns out that the rapidity
in the partonic frame of reference, ŷ, is related to the previous one by

ŷ = y − 1
2 ln x1

x2
. (2.29)

As promised, the transformation is additive and it vanishes, in this par-
ticular situation, when x1 = x2.

We are ready to give the general formula for the cross section. We skip
again the kinematic of the process: we are going to compute it explicitly for
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the more intricate case of a double differential distribution. We will high-
light there how to recover this result and the one for transverse momentum
distribution. If we define

x0
1 ≡
√
τey x0

2 ≡
√
τe−y, (2.30)

then, the master equation of perturbative QCD, (1.39), can be rewritten
with explicit kinematic constraints over x1,2 as

1
τ

dσH
dy

(τ, y, αs) =
∑
ij

cij

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2 fi(x1)fj(x2)Cij(z, τ, ŷ;αs), (2.31)

with implicit dependence on the factorization and renormalization scales.
The hadronic rapidity y and the partonic one ŷ are related by Eq. (2.29),
whereas τ and z are defined as in Eqs. (1.40,1.41).
We start by observing that y is restricted by the conditions x1,2 ≤ 1. Re-
quiring x0

1,2 ≤ 1, it follows
1
2 ln τ ≤ y ≤ 1

2 ln 1
τ
, (2.32)

whereas the condition 0 ≤M2
X computed in the partonic frame of reference

brings to the condition
1
2 ln z ≤ ŷ ≤ 1

2 ln 1
z
, (2.33)

which is clearly meaningful if the following is satisfied too

z ≤ 1. (2.34)

We can recast Eq. (2.31) using Eqs.(2.33,2.34):

σrap(τ, y) ≡ 1
τ

dσH
dy

(τ,y, αs) =
∫ 1

0
dx1dx2dz

∫ ŷmax

ŷmin

dŷ fi(x1)fj(x2)

× C(z, ŷ)δ(zx1x2 − τ)δ(ŷ − y + 1
2 ln x1

x2
),

(2.35)

where ŷmax ≡ 1
2 ln(1

z ) ≡ −ŷmin and we have suppressed all sub-process
indices, for brevity. We define also the hadron-level rapidity extrema ymax ≡
1
2 ln( 1

τ ) ≡ −ymin.
It is now clear what we are going to do next. Thanks to the double delta

functions, Eq. (2.35) factorizes exactly under a Mellin-Fourier transform,
taken with respect to τ and y

σrap(N,M) ≡
∫ 1

0
dτ

∫ ymax

ymin

dy τN−1eiMy σrap(τ, y)

= f1(N + iM/2) f2(N − iM/2)C(N,M),
(2.36)
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where
fi(N ± iM/2) =

∫ 1

0
dxxN±i

M
2 −1fi(x), (2.37)

and
C(N,M) =

∫ 1

0
dz zN−1

∫ ŷmax

ŷmin

dŷ eŷiM/2C(z, ŷ). (2.38)

We will show now that, if we take M fixed, the general resummed ex-
pression near threshold is given by the inclusive one plus power suppressed
(in N) corrections.

The coefficient function is symmetric in ŷ, so we can rewrite Eq. (2.38)
considering only the positive domain of integration

C(N,M ;αs) = 2
∫ 1

0
dz zN−1

∫ ŷmax

0
dŷ cos(ŷM)C(z, ŷ, αs). (2.39)

One can see that, if M is taken to be finite, in the large N limit only ŷ = 0
gives a contribution. In fact, expanding the cosine

cos(My) = 1− M2y2

2 +O(M4y4), (2.40)

we see that the first term reproduce the rapidity integrated coefficient func-
tion, while the others are power suppressed as N approaches infinity. This
can be seen expanding also the upper integration extremum near threshold

ln 1√
z

= 1
2(1− z) +O(1− z)2, (2.41)

and observing that in the integration over ŷ, starting the second term of the
cosine expansion, powers of ŷ end up regularizing the integrand.
We can rewrite Eq. (2.36) as

σrap(N,M ;αs) = f1(N + iM/2) f2(N − iM/2)C(N ;αs)× (1 +O(1/N))
= σresrap(N,M ;αs)(1 +O(1/N))

(2.42)

where σresrap(N,M ;αs) is just the inclusive resummed coefficient function
times the Mellin-Fourier version of PDFs. We have followed here the deriva-
tion given in [5]. More details and phenomenological studies may be found
there.

It was proposed years ago, [9], and recently implemented, [4, 3], a dif-
ferent approach, which take into account the full rapidity dependence. In

37



CHAPTER 2. RESUMMATION THEORY

ref. [5] the threshold limit is taken working in the Mellin-Fourier space, with
related variables (M,N), and by taking the limit N →∞ while keeping M
fixed. As we have just shown, this is equivalent, in the large-N limit, to
ignoring rapidity, that is integrate over rapidity. The other possibility is to
take a limit on the variable M too. This is easily done working in a double
Mellin space, (N1, N2), which is related to the previous one by the following
definitions

N1 := N + iM/2
N2 := N − iM/2,

(2.43)

and then considering the two independent limits N1,2 → ∞. Using the
definitions in Eq. (2.43) it is obvious that as N1,2 approaches infinity inde-
pendently the following situations may occur:

• If N1/N2 → 1, then M is kept finite;

• If N1/N2 → ρ and ρ 6= 1, then M → ±∞;

In both situation, since N = (N1 + N2)/2, the threshold limit N → ∞ is
taken. The first case correspond to the threshold limit as it was taken in
ref. [5]: Eq. (2.43) implies that N1,2 = N +O(M/N). We are now going to
explore the second one.

We have to consider how the second choice changes the integral transform
in Eq. (2.36). Obviously, a legitimate choice is performing the Mellin-Fourier
transform and only at the end change variables (N,M)→ (N1, N2). But, in
this case, it is easier to consider from the beginning the change of variables.
In fact, as we are going to demonstrate now, in this case it coincides to
consider a Mellin-Mellin space instead of a Fourier-Mellin one.
The first observation we make is that in (N1, N2) space the PDFs depend
exactly on those variables separately, Eq. (2.37), and they can be obtained
just as Mellin transform, with Mellin variable Ni. It is less obvious what
happens to the coefficient function in (N1, N2) space. We consider again
the integral definition in Eq. (2.38) and perform the following change of
variables{

z = z1 z2

y = 1
2 ln z1

z2

−→ J(z1, z2) =
(
z2 z1
1

2z1
− 1

2z2

)
, | det J | = 1, (2.44)

so that
zN−1eiMŷ = zN1−1

1 zN2−2
2 , (2.45)
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and integration domain {0 ≤ z ≤ 1; ŷmin ≤ y ≤ ŷmax} is converted into
{0 ≤ z1,2 ≤ 1}. Putting all together, we prove the identity

C(N,M ;αs) = C
(N1 +N2

2 ,
N1 −N2

i
;αs

)
=
∫∫

[0,1]
dz1 dz2 z

N1−1
1 zN2−1

2 C(z, ŷ;αs),
(2.46)

where (z, ŷ) = (z, ŷ)(z1, z2). We are just left with a double Mellin trans-
formation of the coefficient function. We abuse a little of the notation and
define

C(N1, N2;αs) ≡
∫∫

[0,1]
dz1 dz2 z

N1−1
1 zN2−1

2 C(z, ŷ;αs), (2.47)

but Eq. (2.46) should clarify what we are doing.
We have proved a property of the Mellin-Fourier factorization of the cross
section, but we have not said yet if this is useful for resummation. This is
indeed the main result of Ref.[4] where it is found that resummation can
be actually performed in (N1, N2) space, retaining full rapidity dependence.
The resummed cross section turns out to depend only of a single variable,
N1 ·N2. Defining

ω = αs ln (N1N2), (2.48)
it can be written as

Cres(ω;αs) = g0(αs) expS(ω, αs). (2.49)

The Sudakov like exponent can be organized in the customary NkLL fashion

S(ω, α∫ ) = 1
αs
g1(ω) + g2(ω) + αsg3(ω) + · · · , (2.50)

with the g function defined as power series in ω.
The result has the same form of that given in Eqs.(2.11-2.14), but this one
contain the rapidity information, which will enter explicitly in the direct
space result after the double Mellin inverse transform has been performed.

2.4.1 Rapidity distribution in Mellin-Mellin space

It is far from trivial the fact that the only dependence is on the single variable
ω. In this subsection, we verify this prediction.4 Following the notation of

4We choose here, for simplicity, the case of Drell-Yan.
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ref. [2], we write

d2σ

dQdY
= 4πα2

9Q3

∑
ij

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2 fi(x1)fj(x2) dσij(z, u)
dY

, (2.51)

where z = Q2

sx1x2
and u = (x1/x2)e−2Y . We define the variable

y′ = u− z
(1− z)(1 + u) (2.52)

and exploiting the relations in Eq. (2.44), one finds the following relations

z = z1z2 y′ = z2(1− z2
1)

(1− z1z2)(z1 + z2) , (2.53)

z1 =
√
z(1− y(1− z))
z + y(1− z) z2 = z1[y′ ↔ 1− y′]. (2.54)

Moreover, since xi = x0
i /zi, the following change of variables holds

dx1 dx2 = τ

z2
1z

2
2
dz1 dz2. (2.55)

The partonic cross section can be decomposed as follows

dσij
dY

= 1
1− z1z2

[
η

(0)
ij +

(αs
π

)
η

(1)
ij +O(α2

s)
]
, (2.56)

where the first two coefficients are, [2]:

η
(0)
ij = Q2

q

[
δiqδq̄i + [i↔ j]

]
δ(1− z)

[
δ(y′) + δ(1− y′)

]
, (2.57)

η
(1)
qq̄ = Q2

q

8
3

z2

1 + z

{
[δ(y′) + δ(1− y′)]

[
δ(1− z) (2ζ2 − 4)

+ 4
[ log(1− z)

1− z
]

+
− 2(1 + z) log(1− z)− 1 + z2

1− z log z + 1− z
]

+
(
1 + (1− z)2

z
y′(1− y′)

)[ 1 + z2

[1− z]+

( 1
y′+

+ 1
[1− y′]+

)
− 2(1− z)

]}
.

(2.58)
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At LO the delta functions forces us to to pick the qq̄ channel. At NLO also
other channels contribute. We gave the corrections to the qq̄ channel.
Following [4, 3], we are interested in computing the large-Ni limit of

∆ij(N1, N2) =
[ ∏
i=1,2

∫ 1

0
dziz

Ni−1
i

] 1
z1z2

dσij(z, u)
dY

. (2.59)

Thanks to delta functions, the LO is easily treated

δ(1− z)δ(y′) = δ(1− z1z2)δ
( z2(1− z2

1)
(1− z1z2)(z1 + z2)

)
= δ(1− z1z2)δ(1− z1)(1− z2)(1 + z2)

2z2
= δ(1− z2)δ(1− z1) (1− z2),

The case with y′ ↔ 1 − y′ is just the same with z1 ↔ z2. Observe that
we cannot evaluate the last factor giving a null term because of the overall
factor in Eq. (2.56): the two cancel against each other. The full LO is

η
(0)
qq̄ = 2Q2

qδ(1− z1)δ(1− z2) (2.60)

Under double Mellin transform, we get∫ 1

0
dz1dz2 z

N1
1 zN2

2 ηqq̄ = 2Q2
q (2.61)

N-dependent contribution can only be found starting from the next order.
Looking at Eq. (2.58), the first addend is just made up of delta function, so
it can be treated as the LO and it gives other constant contributions. Terms
that give N-dependent contributions in Mellin space are

8
3Q

2
q

z

1− z2 4 [δ(y′) + δ(1− y′)]
[ log(1− z)

1− z
]

+
(2.62)

8
3Q

2
q

z(1 + z2)
1− z2

(
1 + (1− z)2

z
y′(1− y′)

) 1
[1− z]+

(
1

[y]+
+ 1

[1− y]+

)
. (2.63)

All the other terms in Eq. (2.58) give power suppressed contribution for
large Ni. Te Jacobian of transformation Eq. (2.53) is

dz dy′

dz1 dz2
= 2[1− y(1− z)][1− (1− y)(1− z)]

1− z2 , (2.64)
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using which we can recast the term in Eq. (2.62) as

32
3(1− z)

z

1 + z
[δ(y′) + δ(1− y′)]

[ log(1− z)
1− z

]
+
zN1

1 zN2
2 dz1 dz2

= 32 z zN1
1 zN2

2
3(1− z2) [δ(y′) + δ(1− y′)]

[ log(1− z)
1− z

]
+

(1− z2) dzdy′
2[1− y′(1− z)][1− (1− y′)(1− z)]

= 16 z zN1
1 zN2

2
3 [δ(y′) + δ(1− y′)]

[ log(1− z)
1− z

]
+

dzdy′

[1− y′(1− z)][1− (1− y′)(1− z)]
(2.65)

Exploiting the delta functions we can perform one integration, getting

16
3
[[ log(1− z)

1− z
]

+
zN2−1 +

[ log(1− z)
1− z

]
+
zN1−1

]
(2.66)

where we have also used z1(y = 0) = z2(y′ = 1) = 1 and z2(y′ = 0) = z1(y′ =
1) = z, see Eq (2.53). Using integrals Eq. (A.27) from Appendix A.3 of this
thesis, we can compute the final Mellin transform, which is, for large-Ni

8
3
[
(log2(N1) + 2γE log(N1) + γ2

E + ζ2) + (N1 → N2)
]

+O( 1
Ni

). (2.67)

The other relevant term is
8
3

z2

1 + z

(
1 + (1− z)2

z
y(1− y)

) 1 + z2

[1− z]+

( 1
y+

+ 1
[1− y]+

) 1
z(1− z) (2.68)

Using the distributional identities of table S2 in Appendix B, [20], the last
expression becomes

8
3

[(
−
( ln(1− z1)

1− z1

)
+
δ(1− z2)− (z1 ↔ z2)

)

+
( 1

1− z1

)
+

( 1
1− z2

)
+

+ π2

6 δ(1− z1)δ(1− z2)
]

+ · · ·
(2.69)

where dots stand for contributions that would be power suppressed in the
large-Ni limit. Again, using integrals Eq. (A.27), expression (2.69) becomes

−8
3
[1
2
(

log2(N1) + 2γE log(N1) + γ2
E + π2

6
)

+ 1
2
(
N1 ↔ N2

)
− (γE + log(N1))(γE + log(N2))− π2

6
]

+O( 1
Ni

)
(2.70)
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The sum of results (2.68) and (2.70) is, at logarithmic level

2CF log2(ω̄) +O( 1
Ni

), (2.71)

where we are using the notation of [3], with ω̄ = N1N2e
2γE , and introduced

the group constant CF = 4
3 . At logarithmic level, our result agrees with the

one from ref. [3] 5.

We have explicitly verified the announced prediction. What we are go-
ing to do in the following Chapters is consider the even less inclusive case
of a double differential distribution, that is differential both in transverse
momentum and rapidity of the final state. We aim at extending the double
Mellin approach given here to that case.

5The hard scale, the renormalization and the factorization scales need to be set equal.
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Chapter 3

The fully differential
distribution

In this chapter we consider the fully differential distribution for production
of a colorless final state S plus other undetected radiation, X. For the rest
of the thesis we will focus on Higgs production (S = H), computed at NLO.
First, we briefly explain how Higgs production process are computed in the
high mt limit. Then, we give the general kinematics for this process. Since
we are interested in soft large logarithms, understanding the kinematics is
fundamental to identify the threshold limit. After that, we show how the
cross section factorizes under a Mellin-Fourier transform. Finally, due to the
fact that we want to explicitly compute the Mellin-Fourier transform of the
partonic cross section, we perform a change of variables in order to express
the partonic cross section on integration variables. The change of variable
will be performed taking into account the fact that we are interested in the
threshold limit.

3.1 Higgs production in gluon fusion: the effective
interaction

In proton-proton colliders, the Higgs Boson is mainly produced through the
gluon fusion channel. Gluons do not interact directly with the Higgs, so
the intermediate step is a quark loop, Fig. 3.1 on the left. This results in
very difficult calculations, due to the presence of loops already at LO. As
a consequence, the calculation is usually performed using an Effective Field
Theory (EFT) approach, in which the top quark mass is considered large
compared to the Higgs mass, mtop � mH . This is the same strategy which
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g

g

H

g

g

H

Figure 3.1: Higgs Production in gluon fusion in the Standard Model (left)
and in EFT (right).

reduces the electroweak theory to the Fermi theory for the beta decay.
By removing the top quark from the theory, it remains an effective Higgs

gluon coupling, [16],

Leff = −1
4
(
1− CWH

)
GaµνG

a,µν , (3.1)

where CW is called the Wilson coefficient and it is given, [24], as a series in
αs,

CW = αs
3πv

(
1 + αs

4π∆ +O(α2
s)
)
, (3.2)

with coefficients

∆ = 5Nc − 3CF = 11, Nc = 3 CF = 4/3. (3.3)

The effective three fields vertex ggH is depicted in Fig. 3.1 on the right.
Vertices with more gluons are characterized by more power of αs. The
partonic cross section that we are going to give has been computed by means
of this EFT scheme.

3.2 Kinematics and Notations

3.2.1 Notations

We are going to consider the process

h1(P1) + h2(P2) −→ H(p) +X(Q), (3.4)
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where hi are the colliding hadrons, H is the outgoing Higgs boson and X
labels any extra undetected radiation.
Since we are going to consider only the gluon fusion channel, we are also
able to represent the partonic process

g(p1) + g(p2) −→ H(p) +X(Q), (3.5)

where pi = xiPi are the partonic momenta, carrying a fraction xi of the
hadron momenta. The four momenta characterizing the process are, in the
hadronic frame of reference,

p1 =
√
s

2 x1(1, 0, 0, 1) p2 =
√
s

2 x2(1, 0, 0,−1)

p = (EH , ~pT , pL) Q = (Q0, ~QT , QL),
(3.6)

where s = (P1 + P2)2 is the squared centre of mass hadronic energy.
By defining the rapidity and the transverse mass of the Higgs as

y = 1
2 ln EH + pL

EH − pL
, m2

T = m2
H + p2

T ,

and after a little algebra, one finds that the Higgs momentum may be rewrit-
ten as

p = (mT cosh (y), ~pT ,mT sinh (y)). (3.7)
We recall the definitions given in Sec.2.3:

ξp = p2
T

M2
H

a(ξp) =
(√

ξp + 1 +
√
ξp
)2
,

so that
mT = mH

√
1 + ξp. (3.8)

Just as matter of convenience, we are going to parameterize the transverse
momentum by means of the dimensionless variables ξp and a(ξp), instead of
pT . Note that the limit in which the Higgs becomes collinear, pT → 0, is
represented by either ξp → 0 or a → 1. In general, from the definition and
the non-negativity of ξp, follows that 1 ≤ a(ξp).
Keeping in mind the total momentum conservation law

p1 + p2 = p+Q, (3.9)

we can define the customary Mandelstam invariants

ŝ = (p1 + p2)2 = (p+Q)2 = sx1x2,

t̂ = (p1 −Q)2 = (p2 − p)2 = m2
H −
√
sx2mT e

y,

û = (p2 −Q)2 = (p1 − p)2 = m2
H −
√
sx1mT e

−y.

(3.10)
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These invariants satisfy1

Q2 +m2
H = ŝ+ t̂+ û (3.11)

It is more convenient to compute the kinematic boundaries in the par-
tonic frame of reference. We know how to shift the rapidity from the
hadronic to the partonic frame, Eq. (2.29). In this frame, the four momenta
in Eq. (3.6) become

p1 =
√
ŝ

2 (1, 0, 0, 1) p2 =
√
ŝ

2 (1, 0, 0,−1)

p = (mT cosh ŷ, ~pT , mT cosh ŷ) Q = (
√
ŝ−mT cosh(ŷ),−~pT ,−mT sinh ŷ),

(3.12)
where we made use of Eq. (3.9). A few, maybe obvious, remarks about the
Lorentz boost from the hadronic to the partonic frame:

• ~pT it is left unchanged. The boost is performed along the third axis;

• From the previous observation and from the rewriting of Eq. (3.7) it is
clear the Higgs momentum just changes in its rapidity variable. This
is why this parametrization proves manageable.

In the partonic frame we also rewrite t̂, û as

t̂ = m2
H −
√
ŝmT e

ŷ û = m2
H −
√
ŝmT e

−ŷ. (3.13)

In order to make the calculation simple, we just need a little more of
notation. We define, as we did in the previous Chapter, the scaling variables

τ := m2
H
s z := τ

x1x2
= m2

H
ŝ

τ ′ := τ a(ξp) z′ := z a(ξp) .
(3.14)

3.2.2 Kinematic

The two condition which defines the physical region are

Q0 ≥ 0 (3.15a)
Q2 ≥ 0. (3.15b)

1This is absolutely general and follows from the conservation of the total momentum.
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By requiring the condition Eq. (3.15b) on Q, Eq. (3.12), one finds the
following condition for ŷ

cosh (ŷ) ≤ a+ z′√
z′(a+ 1)

(3.16)

Noting that the hyperbolic cosine is always ≥ 1, it follows that

z′ ≤ 1 ∨ z′ ≥ a2.

The second solution does not satisfy the positive energy condition Eq. (3.15a).
From this result, the inversion of Eq. (3.16) and the fact that x1,2 have upper
limit 1 by definition, it follows that{

τ ′ ≤ z′ ≤ 1
ŷmin ≤ ŷ ≤ ŷmax,

(3.17)

where the rapidity extrema are

ŷmax = −ŷmin = ln
[a+ z′ +

√
(a2 − z′)(1− z′)√
z′(a+ 1)

]
= ln

[ a+ z′ +R√
z′(a+ 1)

] (3.18)

with the further definition

R :=
√

(a2 − z′)(1− z′). (3.19)

Boosting back the solution for the rapidity one should find the lower extrema
for the partonic fraction x1 and x2, that is the double differential analogous
condition of Eq. (2.30). This is not algebraically trivial, because it involves
the solution of highly non linear inequalities. On the other hand, as we are
going to show below, we do not really care about those limit for what we
are going to do.
The important result to keep in mind are the extrema in expression (3.17).
We expect the cross section to show enhanced contribution on those bound-
aries. In the following sections we will consider the explicit expression for
the cross section, verifying that this is indeed the case.

In the previous chapter, we promised we would have said how to re-
cover the single differential kinematic. It is sufficient to look at the explicit
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CHAPTER 3. THE FULLY DIFFERENTIAL DISTRIBUTION

expression of conditions Eqs.(3.15a,3.15b) and vary pT (for the rapidity dis-
tribution) or y (for the transverse momentum distribution) to find the widest
range possible for the xi to satisfy those constraint. Not surprisingly, they
correspond to taking pT = 0 and y = 0, respectively.

3.3 Fully differential distribution at NLO and its
Mellin-Fourier transform

The fully differential cross section for the production of a Higgs boson of
transverse momentum pT and rapidity y can be computed in pQCD and
written as

dσ

dξpdy
=
∑
i,j

∫ 1

0
dx1dx2fi/h1(x1, µ

2
F )fj/h2(x2, µ

2
F ) dσ̂ij
dξpdy

, (3.20)

where the partonic subprocess is ij −→ H +X and i, j = g, qf , q̄f , for every
flavour f .

The partonic subprocess is computed perturbatively in the strong cou-
pling, αs(µR),

dσ̂ij
dξpdy

= σ0 a(ξp)
z′

[αs(µR)
2π G

(1)
ij +

(αs(µR)
2π

)2
G

(2)
ij + · · ·

]
, (3.21)

where σ0 is the tree level inclusive cross section

σ0 = π

64
(αs(µR)

3πv
)2
. (3.22)

Kinematic boundaries in Eq. (3.17) allow us to write

dσ

dξpdy
(τ ′, y, ξp) =

∫ 1

0
dx1dx2dz

′
∫ ŷmax

ŷmin

dŷδ(τ ′ − x1x2z
′)

× δ(ŷ − y + 1
2 ln x1

x2
) dσ̂

dξpdy
(z′, ŷ, ξp),

(3.23)

with implicit dependence on the coupling and on the factorization and renor-
malization scales.
As we did for the case of rapidity distributions, Eq. (2.36), we take a com-
bined Mellin-Fourier transform, with respect to the scaling variable τ ′ and
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the rapidity of the Higgs boson, y, and we get

dσ

dξpdy
(N,M, ξp) ≡

∫ 1

0
dτ ′τ ′N−1

∫ ymax

ymin

dyeiMy dσ

dξpdy
(τ ′, y, ξp)

= f1(N + iM/2)f2(N − iM/2) dσ̂

dξpdy
(N,M, ξp),

(3.24)

where

f1,2(N ± iM/2) =
∫ 1

0
dxxN±iM/2−1 f1,2(x), (3.25)

C(N,M, ξp) ≡
dσ̂

dξpdy
(N,M) =

∫ 1

0
dz′ z′N−1

∫ ŷmax

ŷmin

dŷeiMŷ dσ̂

dξpdy
(z′, ŷ, ξp).

(3.26)

The C coefficient, or rather its Mellin-Fourier transform in Eq. (3.26), is
the object of interest of this thesis, in particular its threshold limit. Exploit-
ing the symmetry ŷ ↔ −ŷ, it is more convenient to compute C(N,M, ξp)
as

C(N,M, ξp) =
∫ 1

0
dz′

∫ ŷmax

0
dŷ(eiMŷz′N−1 + e−iMŷz′N−1)C(z′, ŷ, ξp)

=
∫ 1

0
dz′

∫ 1

1
tmax

dt

[(
tiM−1tiMmaxz

′N−1 + t−iM−1t−iMmax z
′N−1)

× C(z′, ln(t) + ln(tmax), ξp)
]
,

(3.27)

where we have defined

t := eŷ/eŷmax , (3.28)
tmax := eŷmax . (3.29)

We now turn to the perturbative expression for the partonic process in the
gluon fusion channel, that is i = j = g.

3.3.1 The LO

following the notation of ref. [16], at LO we have

G
(1)
ij = gijδ(Q2), (3.30)
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CHAPTER 3. THE FULLY DIFFERENTIAL DISTRIBUTION

where, for i = j = g

ggg = Nc

(m8
H + ŝ4 + t̂4 + û4

ŝt̂û

)
. (3.31)

Eq. (3.30) tells us that at LO there is just one parton recoiling against the
Higgs boson, so Q is actually the four momentum of a real single particle,
and it must satisfy the on-shellness condition.

3.3.2 O(αs) corrections

The order O(αs) corrections come from two different sources: the interfer-
ence between one loop diagrams and the Born level and one parton real
emission diagrams.
The final result can be decomposed into a singular function plus a regular
one

G
(2)
ij = G

(2s)
ij +G

(2R,ns)
ij , (3.32)

where "singular" means that it contains all the enhanced logarithms as pT →
0 and all the plus distributions arising from the cancellation of soft and
collinear singularities.
We are interested in the singular part since it gives enhanced threshold
contributions. Following again the notation of [16], we have
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3.3. Fully differential distribution at NLO and its Mellin-Fourier transform

G(2s)
gg = δ(Q2)

{
(∆ + δ +NcU)ggg

+ (Nc −Nf )Nc

3 [(m4
H/ŝ) + (m4

H/t̂) + (m4
H/û) +m2

H ]
}

+
{( 1
−t̂

)[
− Pgg(zt) ln µ

2
F zt

(−t̂)
+ pgg(zt)

( ln(1− zt)
1− zt

)
+

]
ggg,t(zt) (I)

+
( 1
−t̂

)[
− 2nfPqg(zt) ln µ

2
F

Q2 + 2nfCεqg(zt)
]
gqg,t(zt) (II)

+
( zt
−t̂

)(( ln(1− zt)
1− zt

)
+
− lnQ2

T zt/(−t̂)
(1− zt)+

)
(III)

× N2
c

2

[(m8
H + ŝ4 + +t̂4 + û4 +Q8) + ztzu(m8

H + ŝ4 + +(t̂/zt)4 + (û/zu)4 +Q8)
ŝt̂û

]
−
( zt
−t̂

)( 1
1− zt

)
+

β0
2 Nc

(
m8
H + ŝ4 + +ztzu((t̂/zt)4 + (û/zu)4))

ŝt̂û

)
(IV )

+
[
(t, t̂)↔ (u, û)

]}

N2
c

[(m8
H + ŝ4 +Q8 + (û/zu)4) + (t̂/zt)4)(Q2 +Q2

T )
ŝ2Q2Q2

T

+

2m4
H((m2

H − t̂)4 + (m2
H − û)4 + û4 + t̂4)

ŝt̂û(m2
H − t̂)(m2

H − û)

] 1
p2
T

ln p2
T

Q2
T

,

(3.33)

where the following variables have been defined

zt,u = −t̂, û
Q2 − t̂, û

, (3.34)

Q2
T = Q2 + p2

T . (3.35)

The function ggg is the same of that at LO, whereas ggg,t/u can be found
in [16].
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The AP splitting function are, [16]

Pgg(z) = Nc

[1 + z4 + (1− z)4

z(1− z)+

]
+ β0δ(1− z),

Pqg(z) = CF
[1 + (1− z)2

z

]
.

(3.36)

Plus distribution are defined in Appendix [A.2]. Finally, the numerator of
the splitting function is given by

pgg(z) = (1− z)Pgg(z) = Nc

[1 + z4 + (1− z)4

z

]
. (3.37)

All the function that we have not explicitly written, namely ∆, δ, U ,
give regular contribution near threshold. Their analytical expression can be
found in Ref.[16].

3.4 Fully differential distribution at NLO: thresh-
old behaviour

We are now ready to use our kinematical analysis to show where enhanced
soft contributions come from. Plus distributions arise in cancellation of soft
singularities. As a consequence, the regularized endpoint, namely zt,u = 1,
should correspond to the kinematical extrema we found, (3.17):

• if z′ → 1, then the partonic process is in threshold and all the radiation
become soft;

• if |ŷ| → ŷmax then radiation on one of the two incoming partons be-
come soft;

Clearly, the first case includes the second, because whenever z′ → 1,
then ŷmax = −ŷmin → 0 and ŷ is constrained accordingly.

In order to verify this, we rewrite zt,u in terms of z′, ŷ and the fixed
parameter a(ξp). We have

zt =
√
z′ (a+1)eŷ−2

√
z′

2a−
√
z′(a+1)e−ŷ zu = zt[ŷ ↔ −ŷ]. (3.38)

Then, the claim is verified just substituting the boundaries in Eq. (3.17)
into Eq. (3.38).

54



3.4. Fully differential distribution at NLO: threshold behaviour

A careful analysis of each terms in Eq. (3.33) shows that there are not
other singular contributions.

We know where possible soft enhancement come from, so we can proceed
with the study of the threshold behaviour of the partonic cross section.

3.4.1 Threshold evaluation of regular contribution

Regular contribution are function f = f(z′, t; ξp) that can be evaluated for
z′ = t = 1, that is for Q2 = 0 with correction of order O(1− t) or O(1− z)
which are of no interest in the search for soft enhanced contribution.

Starting with the LO, the ggg of Eq. (3.31) is given by

ggg|z′=t=1 = Ncm
2
H

[8 + 8a4 + (a− 1)4

2a(a− 1)
]
. (3.39)

At NLO we need to consider the following (see (I-II) in Eq. (3.33))

ggg,t̂û|z′=t=1 = Ncm
2
H

[1 + a4 + 1
16(a− 1)4 + 16a4ξ4

p

(a−14)
ξpa2

]
. (3.40)

Moreover, regular coefficient of lines (III-IV) can be evaluated at thresh-
old. It is not particularly interesting to give them here. They just reduce to
contributions proportional to ggg|z′=t=1.

As final observation, we want point out that the expression in Eq. (3.40)
becomes equal to that of Eq. (3.39) if the small-pT limit is taken. In fact,
they both behaves as

∼ 2Ncm
2
H

ξp
as ξp → 0. (3.41)

We need to proceed very carefully here, since the small-pt limit is not
trivial. We are considering two limits, the threshold one and the small-pT
limit. It turns out that this two limits do not commute. We postpone this
issue for later. For the moment, we just keep in mind the small-pT limit of
Eq. (3.41). In this case, the limit is taken after the threshold one.

3.4.2 Change of variable of singular contribution

We now turn to the change of variable in the singular contribution. We need
to express the plus distribution in terms of the variables z′ and t. The full
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derivation can be found in Appendix [B.1] .

Here we give the result:

za
−a

( 1
1− za

)
+

= z′

m2
HR

[( 1
1− t

)
+
− δ(1− t) ln(ρ)

+ 1
t− 1 + R

ω

+O
((1− t)2

R

)]
,

(3.42)

za
−a

( ln(1− za)
1− za

)
+

= z′

m2
HR

[( ln 1− t
1− t

)
+

1
1− ω

R(1− t)

−
( 1

1− t
)

+

ln(ρ)
1− ω

R(1− t) + 1
2 ln2(ρ)δ(1− t)

+
( 1

1− t
)

+

ln(1− ω
R(1− t))

1− ω
R(1− t) +O

((1− t)2

R

)]
.

(3.43)

where R is defined in Eq. (3.19) and has threshold behaviour given by

R =
√

(a2 − 1)(1− z′) +O((
√

1− z)2) (3.44)

We have also defined the following

ρ ≡ 1
2

√
a− 1
a+ 1

1√
1− z′

(3.45)

ω ≡ a+ 1
2 . (3.46)

At LO the main contribution is given by δ(Q2):

δ(Q2) = z′

m2
HR

[
δ(1− t) +O

((1− t)2

R

)]
. (3.47)

A validity check One possible way for verifying the validity of this change
of variables is the following one. We consider the inner integral in Eq. (3.27)
and set M = 0. In that case, the integral over the t variable gives nothing
else than the rapidity integrated cross section, computed in the threshold

56



3.4. Fully differential distribution at NLO: threshold behaviour

limit. As an example, consider the contribution labelled by (IV). We have

(IV ) = −
( zt
−t̂

)( 1
1− zt

)
+

β0
2 Nc

(
m8
H + ŝ4 + +ztzu((t̂/zt)4 + (û/zu)4))

ŝt̂û

)
= −β0

2 ggg|z
′=t=1

z′

m2
HR

[( 1
1− t

)
+
− δ(1− t) ln(ρ)

+ 1
t− 1 + R

ω

+O
((1− t)2

R

)]
.

(3.48)

Apart from the delta function, which is trivial, the integral over the plus
distribution and the one over the rational function are given in Appendix B.2
and at the end of Appendix B.1.2. It turns out that∫ 1

tmin

dt (IV ) = z′

m2
H

√
a2 − 1

√
1− z′

{1
2 ln2 (1− z′)

+ 2 ln(2) ln(1− z′) + 2 ln2(2)− π2

6 +O(
√

1− z′)
} (3.49)

All other contributions may be computed in the same way using results
from Appendix. B.2. all the integrals reproduce the correct threshold be-
haviour of the pT -differential partonic cross section.
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Chapter 4

Fully differential threshold
behaviour in Mellin-Fourier
space

From the previous chapter we know where soft enhanced contribution come
from. Moreover, we have also shown that under a Mellin-Fourier transform
taken with respect to the variable (z′, t) the cross section factorizes into the
product between the Mellin transform of the non perturbative PDFs and
the Mellin-Fourier transform of the partonic cross section. We expect soft
large logarithms to appear as logarithm of the Mellin-Fourier conjugated
variables. Given these facts, in this chapter we are going to look into the
master integral in Eq. (3.27).
First, we present the full double transform performed on the small pT -limit
of the cross section. Then, we attempt to generalize for arbitrary, fixed,
transverse momentum. We compute the integration of the first order of a
suitable expansion and formulate a conjecture for the all order result.
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MELLIN-FOURIER SPACE

4.1 The small pT limit

The integral in Eq. (3.27) is highly non trivial, due to the presence of tmax
which enters in two different ways:

• As a factor in the integrand, with exponent iM ;

• As lower limit in the integration domain;

We recall here the expression for tmax:

t−1
max(z′, ξp) =

√
z′(a+ 1)

a+ z′ +R
, (4.1)

where
R =

√
(a2 − z′)(1− z′). (4.2)

Even when the inner integral of Eq. (3.27) is performed on a delta function
δ(1− t), then we also need to compute∫ 1

0
dz′ z′N−1 1√

1− z
(tiMmax + t−iMmax ), (4.3)

an integral which, given the expressions Eqs.(4.1, 4.2), we have not been
able to compute exactly. The situation is worse when plus distribution are
involved.

We decide to consider the more manageable situation of the small pT
limit. The reason is that as pT → 0, the kinematic approaches that of the
single differential rapidity distribution, a situation we we know how to deal
with. Moreover, we know that the result near the threshold will be made
up of contributions that are either independent from pT or proportional to
log(pT ).
We are going to deal with a double limit:

• The threshold limit, represented by N →∞ and, possibly, iM → ±∞;

• The small pT limit;

It is really important to keep in mind that this two limit cannot be freely
interchanged. Consider, for example, Eq. (4.1), and its threshold expansion
at fixed a(ξp)

tmax = 1−
√
a− 1
a+ 1

√
1− z′ +O((

√
1− z′)2)

= 1−
√

1− z′
2

√
a− 1 +O((

√
a− 1)2) +O((

√
1− z′)2)

(4.4)
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On the other hand, if we took the small pT limit first

tmax =
√
z′ +O((a− 1)2)

= 1− 1
2(1− z′) +O((1− z′)2) +O((a− 1)2)

(4.5)

The kinematical origin of these differences can be easily understood.
The emission of one parton of transverse momentum parameter ξp, in a
process characterized by the partonic scaling variable z, has phase space
proportional to

dΦk ∝
dz dk2

T√
(1− z)2 − 4zξp

. (4.6)

One must choose one order or the other in the evaluation of the thresh-
old and small pT limit. Until now, we have considered the more intricate
situation in which we consider the threshold limit at fixed pT . The hope
is that, after the threshold expansion, the small-pT limit could simplify the
final calculation. For the moment, we postpone the problem and step back
for a while: in the next subsection we treat the case in which the first limit
we take is the small-pT one. This calculation should reproduce the already
known result of transverse momentum resummation.

4.1.1 Threshold evaluation of small-pT distribution

As we have just said, the small-pT limit may display new divergences. We
cannot rely on the change of variables Section 3.4.2 anymore, and neither
on the results of Section 3.4.1. For example, consider Eq. (3.31) and, in
particular, its denominator. At fixed pT , the Mandelstam invariants admits
the threshold evaluation

t̂|[ŷ=ŷmax,z′=1] = m2
H

2z′ (z′ − a−R)z′=1 = m2
H(1− a)

û|[ŷ=ŷmax,z′=1] = m2
H

2z′ (z′ − a+R)z′=1 = m2
H(1− a).

(4.7)

Consider t̂, û in terms of the z1,2 variables of Eq. (2.44) and take the small
pT limit

lim
a→1
−t̂ = lim

a→1

m2
H

z2

(a+ 1
2 − z2

)
= m2

H

z2
(1− z2)

lim
a→1
−û = lim

a→1

m2
H

z1

(a+ 1
2 − z1

)
= m2

H

z1
(1− z1).

(4.8)
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Since the kinematic in this limit is the same as that of the rapidity distri-
bution, the threshold limit is encoded in z1,2 → 1. Whenever Mandelstam
invariants appear in the denominator, we cannot take the small momentum
limit so easily as we did in the last equation. We need to single out the
divergence in term of a vanishing pT .

The correct change of variables for this particular limit can be found in
Appendix [B.3]. Here we show with an example how it is possible to isolate
the most divergent - in power of pT - term.
Consider the following

1
−t̂
∝ 1(

a+1
2 − z2

) , (4.9)

and a test function f . Under integration∫ 1

0
dz f(z) 1

a+1
2 − z

=
∫ 1

0
dz

f(z)− f(1)
a+1

2 − z
+ f(1)

∫ 1

0
dz

1
a+1

2 − z

=
∫ 1

0
dz f(z)

[( 1
1− z

)
+

+ δ(1− z) ln
(a+ 1
a− 1

)]
+O(a− 1).

(4.10)

The neglected contributions come entirely from the expansion of the denom-
inator of the first term.
In other words, the following identity between distributions holds

1
(a+1

2 − z)
=
( 1

1− z
)

+
+ δ(1− z) ln

(a+ 1
a− 1

)
+O(a− 1). (4.11)

Here the most divergent term is not divergent at all, it is of order (pT )0 times
a contribution which is pT finite or proportional to a logarithmic divergence
in pT . We show now, with another example, how a power divergence in pT
could arise. We start squaring Eq. (4.9), and proceed in the same way as
above.∫ 1

0
dz f(z) 1(

a+1
2 − z

)2 =
∫ 1

0
dz

f(z)− f(1)(
a+1

2 − z
)2 + f(1)

∫ 1

0
dz

1(
a+1

2 − z
)2

=
∫ 1

0
dz ga(z)

1(
a+1

2 − z
) + 4

a2 − 1

∫ 1

0
dz f(z) δ(1− z),

(4.12)
where we have defined the regular function

ga(z) := f(z)− f(1)
a+1

2 − z
. (4.13)
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Note that, also in the limit a → 1, g1(z) is regular1. We can exploit
Eq. (4.11) and write

∫ 1

0
dz f(z) 1(

a+1
2 − z

)2 =
∫ 1

0
dz

[
g1(z)

[( 1
1− z

)
+

+ δ(1− z) ln
(a+ 1
a− 1

)]

+ 4
a2 − 1f(z) δ(1− z)

]
+ (pT - vanishing terms)

=
∫ 1

0
dz f(z) 4

a2 − 1

[
δ(1− z) + (pT - vanishing terms)

]
.

(4.14)

Consequently, retaining only the most power divergent contribution, the
result is a delta function. Following analogous procedures, it is possible to
treat each line in Eq. (3.33). Before we give our results, we need to say
something about what happens to the coefficient ggg and ggg,t/u.
The gggs can be treated as follows. First, we define

g̃gg = t̂û

m4
H

ggg, (4.15)

which can be evaluated at threshold and gives

g̃gg|a=1,z1=z2=1 = 2m2
HNc. (4.16)

Similarly
ggg,t̂|thres. = ggg,û|thres. = 1

ξpm4
H

g̃gg|thres.. (4.17)

Importantly, the ggg,t̂/û functions show an extra enhancement in pT , as
Eq. (4.17) shows. When computing the change of variable using the strategy
outlined above, this fact has important consequences in counting powers of
pT in the denominator. The outcome is that only lines in Eq. (3.33) with
AP splitting functions leaves singular (in threshold) contribution also in the
small-pT limit. All other pieces give at most delta function. We can con-
vince ourselves that this is correct. In fact, in the limit of small-pT , we
know that all N-dependent logarithmic contributions come from anomalous
dimensions: in this case, the AP splitting functions.

1At least continuity over [0, 1] is ensured because the test function is supposed to be
regular.
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Coming to the kinematics, we have already anticipated that it trivially
reduces to one of the differential rapidity distribution one and, when the
change of variable in Eq. (2.44) is performed, it leads to a double Mellin
transform.

Using results in Appendix. A.3.1, we find that the double Mellin trans-
form of the small-pT limit of Eq. (3.33), is given by∫ 1

0
dz1 z

N1−1
1

∫ 1

0
dz2 z

N2−1
2

[
G(2s)
gg

]
=

1
ξp

g̃gg
m2
H

{
ln ( µ

2
F

m2
H

)
[
− 4Nc(γ2

E + γE ln(N1N2) + ln(N1) ln(N2))

+ (2γE + ln(N1N2))(β0 −Nc ln(ξp)) + β0 ln(ξp)
]

+ 2Nc

[
− 3γE ln2(N1N2)

− 2γE(γ2
E + π2

6 ) + (γ2
E + π2

6 ) ln(N1N2)− ln(N1) ln(N2)(γE + ln(N1N2))

− 1
8 ln2(ξp)(2γE + ln(N1N2))− 1

2 ln(ξp)(
1
2 ln2(N1N2) + γE ln(N1N2))

]
+ β0

[
− 1

4 ln2(ξp) + 1
2 ln2(N1N2) + γE ln(N1N2) + (π

2

6 + γ2
E)

− ln(N1) ln(N2)
]

+O(ξp) +O( 1
Ni

)
}
.

(4.18)

This result is compatible with the one given in Ref.[7]. In that paper, a
Fourier transform with respect to the transverse momentum and a double
Mellin transform with respect to z1,2, are taken. Reciprocal space variables
are b and (N1, N2), respectively. Taking the limit b → ∞, only the contri-
butions from pT → 0 are picked up. In this limit, the cross section is shown
to exponentiate as

Cres ∝ H(N1, N2;αs)
{

exp [G(N1, b;αs)] exp [G(N2, b;αs)]
}
. (4.19)

The two exponential carry the full pT (b) dependence. Since they can be
easily put together in a single exponential, it follows that each contribution
proportional to b can depend only through the product N1N2. Our result
in Eq. (4.18) agrees with this.
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4.2 Threshold behaviour for fixed pT

In this section we deal with the case in which we first consider the thresh-
old limit for the cross section and then, possibly, the small-pT limit. We
encounter a difficulty, which can be easily understood if we look at the inte-
grand in Eq.(4.3). Since we would like to take the ±∞ limit of the variable
iM , we cannot take the small-pT limit, not even on the threshold expanded
expression Eq.(4.4), because of that divergent exponent. It is not a priori
clear how to take this limit before the explicit evaluation of all the trans-
forms and of the large (N, iM) asymptotic expansion. This is exactly what
we would have preferred to avoid in the first place.

We propose another way of proceeding by "brute force". Coming back to
the general expression for the integral, eq.(3.27), we perform the following
Taylor expansions for z′ → 1:

• tmax appears as limit of integration. Use the expansion for tmax, first
line in Eq.(4.4);

• Expand tiM around t = 1. This is justified by the fact that the domain
of integration is pushed toward the endpoint t = 1 as z → 1;

• Expand also tiMmax.

If the first is supposed to be harmless to our calculation, the second and the
third expansions are quite subtle, due to the presence of increasing powers
of iM besides those of (1 − z) or (1 − t). In fact, we cannot discard terms
of the form (1 − z)k if they are multiplied by the same power of iM . Our
aim is to use integrals computed on the first - relevant - order expansion to
formulate a conjecture for the general result.

Define the expansion parameter

b := iM. (4.20)

It should not be surprising that this calculation turns out to be analytically
long and tedious, due to the numerous series expansions. Accordingly, we
are not going to give the full computation. We just outline the procedure
and give the results. General integrals may be found in Appendix [B.4],
leaving out all the algebra.
We start making the following observation: the result is completely symmet-
ric under the exchange b ↔ −b, reflecting the forward-backward symmetry
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in rapidity distribution. Consequently, overall expansions need to be per-
formed at least at order O(b2), because the first order will always cancel.
The order O(b0) corresponds to set b = 0 and it reproduces the rapidity in-
tegrated results, as we have already pointed out at the end of Section 3.4.2.
The following expansions is everything we need

1
tmax

= 1− b
√
a− 1
a+ 1

√
1− z + b2

2
(a− 1
a+ 1

)
(1− z)

+O(b3) +O((
√

1− z)3/2), (4.21)

tb = 1− b(1− t) + b2

2 (1− t)2 +O(b3) +O((
√

1− z)3/2). (4.22)

At this level we need to retain also the order O(b), since we always
encounter the product tb( 1

tmax
)iM in which two contributions of order O(b)

may give rise to a term of order O(b2).
At a computational level, we are left with integrals that are similar to those
we encountered when we computed the rapidity integrated result as a check.
Differences appears as higher powers of (1− t) or (1− z) at the numerator.
Combining Eqs.(4.21,4.22) we find

tbmaxt
b + [b↔ −b] = 2+2b2

(
−
√
a− 1
a+ 1

√
1− z (1− t)

+ 1
2
(a− 1
a+ 1

)
(1− z) + 1

2(1− t)2
)

+O(b4).
(4.23)

We just need to substitute this last expansion into Eq.(3.27) and do the
calculation. The result can be decomposed as follows

∫ 1

0
dz′ z′N−1

∫ 1

1
tmax

dt
[
tbmaxt

b + [b↔ −b]
]
G(2s)
gg

= ggg|z′=t=1√
a2 − 1

√
π√
N
×
{
C0(N, ξp) +

b2
√

a−1
a+1

4N2 C2(N, ξp) +O(b4)
}
,

(4.24)

where C0 is the result of the rapidity integrated cross section, whereas C2
is the order O(b2) correction.
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We have:

C0 = β0(2γE + 2 ln(N)) + 3Nc(γ2
E − 3 ln2(2) + ln2(N) + 2γE ln(N) + π2

6 )

+ 2Nc ln
( 2ξp
a− 1

)
(2γE + 2 ln(N))− 2 ln

( 2µ2
F

m2
H(a− 1)

)
(β0 − 4NcγE − 4 ln(N)),

(4.25)

C2 = β0(2γE + 2 ln(N)) + 3Nc

[
56 ln2(2) + 103

24 ln(2) + 25
9 −

10
3 π

2

+ ln
(a− 1
a+ 1

)
(17 ln(2) + 19

3 ) + (17 ln(2) + 19
3 )(2− γE − 2 ln(2)− ln(N))

]
+ 2Nc ln

( 2ξp
a− 1

)
(2γE + 2 ln(N))− 2 ln

( 2µ2
F

m2
H(a− 1)

)
(β0 − 4NcγE − 4Nc ln(N)).

(4.26)
The complete NLOMellin-Fourier transform would be given by the whole

series in b. Though we have not been able to sum up the whole series, still
we can give the general result as a conjecture and verify that our result agree
with the appropriate expansion of the conjectured result. This is left for the
last section.

4.3 A conjecture for the resummed cross section

We can no more rely on Eq.(4.19) because it is valid only for pT → 0. From
a diagrammatic point of view, soft radiation has different sources:

• emissions from external legs of incoming partons;

• emissions from the recoiling parton;
As a consequence, we could expect a resummed structure of the form

Cres(N1, N2;αs) ∝ exp
(
S(N1N2, αs)

)
×
[

exp
(
G(N1;αs)

)
+exp

(
G(N2;αs)

)]
,

(4.27)
where

S(N1N2;αs) = ln(N1N2) · f
(

ln(N1N2);αs
)
, (4.28)

f
(

ln(N1N2;αs)
)

=
∑
n≥1

fn(αs ln(N1N2))αns , (4.29)

G(Ni;αs) = ln(Ni) · g(ln(Ni);αs), (4.30)
g(ln(Ni);αs) =

∑
n≥1

gn
(
αs ln(Ni)

)
αns . (4.31)
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Each fn and gn can be written as a series expansion in their argument

fn(λ) =
∑
k≥0

fnk α
k
s , (4.32)

gn(λ) =
∑
k≥0

gnk α
k
s . (4.33)

We need to say how we can map this structure into something that depends
logarithmically on N and on b2 in the first order of a series expansion. We
note that

N1 ·N2 = (N + b

2)(N − b

2) = N2
(

1− b2

4N2

)
, (4.34)

so that

ln(N1N2) = ln(N2) + ln(1− b2

4N2 ) = 2 ln(N)− b2

4N2 + · · · . (4.35)

Expanding Eq.(4.27) we get

Cres ∝ 1 + αs

{[
ln2(N)(4f11 + 2g11) + 2 ln(N)(f20 + g20)

]

+ M2

4N2

[
(4f11 − 2g11) ln(N) + f20 + g20 − 2g11

]}
+ · · ·

(4.36)
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Consider the following contribution, that are nothing else that the building
blocks of Eq. (4.24)

A = 3NC ; (4.37)

B = 2β0 + 6NcγE + 4Nc ln( 2ξp
a− 1) + 8Nc ln( 2µ2

F

m2
H(a− 1)); (4.38)

C =
√
a− 1
a+ 1

(
2β0 − 6Nc(17 ln(2) + 19

3 ) + 4Nc ln( 2ξp
a− 1)

− 8 ln
( 2µ2

F

M2
H(a− 1)

))
; (4.39)

D =
√
a− 1
a+ 1

[
2β0γE + 6Nc

(
28 ln2(2) + 103

48 ln(2) + 25
18 −

5
3π

2 (4.40)

+ 1
2 ln

(√a− 1
a+ 1

)
(17 ln(2) + 19

3 ) + (17 ln(2) + 19
3 )(1

− γE
2 − ln(2))

)]
+ 4Nc ln

( 2ξp
a− 1

)
− 2 ln

( 2µ2
F

m2
H(a− 1)

)
(β0 − 4NcγE).

(4.41)

and then we require that

f11 = A+C
8 g11 = A−C

4

f20 = B −D − A−C
2 g20 = A− C + 2D −B.

(4.42)

The last assignments ensure that our result agrees with this conjecture
Eq.(4.27), with proportionality constant given by

ggg|z′=t=1√
a2 − 1

√
π√
N

In conclusion, the conjecture can be written as

Cres =
(
ggg|z′=t=1

√
π√
N

)
exp

(
S(N1N2, αs)

)
×
[

exp
(
G(N1;αs)

)
+ exp

(
G(N2;αs)

)]
.

(4.43)
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Chapter 5

Conclusion

The object of study of this thesis were soft large logarithms and their re-
summation. Soft resummation prescription are know for inclusive and single
differential distribution. Our purpose was the understanding of the general
structure of soft large logarithms in the case of fully differential cross sec-
tions. Soft large logarithms arise in kinematic regions where the centre of
mass energy is just enough to produce the final state, that is when extra
radiations become soft.

For inclusive cross section, through the variable z = m2
H/ŝ, the threshold

region is identified by z → 1. The cross section is written as a multiplicative
convolution and then factorized under a Mellin transform. Following resum-
mation prescriptions, the large-N limit is taken and soft large logarithms in
direct space are mapped into logarithms of the conjugated variable N.

The transition to pT distribution requires a rescaling of the relevant soft
variable z by a pT -dependent coefficient: z′ = z · a(pT ). After the rescaling
everything else is quite alike the inclusive case. A Mellin transform is taken
and large logarithms of the conjugated variable N are searched.
More difficult is the case of rapidity distribution. The single variable z is
no more sufficient to describe the soft region. Also the partonic rapidity ŷ
need to be considered. The right recipe turns out to be a Mellin-Fourier
(M-F) transform. The M-F transform can be mapped into a double Mellin
M-M transform by a change of variables. Large logarithm are functions of
either one of two Mellin variables: (N1, N2). Finally, not trivially, resum-
mation theory for rapidity distribution ensures that the dependence on this
two variables is always given by their product ω = N1N2.
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In this thesis we investigated the transition from single differential to
double differential distributions. We expected that a combination of the
two recipes, that is the z rescaling and the double transform would be the
right one. And it was indeed the case: after the rescaling from z to z′,
the cross section still factorizes under M-F. Nevertheless, for a fixed value of
both rapidity and transverse momentum, kinematics complicates drastically
and so do the M-F transform. In particular, we are no more able to get a
M-M transform by means of a simple change of variables.

We considered Higgs production, computed at NLO, producing differ-
ent results: we have explicitly verified the non trivial prediction of a single
variable dependence for rapidity distribution. For fully differential distri-
bution, we have shown how to isolate terms which gives rise to threshold
enhanced contributions and we have expressed them on the integration vari-
ables. Then, we considered the small pT limit and computed the Mellin-
Fourier transform in that case. Finally, we gave a conjecture for the result
in the fully differential case. The conjecture is build on the result of the
Mellin-Fourier transform performed on a suitable expansions of the inte-
grand. In particular, we expected soft large logarithm to appear as function
of the Mellin variable N and the Fourier variable b.

Starting from this point, there are mainly two purposes that can be
pursued. One possibility is to further investigate the Mellin-Fourier integral,
with the aim of obtaining the exact NLO expression in conjugate space.
That would give us the exact structure of large logarithms to be resummed.
The other possibility could be consider general threshold resummation for
fully differential distribution, and try to formulate a general argument for
a resummed prediction. The former could be of great help to the latter,
which, in turns, gives the exact resummation recipe.
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In this Appendix we give the definition and general properties of the
Mellin transform. We also define plus distribution and consider their be-
haviour under a Mellin transform.

A.1 Mellin Transform
Whenever we have a function defined over the range 0 ≤ x ≤ 1, we can
consider its Mellin transform, given by

f̃(N) ≡M[f ](N) ≡
∫ 1

0
dxxN−1 f(x). (A.1)

The inverse transform is

f(x) =M−1[f̃ ](x) = 1
2πi

∫ c+i∞

c−i∞
dNx−N f̃(N), (A.2)

where c must be greater of rightmost singularity, which exist due to the
presence of a convergence abscissa.

The Mellin transform is strictly related to the Laplace transform, as it
can be seen by the replacing x = e−t.

A.1.1 Convolution and Mellin transform

Throughout this thesis we have often come across with integral convolution
of the form

(f ⊗ g)(x) =
∫ 1

x

dy

y
f(y) g(x

y
)∫ 1

0
dy

∫ 1

0
dz f(y) g(z) δ(x− yz).

(A.3)

From the second line of Eq. (A.3), it is clear that it is commutative

f ⊗ g = g ⊗ f, (A.4)

and that it can be generalized to an arbitrary number of function

(f1⊗· · ·⊗fn)(x) :=
∫ 1

0
dy1 · · ·

∫ 1

0
dyn f1(y1) · · · fn(yn) δ(x−y1 · · · yn). (A.5)

Multiplicative convolution factorizes into an algebraic product under the
Mellin transform

M[f ⊗ g](N) =
∫ 1

0
dxxN−1

∫ 1

0
dy

∫ 1

0
dzf(y)g(z)δ(x− yz)

=
( ∫ 1

0
dy yN−1f(y)

)( ∫ 1

0
dz zN−1g(y)

)
= f̃(N)g̃(N)

(A.6)
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A.2 The Plus distribution
Given a function f , we define the plus distribution of f with respect to z = 1
the point, as the distribution [f(z)]+ that acts, when integrated with a test
function g, through the prescription∫ 1

0
dz [f(z)]+g(z) ≡

∫ 1

0

(
g(z)− g(1)

)
f(z) (A.7)

We are interested in plus distributions because they usually arise in the
cancellation of soft divergences. Observe that∫ 1

0
dz [f(z)]+ = 0. (A.8)

Consider a function f which behaves, as z → 1, as

f(z) ∼ (1− z)−α , α < 2, (A.9)

and it is regular elsewhere, or at least in the range [0, 1). In general, the
integral with a regular test function g does not exist∫ 1

0
f(z)g(z) =∞ (A.10)

But, a degree of divergence such as the one of Eq. (A.9) is properly regular-
ized by the plus prescription. In fact, in the region z ∼ 1, we have[

g(z)− g(1)
]
f(z) ∼ (1− z)−α(1− z)dg

dz
(z = 1) + · · ·

∼ (1− z)1−α + · · · ,
(A.11)

whose integral is convergent, if α < 2. This means that the following class
of function is properly regularized

logk 1− z
1− z . (A.12)

This gives us the class of functions for which a plus prescription with end-
point 1 is well defined: it is the set of all function which diverges at most
as indicated in Eq. (A.9). Obviously, a different plus prescription, that is
a plus prescription with respect to some other end point, can be defined in
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the same way.

If we consider a regular function, then

[f(z)]+ = f(z)− δ(1− z)
∫ 1

0
dz f(z), (A.13)

otherwise, if f is not regular at the end point z = 1, then the following
representation is more suitable

[f(z)]+ = lim
ε→0+

[
θ(1− z − ε)f(z)− δ(1− z)

∫ 1−ε

0
dz f(z)

]
, (A.14)

where the limit is understood to be taken after integration with a test func-
tion.

Actually, Eq. (A.14) is a better definition of a plus prescription than
Eq. (A.7), because it is not restricted to integral over [0, 1].

A.2.1 A useful identity

The following distributional identity holds true

(1− z)−1+ε = 1
ε
δ(1− z) +

( 1
1− z

)
+

+ ε
( ln 1− z

1− z
)

+
+ O(ε2). (A.15)

In fact, given a test function f , we have∫ 1

0
dz f(z) (1− z)−1+ε =

∫ 1

0
dz [f(z)− f(1)] (1− z)−1+ε

+ f(1)
∫ 1

0
dz (1− z)−1+ε.

(A.16)

The last term can be evaluated exactly:

f(1)
∫ 1

0
dz (1− z)−1+ε = f(1) 1

ε
= 1
ε

∫ 1

0
dz f(z)δ(1− z). (A.17)

The first one can be written as a series in ε, exploiting the following expan-
sion

(1− z)−1+ε = 1
1− z e

ε ln (1−z) = 1
1− z + ε

ln(1− z)
1− z +O(ε2). (A.18)

Putting all together we prove the identity.
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A.3 Large-N behaviour of the Mellin transform

We are interested in the large N behaviour of the Mellin transform. We are
going to show now that the case of a distribution is fundamentally different
from the regular function one. We start with the following theorem

Theorem 1. Let f be a real function and M[f ](N) its Mellin transform.
Then |M[f ](N)| is bounded by a decreasing function for real N and tends
to 0 as N →∞.

Proof. We start noting that

|M[f ](N)| ≤
∫ 1

0
dz |zN−1f(z)| =M[|f ](N), (A.19)

where we used the fact that z is positive and N is a real variable.
We just need to show that M[|f |](N) is the search bounding decreasing
function.

d

dN
M[|f |](N) =

∫ 1

0
dz log z zN−1|f(z)| ≤ 0, (A.20)

because log z is negative in the integration range.
By noting that as N → ∞ the integrand approaches 0 almost everywhere
and by using the dominated convergence theorem, we get the proof.

Trivial examples of the previous theorem are given by monomial inte-
grand. The Mellin transform of a monomial of degreeM , behaves as ∼ 1

N+M
for large N.

The situation is completely different when distribution are involved. A
very simple example is provided by delta function. The Mellin transform of
a delta δ(z−z0) is exponentially decreasing in N or exactly zero if 0 ≤ z0 < 1
but it is constant if z0 = 1.
The more interesting case of a plus distribution can be characterized as
follows

Theorem 2. Let f be a real function which is singular in z = 1 and let
(f)+ be the plus distribution defined from it. Let M[(f)+](N) be its Mellin
transform. Then |M[(f)+](N)| is bounded by an increasing function which
diverges as N →∞.
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A.3.1 The Mellin transform of Plus distribution

We are going to compute the exact asymptotic expansion and show that the
Mellin transform of plus distributions actually diverge in the limit of large
N , with logarithmic behaviour.

we start considering the identity Eq. (A.15) and defining the generating
integral

G(ε) :=
∫ 1

0
dz zN−1(1− z)−1+ε − 1

ε
. (A.21)

From G, the Mellin transform of plus distribution may be computed using

M
[( lnk(1− z)

1− z
)

+

]
(N) = dk

dεk
G(ε)|ε=0. (A.22)

The generating function can be expressed in term fo the Euler Beta function,
Eq. (C.12), as

G(ε) = B(N, ε)− 1
ε
. (A.23)

The pole is necessary to cancel the analogous one in the ε → 0 limit of the
Beta function. Expanding in power of ε using Eqs.(C.9,C.10), we have

G(ε) = Γ(ε)Γ(N)
Γ(ε+N) −

1
ε

=
(

1
ε
− γE

+ ε

2
(π2

6 + γ2
E

)
+ · · ·

)
Γ(N)

Γ(N + ε) −
1
ε
.

(A.24)

Using the expansion in Eq. (C.9)

Γ(N)
Γ(N + ε) = 1− ψ0(N)ε+ 1

2
(
ψ2

0(N)− ψ1(N)
)
ε2 + · · · . (A.25)

Putting all together, and exploiting Eq. (C.11), we find, in the large-N limit

G(ε) =
= − ln(N)− γE

+ ε
(1

2 ln(N)2 + γE ln(N) + 1
2
(
γ2
E + π2

6
))

+O(ε2),

(A.26)
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from which one can read the asymptotic expansion of plus distributions. We
are only interested in the first two

M
[( 1

1− z
)

+

]
(N) = − ln(N)− γE +O( 1

N
) (A.27)

M
[( ln(1− z)

1− z
)

+

]
(N) = 1

2 ln2(N) + γE ln(N) + 1
2
(
γ2
E + π2

6
)

+O( 1
N

).

(A.28)

These last two integrals have been used at the end of Ch. 2. In general,
at order εk, the asymptotic gives a term proportional to lnk−1N . This
proves the (leading logarithmic) conversion, valid for N →∞,

( lnk (1− z)
1− z

)
+
←→ lnk+1(N). (A.29)
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In this appendix we compute all change of variables we have used through-
out Ch. 3 and Ch. 4 of this thesis. First we perform the full derivation of
Eqs. (3.42,3.43). Then, we show how to perform a integral we used to make
a validity check on our change of variables. Finally, we consider the limit
of small-pT of the partonic cross section Eq. (3.21). This limit should be
pT divergent. Here, we single out the most divergent contributions from the
NLO cross section.

B.1 Changes of variables in plus distributions

B.1.1 Change of variable

Eqs. (3.42,3.43) are labelled by the two Mandelstam invariant, t̂, û. We con-
sider the case labelled by the Mandelstam invariant t̂. The other one can be
computed analogously.

We want to express the plus distributions

zt

−t̂

( lnk (1− zt)
1− zt

)
+

(B.1)

as function of the variables t and z′, defined in Eq. (3.14,3.28). Since we are
interested in the limit t→ 1 we can expand our expression in this limit. We
define, as in Eq. (3.19),

R =
√

(a2 − z′)(1− z′).

First, the prefactor

zt

−t̂
= 2z′
m2
H(a− z′ +R) +O(1− t). (B.2)

Then, we expand the following quantity

(1− zt) = 1
ρt

(1− t)
[
1− ωt

R
(1− t) +O

((1− t)2

R

)]
. (B.3)

with

ρt ≡
a− z′ +R

2R , (B.4)

ωt ≡
2a2 − 2aR− a2z′ + z′

2(a− z′ +R) , (B.5)
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By using Eq. (A.15), we have

zt

−t̂
(1− zt)−1+ε = z′

m2
HR

(ρt)−ε(1− t)−1+ε(1− ωt
R

(1− t) +O
((1− t)2

R

)
)−1+ε

= z′

m2
HR

[(
1− ε ln(ρt) + 1

2ε
2 ln2(ρt) +O(ε2)

)

×
(1
ε
δ(1− t) +

( 1
1− t

)
+

+ ε
( ln(1− t)

1− t
)

+
+O

((1− t)2

R

)
+O(ε2)

)

×
(

1
1− ωt

R (1− t) e
ε ln
(
1−ωt

R
(1−t)

)
+O

((1− t)2

R

))]
(B.6)

Then, expanding the exponential and computing all the products we get

zt

−t̂
(1− zt)−1+ε = z′

m2
HR

{
1
ε
δ(1− t)

+
[ 1
1− ωt

R (1− t)
( 1

1− t
)

+
− ln(ρt)δ(1− t)

]
+ ε

[ 1
1− ωt

R (1− t)
( ln(1− t)

1− t
)

+
− ln(ρt)

1− ωt
R (1− t)

( 1
1− t

)
+

+
ln(1− ωt

R (1− t)
1− ωt

R (1− t)
( 1

1− t
)

+
+ 1

2δ(1− t) ln2(ρt)

+O(ε2) +O
((1− t)2

R

)]}
.

(B.7)

If we directly made use of Eq. (A.15) on the LHS of Eq. (B.6), we would
have obtained

zt

−t̂
(1− zt)−1+ε = zt

−t̂

[1
ε
δ(1− zt) +

( 1
1− zt

)
+

+ ε
( ln 1− zt

1− zt

)
+

+ O(ε2)
]
.

(B.8)
By comparing the two RHS we get equations Eq. (3.42,3.43).

The two parameters of Eq. (B.4) and their counterpart with t̂→ û have the
same limits as z′ → 1.

The last change of variable is the one for δ(Q2). Using the standard
formula for changing variable in delta function, that is searching for the
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zeros of the argument, one finds

δ(Q2) = z′

R

1
m2
H

δ(1− t) + (solution with minimum rapidity). (B.9)

Observe that Q2 = 0 has actually two solution, one is given by the ra-
pidity approaching the maximum value, the other is given by the opposite
situation. In Ch.3 we have split the integration domain exploiting the sym-
metry due to rapidity, so we can just give the first solution, since the other
is never picked up.

B.1.2 Some other identities

The change of variables we have just proved, that is Eqs. (3.42,3.43), several
products between plus distributions and real function appear. The following
identities hold( lnk(1− t)

1− t
)

+

1
1− ωa

R (1− t) =
( lnk(1− t)

1− t
)

+
+ lnk(1− t)
t− 1 + R

ωa

, (B.10)

( 1
1− t

)
+

ln(1− ω
R(1− t))

1− ω
R(1− t)) =

ln(1− ωa
R (1− t))

(1− t)(1− ωa
R (1− t)) . (B.11)

They can be proved by using the representation Eq. (A.14) for plus distri-
bution and the algebraic identity

1
1− t

1
1− ω

R(1− t) = 1
1− t + 1

t− 1 + R
ω

. (B.12)

The reason why we kept the order 1−t
R We are now ready to explain

why the expansion of the previous subsection was given up to the order 1−t
R .

Terms are the origin of contributions such as the last addend in Eq. (B.10).
At a first sight, since we are interested in the limit t→ 1, it seems a regular
contribution to be discarded. But we need to keep in mind that also z′ → 1,
so that R→ 0. Let k = 0 and consider the following integral∫ 1

tmin

dt
1

t− 1 +R/ω
, (B.13)

where tmin = 1/tmax and tmax is given by Eq. (3.28). That is the integral
we would compute setting M = 0 in the Fourier transform. The primitive
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is given by a logarithm and the definite integral is given by

ln (t− 1 + R

ω
)
∣∣∣1
tmin

= ln
( R/ω

tmin − 1 +R/ω

)
. (B.14)

The limit z′ → 1 of this logarithm is just a ln(2).

since there are no more power of R at the denominator, higher orders in
1− t in the expansions of the previous sections can be safely neglected .

B.2 Other Integrals

In order to assess our change of variable, we can integrate over the rapid-
ity and then consider the limit z′ → 1. In other words, we set M = 0 in
Eq. (3.24). The result should reproduce the already known threshold be-
haviour for pT -distributions. For this purpose, the following integral have
been used, besides those in App. A.3.1.

Integrals over plus distributions For any plus distribution regularized
with endpoint 1, the following holds

∫ 1

tmin

dt
(
f(t)

)
+

=
∫ tmin

0
dtf(t). (B.15)

Then, for tmin = 1
tmax

, where tmax is defined in Eq. (3.28),

∫ 1

tmin

dt
( lnk(1− t)

1− t
)

+
= − lnk+1(1− tmin)

k + 1

= − 1
k + 1 lnk+1(

√
a− 1
a+ 1

√
1− z′) +O(1− z′),

(B.16)

where we made the expansion for z′ ∼ 1

1− tmin ∼
√
a− 1
a+ 1

√
1− z′ +O((

√
1− z)2) (B.17)
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Integrals over rational logarithmic function Using the following in-
definite integral

∫
dx

ln(1− x)
x− α

= Li2( x− 1
α− x

) + ln(1− x) ln(α− x
α− 1 ) + k. (B.18)

it is easy, although algebraically tedious, to integrate functions of the form
of the regular remnant of Eq. (B.10).

B.3 The pT → 0 limit

The previous changes of variables can be used if the limit z′ → 1 is taken
before the limit pT → 0. We cannot interchange the two limits, as it is ex-
plained in section 4.1. Here we present the derivation of the small-pT limit of
the cross section. The first observation we make is that in the small pT limit
the kinematics approaches the pT -integrated one, that is the kinematics of
the rapidity distribution.

If we consider the variables Eq. (3.38) and express them in terms of the
z1,2 variables of Eq. (2.44), we find

zt = z1
(a+ 1)− 2z2

2a− (a+ 1)z2 zu = zt [z1 ↔ z2]. (B.19)

As pt → 0, zt → z1 and zu → z2.
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In the small-pT limit, retaining only the most pT -divergent part, we find( 1
1− zt

)
+

( 1
−t̂

)2( 1
−û

)
= 1
ξp

[
1
m6
H

1
2 ln (ξp) δ(1− z1) δ(1− z2) +O(ξp)

]
,

(B.20)

( ln (1− zt)
1− zt

)
+

( 1
−t̂

)2( 1
−û

)
= 1
ξp

[
1
m6
H

1
2
(π2

3 + ln2(2) + 1
4 ln2(ξp) (B.21)

+ ln(2) ln(ξp)
)
δ(1− z1) δ(1− z2) +O(ξp)

]
,

1
t̂

ln
(µ2

F zt

t̂

)
Pgg(zt) = 1

ξp

1
m6
H

[
2Nc

( 1
1− z1

)
+

+ β0δ(1− z1)
]

×
[( ln(1− z2)

1− z2

)
+
− 1

8 ln2(ξp) δ(1− z2) (B.22)

+ ln
( µ2

F

m2
H

)(1
2 ln(ξp) δ(1− z2)−

( 1
1− z2

)
+

)
+O(ξp)

]
,

1
−t̂
pgg(zt)

( ln(1− zt)
1− zt

)
+

= 1
m2
Hξp

2Nc

[( 1
1− z2

)
+

( ln(1− z1)
1− z1

)
+

(B.23)

− 1
2 ln(ξp)δ(1− z2)

( ln(1− z1)
1− z1

)
+

+O(ξp)
]
.

and the case with t↔ u is found just swapping z1 ↔ z2.

B.4 Integrals for the Final Expansions

We need to generalize the results obtained in section [B.2] of this Appendix.
We give results outlining the general strategy. The first integral we need
is that over plus distributions, as in Eq. (B.16), but with more power of
(1 − t). Actually, the calculation is very simple in these cases because plus
prescriptions are simply removed. For example, one finds that, for m ≥ 1∫ 1

1
tmax

dt (1− t)m
( ln(1− t)

1− t
)

+
=
∫ 1

1
tmax

dt (1− t)m−1 ln(1− t), (B.24)
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which requires at most an integration by parts. More intricate integrations
come from pieces with rational functions which contains logarithms. The
most general integral is

I(p,m,n) ≡
∫ 1

tmin

dt
(1− t)p lnm(1− t) lnn(t− 1 + R

ω )
t− 1 + R

ω

, (B.25)

with p = 0, 1, 2 and we have defined tmin = 1
tmax

. For each value of p, the
two other parameters assume value as

• m = n = 0 ;

• m = 1 ∧ n = 0;

• m = 0 ∧ n = 1;
Again, the case p = 0, 1, 2 ∧ n = m = 0 can be solved by means of inte-

gration by parts or as a special case of the situation we are going to consider.

We define the generating integral

G(p)(ρ, η) ≡
∫ 1

tmin

dt (1− t)p+ρ
(
t− 1 + R

ω

)η−1
, (B.26)

from which
I(p,m,n) =

[ ∂m+k

∂ηm∂ρk
G(p,m,n)(ρ, η)

]
|η=ρ=0. (B.27)

We write
(
t−1+ R

ω

)η−1 as a power series around t = 1. The n-th derivative,
with n ≥ 1 is

dn

dtn
(
t− 1 + R

ω

)η−1|t=1 =

= (−1)n(1− η)(2− η) · · · (n− η)
(
t− 1 + R

ω

)η−n−1
|t=1

= (−1)n n!
(
1−H(n) η +O(η2)

)(R
ω

)η−n−1
,

(B.28)

where we have used
(1− η)(2− η) · · · (n− η) = n! + (−η)(2 · 3 · · ·n)
+ 1 · (−η) · (3 · 4 · · ·n) + · · ·
+ (1 · 2 · 3 · · · (n− 1))(−η) +O(η2)

= n! ·
(
1 + (−η)(1

1 + 1
2 + · · ·+ 1

n
) +O(η2)

)
= n! ·

(
1−H(n)η +O(η2)

)(R
ω

)η−n−1
,

(B.29)
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being H(n) the n-th harmonic number. The integrand is rewritten as

(1− t)p+ρ
(R
ω

)η−1
+
∑
n≥1

(
1−H(n)η +O(η2)

)(R
ω

)η−n−1
(1− t)ρ+n+p

=
∑
n≥0

(
1−H(n)η +O(η2)

)(R
ω

)η−n−1
(1− t)ρ+n+p +O(η2),

(B.30)

having defined H(0) = 0, and neglecting1 the order O(η2). Integrating the
series term by term, we get

G(p)(η, ρ) =
∑
n≥0

[(
1−H(n)η+O(η2)

)(R
ω

)η−n−1
(
1− tmin

)ρ+p+n+1

ρ+ p+ n+ 1
]
(B.31)

In general, it is not easy to sum this series and, maybe, not even possible
in term of known elementary functions. Now, we are going to show that, at
least in the two cases we are interested in, this is possible.

m=0 and n=1

I(p,0,1) = ∂

∂ρ
G(p)(ρ, 0)|ρ=0

=
∑
n≥0

(ω
R

)n+1((1− tmin)p+n+1 ln(1− tmin)
p+ n+ 1 − (1− tmin)p+n+1

(p+ n+ 1)2

)
= ln(1− tmin)

(R
ω

)p ∑
n≥p+1

(1− tmin)n
n

(ω
R

)n
−
(R
ω

)p ∑
n≥p+1

(1− tmin)n
n2

(ω
R

)n

=
(R
ω

)p[
ln(1− tmin)

(
− ln(1 + ω

R
(tmin − 1))−

p∑
n=1

(1− tmin)n
n

(ω
R

)n)

− Li2
(ω
R

(1− tmin)
)

+
p∑

n=1

(1− tmin)n
n2

(ω
R

)n]
(B.32)

where, in the last line, we have summed the series for n ≥ 1 and then we
have subtracted redundant pieces from n = 1 up to n = p. Moreover, we
have used the series representation of the logarithm and the less known one

1This is sufficient only for our calculation.
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of the Di-Logarithmic function.
Threshold expansion of the above integral, for p = 0, 1, 2, gives

I(0,0,1) ∼ ln(2) ln
(√a− 1

a+ 1
√

1− z′
)
− π2

12 + 1
2 ln2(2), (B.33)

I(1,0,1) ∼
√
a− 1
a+ 1

√
1− z′

(
2 ln(2) ln

(√a− 1
a+ 1

√
1− z′

)
− π2

6 + ln2(2)
)
,

(B.34)

I(2,0,1) ∼
(a− 1
a+ 1

)
(1− z′)

(
4 ln(2) ln

(√a− 1
a+ 1

√
(1− z′)

)
− π2

3 + 2 ln2(2)− 1
4
)
.

(B.35)

m=1 and n=0

I(p,1,0) = ∂

∂η
G(p)(0, η)|η=0

=
∑
n≥0

[
−H(n)

(ω
R

)n+1 (1− tmin)p+n+1

p+ n+ 1

+ ln
(R
ω

)(R
ω

)n+1 (1− tmin)p+n+1

p+ n+ 1
]
.

(B.36)

Performing manipulation similar to those above given, rearranging addends
when appropriate, we find

I(0,1,0) ∼−
1
2 ln2(2)− ln(2) ln(2

√
a− 1
a+ 1

√
1− z′), (B.37)

I(1,1,0) ∼
√
a− 1
a+ 1

√
1− z′

(
− 5 ln2(2)− 5 ln(2)− 1

8 + π2

2

− (1 + 2 ln(2)) ln(
√
a− 1
a+ 1

√
1− z′)

)
, (B.38)

I(2,0,1) ∼
(a− 1
a+ 1

)
(1− z′)

(
(−4 ln(2)− 5

2) ln
(√a− 1

a+ 1
√

1− z′
)
− 6 ln2(2)

− 6 ln(2)− 103
36
)
. (B.39)

Eqs.(B.33-B.35) and (B.37-B.39) are all we need to compute corrections
to the rapidity integrated cross section near the threshold.
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In this Appendix we recall some special functions that arise in integrals
like those we performed in this thesis.

C.1 The Euler Gamma function and its deriva-
tives

The Euler Gamma is defined by the following improper integral

Γ(z) =
∫ ∞

0
dt tz−1e−t, <(z) > 0 (C.1)

Integrating by parts, it is simple to verify the recursion relation

Γ(z + 1) = zΓ(z) (C.2)

If evaluated for z ∈ R, the Gamma function is a real number. Moreover,
since Γ(1) = 1 and from Eq.(C.2), it follows that Γ(n+ 1) = n! for all posi-
tive integers.

Splitting the integration region as [0, 1) ∪ (1,∞) and evaluating the
proper integral after expansion of the exponential, we get the alternative
form

Γ(z) =
∞∑
n=0

(−1)n
n!

1
z + n

+
∫ ∞

1
dt tz−1e−t (C.3)

Requiring relation in Eq.(C.2) to hold, the Euler Gamma can be analytically
extended as a meromorphic function on the complex plane with simple poles
on negative integers. Eq.(C.3) is a representation of such extension: the in-
tegral converges on the whole complex plane whereas the series explicitly
shows the announced simple poles.

We define the DiGamma function as the derivative of the logarithm of
the Gamma

ψ0(z) := d

dz
log Γ(z) (C.4)

From Eq.(C.2) it follows the analogous relation

ψ0(z + 1) = 1
z

+ ψ0(z) (C.5)

Evaluating the DiGamma for a positive integer n and iterating the last
relation, we find

ψ0(n+ 1) = ψ0(1) + 1 + 1
2 + · · · 1

n
(C.6)
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which shows the important link between the DiGamma function and Har-
monic numbers.
The value ψ0(1) = −γE = 0.5772 . . . is called Euler-Mascheroni constant.
Higher order derivatives give rise to PolyGamma functions

ψn(z) := dn+1

dzn+1 log Γ(z) (C.7)

Again, differentiating the recursive relation (C.5), we find the analogous
relation for the the nth-order PolyGamma

ψn(z + 1) = ψn(z) + (−1)nn!
zn+1 (C.8)

We are particularly interested in asymptotic expansions of the above
functions. Let us consider the Laurent expansion of the Gamma function
around a generic point z

Γ(z + ε) = Γ(z) + Γ′(z)ε+ 1
2Γ′′(z)ε2 +O(ε3)

= Γ(z)
(
1 + ψ0(z)ε+ 1

2(ψ1(z) + ψ2
0(z))ε2 +O(ε3)

) (C.9)

Evaluating for z = 1 and exploiting relation (C.2) we get the Gamma
expansion near the origin

Γ(ε) = Γ(1 + ε)
ε

= 1
ε
− γE + ε

2(π
2

6 + γ2
E) + O(ε2) (C.10)

Importantly, as z → ∞ along the real axis, the DiGamma function
shows a different behaviour from other PolyGamma functions. Indeed, the
following asymptotics hold

ψ0(z) ≈ log(z) +O
(1
z

)
ψn(z) ≈ O

( 1
zn
)

n > 0
(C.11)

The last two results explain why terms with Gamma derivatives of order
higher than the first usually give power suppressed contributions.
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C.2 Gamma Related Functions
The Beta function is defined by the following integral

B(x, y) :=
∫ 1

0
dt tx−1(1− t)y−1 Rex > 0, Re y > 0 (C.12)

The Beta is symmetric in its argument and there exists useful represen-
tation in terms of the Gamma function

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) (C.13)

Its partial derivative is given by

∂

∂x
B(x, y) = B(x, y)

(Γ′(x)
Γ(x) −

Γ′(x+ y)
Γ(x+ y)

)
= B(x, y)

(
ψ0(x)− ψ0(x+ y)

) (C.14)

The following asymptotic immediately follows from Stirling approxima-
tion

B(x, y) ≈ Γ(x)x−y as x→∞ for fixed y (C.15)

A less straightforward Euler Gamma-related function is represented by
the hypergeometric function. We define the (p, q) order hypergeometric
function as

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) :=
∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

zk

k! (C.16)

where (q)n is called Pochhammer symbol ad its value is

(q)n =
{

1 if n = 0
q(q + 1) · · · (q + n− 1) if n > 0

(C.17)

which is more commonly rewritten as

(q)n

1 if n = 0
(q+n−1)!

(q−1)! = Γ(q+n)
Γ(q) if n > 0

(C.18)
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What it is usually called hypergeometric function is the special case

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k! (C.19)

The hypergeometric function arises in the evaluation of Euler-type inte-
gral. Indeed, the following integral representation holds for <(c) > <(b) > 0

B(b, c− b)2F1(a, b; c; z) =
∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a (C.20)

When the upper integration limit is different from one, the related function
is said to be incomplete. Unfortunately, incomplete beta or hypergeometric
functions do not satisfy as many useful relation as the complete counterparts
do. For our purposes, it is sufficient to consider some very recent results,
see [23].

First, we define the incomplete Beta function1

By(b, c) :=
∫ y

0
dxxb−1(1− x)c−1 (C.21)

which satisfies the following representation

By(b, c) = yb

b
2F1(b, 1− c; 1 + b; y) (C.22)

We now introduce the incomplete Pochhammer Ratio

[b, c; y]n := By(b+ n, c− b)
B(b, c− b) (C.23)

The limit [b, c; y]n → (b)n/(c)n as y → 1 immediately follows from identity
(C.13).

We can now define the Incomplete Hypergometric Function

2F1(a, [b, c; y];x) :=
∞∑
n=0

(a)n [b, c; y]n
xn

n! with 0 ≤ y ≤ 1 (C.24)

which possesses the following integral representation

2F1(a, [b, c; y];x) = 1
B(b, c− b)

∫ y

0
dt tb−1(1− t)c−b−1(1− xt)−a (C.25)

The objects introduced above and their properties should be sufficient
for the purposes of this thesis.

1Note that it is no more symmetric in its argument.
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