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Introduction

In experimental particle physics the main observables measured at particle
accelerators, such as the Large Hadron Collider, are total and differential
cross sections of scattering processes. Cross sections can be computed in the
Quantum Field Theory framework through perturbative expansions: the cal-
culation of each order of the expansion increases the precision of the predic-
tion. In order to test the validity of the Standard Model of particle physics
and to rule out possible extensions, the precision of the predictions must
reach the precision of the experiments, which in the last years has greatly in-
creased because of ever-growing datasets and refined data analysis techniques.
One of the main tools we have for this purpose is resummation. Each term

of the perturbative expansion features logarithmic contributions which are
enhanced when the final products are in certain configurations at the bound-
ary of the phase space. Resummation formulae make possible to sum over all
such large logarithms at all orders in perturbation theory, increasing the pre-
cision of the prediction.
In this thesis we verify a resummation formula for the Higgs boson produc-

tion process derived in [1]. In particular, the resummation formula resums
logarithms appearing in the cross section differential with respect to the lon-
gitudinal rapidity of the Higgs boson, called rapidity distribution. Such log-
arithms become large in the threshold limit, that is when the energy of the
process is just enough to produce an Higgs boson with given mass and ra-
pidity. The explicit form and origin of the logarithms is predicted by the re-
summation formalism by studying the phase space integrals that give rise to
dimensional quantities that are singular in the threshold limit, the soft and
collinear scales. Since this is the core of the derivation, in order to verify the
resummation formula we compare the expected logarithms with the NNLO
result [2].
In chapter 1 we review the main tools and concepts of perturbative QCD

necessary for cross section computations relevant for the subsequent sections.
After presenting basic definitions and properties of QCD, we present two
archetypal processes, deep inelastic scattering (DIS) and Drell-Yan produc-
tion (DY), which will give us the opportunity to discuss some features of per-
turbative calculations. We then focus on the soft and collinear divergences
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appearing in loop and phase space integrals and on their cancellation, intro-
ducing the problem of large logarithms. Finally, we define the dimensional
regularization scheme, which is fundamental to understand how enhanced log-
arithms arise in actual computations.
In chapter 2 we present resummation. After a general introduction we fo-

cus on threshold resummation of DY and DIS total cross sections, reviewing
the renormalization group equations approach presented in [3]. This is orga-
nized in two steps, the first is the derivation of the singular scales from the
phase space integrals, and the second is the application of renormalization
group equations to cross sections in order to get the resummation formulae.
To carry this calculation we also give a short account of the Mellin transform,
a mathematical tool necessary to derive the formulae.
In chapter 3 we extend the threshold resummation of total cross sections

to that of the rapidity distribution of the Higgs boson production process,
following [1]. After introducing the basic variables for the kinematics of rapid-
ity distributions, we study the singular scales emerging from the phase space,
identifying a soft and a collinear scale emerging respectively from soft and
collinear emissions in the threshold limit. This leads us finally to the resum-
mation formulae.
Lastly, chapter 4 is the core of the thesis, where we deal with the verifica-

tion of the resummation formulae by comparison with the NNLO result of
the Higgs boson production rapidity distribution. The rapidity distribution is
studied first at LO and NLO in order to see in action some techniques intro-
duced in the first chapter and to introduce some general features of the calcu-
lation. Then, we get to the NNLO order computation. We study the phase
space for the case of two extra-emissions, rewriting the soft and collinear
scales in terms of different variables. The result of the fully differential dis-
tribution in [2] is presented and rewritten in order to make manifest the sin-
gular logarithms depending on the soft and collinear scales we found. We
notice that these are of the form predicted by the phase space analysis. We
also check that they have the same origin by retracing their provenance in the
original computation.
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Chapter 1

Perturbative QCD

1.1 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 QCD and particle physics . . . . . . . . . . . . . . . . . . . . . . 6
1.3 QCD and renormalization . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Energy scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Inclusive processes: DIS and DY . . . . . . . . . . . . . . . . . . 10

1.6.1 Deep inelastic scattering . . . . . . . . . . . . . . . . . . . 11
1.6.2 Drell-Yan production . . . . . . . . . . . . . . . . . . . . . 13

1.7 Infrared singularities . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Dimensional regularization . . . . . . . . . . . . . . . . . . . . . . 18

In this chapter we briefly summarize key concepts of Quantum Chromo-
dynamics (QCD) necessary to understand and fix notations for the following
chapters. Focus is on phase space rather than amplitude calculations. After a
short discussion on differential cross sections and QCD, its fundamental prop-
erties are presented together with a basic discussion of the relevant energy
scales. We then introduce two archetypical processes in QCD, deep inelastic
scattering and Drell-Yan production, crucial for the next chapter, and, finally,
tackle the problem of soft and collinear divergences in cutoff and dimensional
regularization schemes.

1.1 Cross sections

In this section we define the relevant observables in particles physics, cross
sections, and how special relativity, through phase spaces, bridges cross sec-
tions and amplitudes, the core of quantum field theory models.
Given a scattering event, the main observables measured at particle accel-

erators are total and differential cross sections. Total cross sections (σ) repre-
sent the rate at which a process occur, having fixed the energy of the collid-
ing particles. Differential cross sections (dσ/d{x}) are the rate of the occur-
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rences of a process having fixed also a particular set of final state kinematical
variables {x}. Quantum field theory gives the theoretical framework to pre-
dict cross sections. Squared amplitudes, functions containing all the informa-
tion on the possible final kinematical configurations, are calculated through
Feynman diagrams. Differential cross sections are obtained by integrating out
from squared amplitudes all the variables that are not measured, that is to
say all the final four-momenta in the case of total cross sections. However
when the mass-shell condition p2i = m2

i holds, four-momenta components
are not independent and the actual integration is done on three-dimensional
momenta using d4piδ

(+)(p2i −m2
i ) = d3pi/2p

0
i .

In practice, taking for example a 2 → n process, the most general differen-
tial cross section is

dσ = ΦΠn
i=1

(
d3pi

(2π)3(2p0i )

)
|M({pi})|2δ(4)(p1 + p2 −

∑
pi) =: ΦdΠn|M|2,

(1.1.1)
where the four-dimensional delta imposes conservation of the total four-momentum.
Φ is a dimensional factor depending on incoming particles. Integrating on ev-
ery pi gives the total cross section. In the following, we will collectively de-
note total and differential cross sections as dσ.

In this formula the actual input from the QFT model that is being tested
is in the squared amplitude. Clearly, total cross sections, involving the max-
imum number of integrations, are the less sensitive observables to details of
|M|2, and so to those of the underlying theory. Differential cross sections
however, even if more sensitive, require a greater dataset for a precise mea-
surement. Recently, with ever-growing dataset, precision of measurements of
differential cross sections has greatly increased but state-of-the-art theoretical
predictions are not yet as precise.

When working with many integrals it is important to deal with variables
with great care, identifying a set of independent variables. General consider-
ations can be made that will aid us in next chapterts. In principle the ampli-
tude depends on all the possible components of the final and initial momenta,
that is 4(n + 2), considering mass-shell conditions (−(n + 2) variables) and
Poincaré invariance (−10 variables), 3n− 4 independent variables remain. For
example, processes with two particles in the final state depend on 2 variables,
which can be chosen among the Mandelstam variables s, t and u.

1.2 QCD and particle physics

In this section we define Quantum Chromodynamics and its interacting parti-
cles, discussing how computations can only be made in a perturbative context
and its role in precision physics.
Quantum Chromodynamics (QCD) is the field theory describing the in-
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teractions between the constituents of hadrons (partons), such as protons
and neutrons. It is a SU(3) gauge theory interacting with 6 fermions called
quarks with different masses. The massless excitations of the gauge field are
called gluons. Given the masses and the charges of the six flavours of quarks
and the coupling constant αs, measured at a known energy, the Lagrangian of
the theory is completely specified by symmetry constraints. SU(3) symmetry
in particular implies that quarks have a charge, called colour, and that this
charge is conserved. Other properties of gluons and quarks are polarization
and spin (the first are vector fields, the second fermionic fields). We will only
consider colour, polarization and spin averaged observables.
Quantum field theory gives the recipe to derive from the Lagrangian of the

theory the Feynman rules necessary to calculate perturbatively squared am-
plitudes (see for example [4]). In particular any observable O is written as a
power series in the coupling constant

O =

∞∑
n=0

Onα
n, (1.2.1)

where the first non-trivial term is called leading order (LO), the following
next-to-leading order (NLO) and so on. The general term is labelled as NkLO.
Name conventions may change depending on the process considered, we will
see an example in the next sections.
The precision of the prediction increases by calculating more terms in the

perturbative expansions. In QCD particularly, because of the size of the cou-
pling constant (αs ∼ 1/10), for predictions with precision comparable with
experiments, computations should go at least beyond NLO.

1.3 QCD and renormalization

In this section we discuss the consequences of renormalization on QCD ob-
servables.
The procedure of renormalization, necessary to cancel ultraviolet diver-

gences occurring in loop integrals, introduces an energy dependence in the
coupling constant αs. The dependence of the coupling constant on the energy
is captured by the process independent beta function defined as

β(αs(µ
2)) :=

d lnαs(µ
2)

d lnµ2
. (1.3.1)

The function is calculated perturbatively defining the coefficients of the ex-
pansion in the following way

β(αs) = −α2
s(β0 + β1αs + β2α

2
s . . . ). (1.3.2)
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The leading coefficient is

β0 =
33− 2nf

12π
, (1.3.3)

where nf is the number of flavours that enter in the computation. It is cus-
tomary, as it will be done subsequently, to choose as perturbative parame-
ter αs/2π so that β0 = 33 − 2nf/6. For the observed number of quarks,
β0 is negative, this has important phenomenological consequences. Observ-
ing the definition of beta function one sees that, if the beta function is nega-
tive, as the energy grows the coupling constant decreases: QCD is said to be
an asympotical free theory. At low energies the coupling constant eventually
is greater than 1 and the perturbative expansion breaks down. At this level
QCD is very strongly coupled, which is, at least intuitively, the reason for the
property of confinement, that is the quarks and gluons are never observed as
free particles but rather as bound states. Because we are not able to make
any analytical prediction at the non-perturbative level, experimental input is
needed when calculating cross sections for processes involving hadrons. This
will be discussed in the next section.
Viewing the definition of beta function as a differential equation and solv-

ing it at leading order one obtains an approximate trend for αs,

αs(Q
2) =

α(µ2)

1 + β0αs(µ2) ln Q2

µ2

. (1.3.4)

The denominator is singular for Q =: ΛQCD ≈ 100MeV, the Landau pole.
Even if at these energies the actual behaviour of the coupling constant is un-
known because the perturbative approximation fails, conventionally the Lan-
dau pole defines the energy scale of non-perturbative QCD.
Fixing the renormalization energy at ΛQCD, at high energies the coupling

constant is approximately

αs(Q
2) =

1

β0 ln
Q2

Λ2
QCD

. (1.3.5)

1.4 Factorization

In this section we introduce the fundamental concept of QCD factorization,
which makes possible to calculate hadronic cross sections from partonic cross
sections and the experimentally measured Parton Distribution Functions.
This is just a general explanation, many important features and examples will
be discussed in subsequent sections.
Only cross section relative to scattering between the fundamental fields of

the theory, partons, can be calculated through perturbative QCD. However,
as a consequence of confinement, quarks and gluons are never found as free
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particles, but rather as bound states in hadrons such as protons, which we are
not able to describe analytically. Therefore, we can only measure hadronic
cross sections but we can only compute partonic cross sections.

Factorization is the property of perturbative QCD that makes possible to
link experiments with theory. Factorization states that scattering involving
hadrons can be regarded as a scattering involving a single parton carrying a
fraction z of the total momentum of the hadron it belongs to.

Consider for example a scattering process between a single parton with mo-
mentum p and any another particle with momentum k. The particle may
scatter with a gluon, a quark or an antiquark. The hadronic cross section is
a combination of the partonic ones, integrating on all possible value of the
momentum fraction ξ and weighing each partonic cross section with the prob-
ability of finding that given parton h carrying a fixed momentum fraction ξ,
fh(ξ)

dσ(k, p) =
∑

h=g,q,q̄

∫ 1

τ
dξfh(xi)dσh(k, ξp). (1.4.1)

This result is trivially extended to processes with more than one incoming
parton, such as proton collisions

dσ(p1, p2) =
∑

h1,h2=g,q,q̄

∫ 1

τ1

dξ1

∫ 1

τ2

dξ2 fh1(ξ1)fh2(ξ2)dσh1h2(ξ1p1, ξ2p2). (1.4.2)

The lower limits of integration are scaling variables depending on the process
considered (see next sections) The probability distributions fh(ξ) are called
parton density functions (PDFs). They are the experimental input of factor-
ization, making up for the lack of knowledge of the non-perturbative hadron
structure. PDFs are process independent, so they can be extracted by data
through fitting procedures potentially from any process.
Factorization as stated holds only at tree level: virtual corrections induce

on PDFs an energy dependence on the factorization scale µ2
F . This will dis-

cussed in coming sections. Even though we have given here an intuitive ac-
count, factorization can be justified through rigorous field-theoretic argu-
ments depending on the process considered.

1.5 Energy scales

To have a grasp with the actual experimental energy scales and in order to
partially justify some approximations, in this section we present the relevant
energy scales of QCD and LHC physics.
In table 1.1 approximate masses of the known quark flavours are shown.
The masses extends on a very wide range of energies. The center-of-mass

energy at the LHC is almost 14 TeV, but since PDFs peak at some momen-
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flavour up (u) down (d) charm (c) strange (s) top (t) bottom (b)

mass 2.5 MeV 5 Mev 1.3 MeV 0.1 GeV 173 GeV 4.2 GeV

Table 1.1: Masses of the six quarks flavours in the MS scheme.

tum fraction ξ < 1, on average partons carry away a small energy of the
total available (approximately 1/3 for valence quarks and 1/10 for gluons),
leaving an effective energy for the parton scattering of approximately 1 TeV.
For the Higgs boson production process the relevant hard scale is close to its
mass, 125 GeV. At this energy the first five quarks can be taken to be mass-
less while the mass of the top quark infinite, so that we will actually consider
only 5 massless flavours. A detailed discussion of this approximation can be
found in [5].

1.6 Inclusive processes: DIS and DY

Having now acquired the most basic knowledge to build partonic cross sec-
tions in QCD, in this section we consider two basic semi-inclusive processes,
Deep Inelastic Scattering and Drell-Yan production. We see that they can
be taken to depend only on two variables, an hard scale and a dimensionless
quantity. This gives us the opportunity to define the fundamental threshold
limit.
In QCD semi-inclusive processes, the subset of strongly interacting prod-

ucts, referred collectively as X, is not experimentally measured. This is be-
cause in particle detectors it is not possible to distinguish which hadron comes
from the process under examination: some may be produced from different
processes or some may be colliding hadrons that have not interacted at all.
We will see that inclusiveness has also important consequences in regularizing
calculations.
Analytically, inclusive processes have two important features. Firstly, calcu-

lating cross sections, four-momenta of extra emissions are always integrated
on, so that the cross section will be eventually differential on kinematical
properties of the measured radiation. Secondly, it is necessary to sum over all
the possible cross sections relative to processes with different final products
that are not measured. This must be done consistently with the order of per-
turbation, because different processes, even at tree level, may contribute dif-
ferently in the perturbative expansion. We will now see an application study-
ing two of the most important processes in QCD, deep inelastic scattering
(DIS) and Drell-Yan production (DY).
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1.6.1 Deep inelastic scattering

Deep inelastic scattering is the scattering between an electron, or any other
lepton, and a proton

p+ e → e+X. (1.6.1)

Schematically DIS is represented in figure 1.1.

Figure 1.1: Schematic representation of DIS. From the white bubble, repre-
senting the proton, the scattering parton P is extracted. This subprocess is
dealt with factorization. The EW bubble represents the sum of electroweak
corrections to the electron-photon scattering. The bubble in the center is the
sum of QCD and EW corrections to the parton-photon scattering. X is the
set of emitted QCD radiation.

The process has both Electroweak (EW) and QCD corrections, for this rea-
son the perturbative expansion is defined with respect to both coupling con-
stants. However, QCD corrections are dominant on EW corrections both be-
cause the strong coupling constant is greater and as a consequence of large
logarithms (see next chapter). Only starting from higher-orders EW correc-
tion starts to be comparable with QCD corrections. We will focus only on
QCD corrections, and for this reason only the sub-process γ∗ + p → X will be
considered.1

For DIS the factorization can be formulated through the Operator Product
Expansion (see for example chapter 8 of [4]).
The computation proceeds considering the three different partonic inclu-

sive processes, gluon-initiated γ∗ + g → X, quark-initiated γ∗ + q → X and
antiquark-initiated γ∗ + q̄ → X. The inclusive processes combines all possible
processes with different final products than can be built consistently with the
Feynman rules. Take for example the quark scattering, the first possible out-

1We could also consider the subprocesses Z∗ + p → X, and W ∗ + p → X, but for brevity
we will only refer to photon-mediated DIS.
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comes are γq → q, γq → qg, γq → qgg and γq → qqq̄. At tree level, processes
with more emissions carry higher powers of the coupling constant. Therefore
the cross section at leading order is trivially

dσLO = dσ
(0)
2→1 = ΦdΠ2|M(0)

2→2|
2. (1.6.2)

At NLO the 2 → 2 processes starts contributing. The tree diagram M(0)
2→2

carries a power of
√
αs so that the squared amplitude carries αs. From the

2 → 1 process the sum of QCD 1-loop diagrams M(1)
2→1 carries a power of αs,

so that at this order only its interference with the tree diagram must be con-
sidered for consistency with the perturbative expansion. The total correction
is

dσNLO = dσ
(1)
2→1 + dσ

(0)
2→2, (1.6.3)

where

dσ
(1)
2→1 = Φ dΠ2(|M(0)

2→1|
2 + 2Re[M(0)∗

2→1M
(1)
2→1]) (1.6.4)

dσ
(0)
2→2 = Φ dΠ3|M(0)

2→2|
2 (1.6.5)

and so forth for higher orders. Integrations on four-momenta of emitted par-
ton has been omitted, it must be kept in mind that they are necessary when
considering inclusive cross sections.
Starting from NLO, the process with the extra emissions is usually called

real contribution, while the others virtual contributions.
After computing at a given order the partonic processes, they must be

summed in the factorization formula. In the case of DIS the first contribu-
tions to the hadronic cross section from the gluon initiated process is γg →
qq̄.
For later application it is useful to discuss here the relevant variables of

the total cross section. Consider first the process γ∗(qµ) + q(pµ) → q(kµ).
By integrating on the final four-momentum, the process must depend only
on Lorentz scalars built on initial state four-momenta. The possibilities are
Q2 = −q2 (keep in mind that the photon is an intermediate state, so is off-
shell) and s = (p + q)2. Applying conservation of energy s = k2 = 0, so that
the only relevant hard scale is Q2. For the general process γ + q → X the
final state is off-shell, so that now s in not 0 anymore. Expanding s = (p +
q)2 = −Q2 + 2(pq) we can see that s can be exchanged with the dimensionless

variable x := Q2

2(pq) so that

s =
Q2(1− x)

x
, (1.6.6)

and the total cross section written with the correct dependencies is σ(Q2, x).
When x → 1 the kinematics reduces to that of the LO, that is to say it is
the limit where all the extra emissions have small four-momenta except for a
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single final quark that must always be produced in order for color to be con-
served. This limit is called threshold, soft or high-x limit, and will be relevant
for the next chapters. In the x → 0 limit the center of mass energy

√
s is

big compared to
√

Q2, for this reason it is called high-energy limit or simply
small-x limit.
The variables we have defined have been calculated in the partonic center-

of-mass frame of reference. In the following we will always prefer partonic
quantities over the hadronic ones, but it must be noted that experimentally
one deals with the latter. Differentiating the hadronic momenta with capital
letters, define the hadronic counterpart of x τ , defined as τ = Q2/2(PQ).
From the parton momentum fraction P = ξp, the relation between x and τ is
x = τ/ξ. For energy conservation x ≤ 1, that implies ξ ≥ τ . Physically, for
fixed τ , the minimum parton momentum fraction must be such that the scat-
tering parton is at rest. Clearly, a smaller value is not possible. From these
considerations we are able to give a proper expression to the factorization for-
mula

σ(τ,Q2) =

∫ 1

τ
dξ f(ξ)σ̂

(
x =

τ

ξ
,Q2

)
. (1.6.7)

1.6.2 Drell-Yan production

Drell-Yan production (DY) or Weak-boson production, is the proton-proton
collision producing a vector boson eventually decaying into a lepton pair (for
this reason the process is also called Lepton Pair Production)

p1 + p2 → γ∗(q) +X,

p1 + p2 → Z∗(q) +X, (1.6.8)

p1 + p2 → W ∗(q) +X.

Schematically DY is represented in figure 1.2.
At LO order the first partonic process contributing to the hadronic cross

section is is q(p1)+q̄(p2) → γ∗(q)+X. As done with DIS we study the possible
independent variables necesssary to describe the total cross section. Generally
a process with four particles is described by two independent variable, as was
shown before. Now, because both of the final particles are not on shell the
variables become 4. A typical choice is the set (s,Q2, p2T , y), where Q2 = q2

and p2T and y are respectively the transverse momentum and the longitudinal
rapidity of the weak boson in the partonic center-of-mass frame of reference.
To get the total cross section both of these two variables are integrated on,
leaving only s and Q2.

Analogously to DIS we define the dimensionless variable x := Q2

s , which,
for energy conservation, ranges between 0 and 1, and we exchange s with x,
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Figure 1.2: Schematic representation of DY. White bubbles represent protons.
Perturbative QCD is enclosed in the shaded bubble.

so that the independent set of variables is (x,Q2) and we can write σ(x,Q2)2.
In the threshold limit x → 1, s = Q2, which again occurs when all the ex-
tra QCD emissions vanish. Physically it is the limit where the energy of the
colliding particles is strictly sufficient to produce a weak boson with mass Q2.
Again, when x → 0, the high-energy limit, the energy of the center of mass is
far greater than the hard scale of the process.
Defining the hadronic scaling variable τ , in terms of the parton momentum

fractions ξ1 and ξ2, we have x = τ
ξ1ξ2

, and the full factorization formula is

σ(τ,Q2) =

∫ 1

τ
dξ1f1(ξ1)

∫ 1

τ/ξ1

dξ2 f2(ξ2) σ̂

(
x =

τ

ξ1ξ2
, Q2

)
. (1.6.9)

1.7 Infrared singularities

In this section we introduce infrared singularities, divergences recurring in
QCD computations. We differentiate in particular soft and collinear singu-
larities and see, through an example in DIS, how the first cancel in inclusive
processes to give finite results and how the second must be included in PDFs’
evolution in order to be eliminated. This gives naturally the opportunity to
introduce soft scales, large logarithms and their resummation.
Because gluons are massless and because we work in massless quarks ap-

proximatoins, integrals appearing in amplitudes calculations and in the phase
space manifest infrared (IR) singularities. Two different types of IR singular-
ities occur, soft and collinear3. The first arises when a gluon has no energy
(soft emission) and the second when the gluon (or quark) momentum is par-
allel to the parton it was emitted from (collinear emission). In turn, collinear

2Notice that what it is here called σ in literature it is sometimes referred to as dσ
dQ2

3In literature IR singularity may be referred only to soft singularities
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emissions fall into two categories: initial-state and final-state collinear emis-
sions. They arise when the gluon is emitted from an initial-state or final-state
parton respectively.
For infrared-safe observables, by definition, soft singularities always cancel

summing divergent loop diagrams with corresponding divergent phase space
integrals for real emissions diagrams. To understand precisely how the cancel-
lation works we will now see an example taken from DIS. Consider the par-
tonic subprocess γ∗ + q → q. The LO order diagram is (fig. 1.3)

Figure 1.3: LO diagram for γ∗ + q → q

The QCD 1-loop corrections to this process are shown in fig. 1.4

Figure 1.4: QCD loops contributing to γ∗ + q → q at NLO.

Using Feynman rules one can show explicitly that the loop integrals in the
virtual momentum lµ of the last two diagrams, not only display the typical
UV singularity for lµ → ∞, but are also divergent for lµ → 0. This di-
vergence, properly isolated, cancels with the singularity arising in the phase
space integral for a soft gluon emission on the same external legs, correspond-
ing to the following two diagrams (fig. 1.5).

Figure 1.5: Real emission diagrams cancelling loop IR divergences.

Therefore when calculating loop corrections to the process γ∗ + q → q one
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should consistently add diagrams with soft gluons emission to cancel soft sin-
gularities. The first contributions are called virtual, because they come from
integrating on the momentum of a virtual gluon, while the second are called
real contributions, because they come from the phase space integration of a
real emitted gluon. Considering inclusive processes these singularities cancel
naturally and no diagrams must be added by hand.

In this example we have mentioned diagrams for simplicity, but when con-
sidering process with different final states what is actually summed are cross
sections. In practice divergent integrals are regularized, for example introduc-
ing an IR cutoff Λ2 and equation 1.6.3 becomes

dσNLO = lim
Λ2→0

[
dσ

(1)
2→2(Λ

2) + dσ
(0)
2→3(Λ

2)
]
. (1.7.1)

The single cross sections, containing loops and real emissions respectively, are
singular, the sum is finite.
The cancellation of collinear singularities is more delicate. Consider first an

initial-state and a final-state emission (fig. 1.6)

Figure 1.6: Final-state and initial-state IR emissions

In the collinear limit the cross section factorizes into a singular term con-
taining the singularity multiplying the cross section for the process with-
out the emission, σ(0). While in first case the singular term is multiplied by
σ(0)(p), in the second it is multiplied by σ(0)(zp). Because the virtual correc-
tions is obviously proportional to σ(0)(p), the cancellation occurs only in the
first case while in the second a residue proportional to σ(0)(zp) − σ(0)(p) is
left. The leftover terms have universal forms. Considering the case of single
emission this is

Γ(res) =

∫ k2T,max

0

dk2T
k2T

∫ 1

x
dz[σ0(zp)− σ0(p)]

p(z)

1− z
. (1.7.2)

k2T is the transverse momentum of the emitted parton, x is the scaling vari-
able defined in the previous section (clearly z cannot be 0 or the final state
could not be produced). In the soft limit (z → 1) the divergence 1/(1 − z)
is cancelled by the numerator, while in the collinear limit (k2T → 0) the first
integral is manifestly logarithmically divergent.
In order to introduce some notation we shortly rewrite the result. Firstly
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by introducing a plus distribution (see appendix), it becomes

Γ(res) =

∫ k2T,max

0

dk2T
k2T

∫ 1

x
dz σ0(zp)

(
p(z)

1− z

)
+

. (1.7.3)

Then, defining the splitting function P (z), we are finally left with

Γ(res) =

∫ k2T,max

0

dk2T
k2T

∫ 1

x
dz σ0(zp)Pi→j(z). (1.7.4)

Splitting functions Pij are universal factors that appear in soft-collinear sin-
gularities. They depend on the partons i and j involved in the emission.
Finally we deal with the collinear singularity. Its treatment is similar to

the cancellation of UV divergences in renormalization. While in the latter
case divergences are absorbed into the coupling constant, defining the run-
ning coupling constant, in the case of initial-state collinear singularities the
divergence is absorbed into PDFs, which acquire a scale dependence coming
from regularization. This is physically motivated because PDFs are measured
quantities, and, as such, in QFT they must depend on the energy at which
they are measured. This is the effect of the aforementioned virtual corrections
to PDFs. In principle also finite terms could be included into PDFs, but by
choice we will always adopt the MS scheme, which prescribes the inclusion
into bare quantities of only divergent pieces.
To understand in simple terms how this works in practice we calculate the

collinear integral introducing an IR cutoff,

Γ(res) = ln
k2T,max

Λ2

∫ 1

x
dz σ(zp)P (z). (1.7.5)

The improved parton distribution function is defined as the bare parton dis-
tribution function, f0(ξ), plus a term cancelling from the partonic cross sec-
tion the dependence from the regularizing scale Λ2, such that the remaining
function is

Γ(res) = ln
k2T,max

µ2
F

∫ 1

x
dz σ(zp)P (z), (1.7.6)

where PDFs have beend defined at the energy µ2
F , called factorization scale.

It is similar to the renormalization scale µR and often they are taken to be
the same, defining for short µ = µF = µR. Also similarly as what is done in
UV renormalization, initial-state collinear poles can be cancelled manually by
absorbing them in the PDFs as just described or by adding counterterms to
the cross section that cancel the poles as will be done in subsequent chapters.
In the threshold limit, by definition, any extra emitted radiation is soft, so

k2T must go to 0, and so must its maximum value k2T,max. That means that

k2T,max is a dimensional quantity which must go to 0 in threshold limit. This
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is what defines a soft scale. Therefore k2T,max can be written as a product of
an hard scale and a function going to 0 for x → 1, such as (1 − x). The exact
dependence is a function of the structure of the phase space and it will be
greatly discussed in the next chapter. For simplicity let us write k2T,max =

Q2(1− x),

Γ(res) = ln
Q2(1− x)

µ2

∫ 1

x
dz σ(zp)P (z). (1.7.7)

The result displays two logarithms, ln (1− x) and lnQ2/µ2. Compare the sec-
ond with 1.3.5. This tells us that

αs(Q
2) ln

Q2

µ2
F

= 1. (1.7.8)

This combination occurs also at higher orders as αk lnk, spoiling the conver-
gence of the perturbative series. This problem can be simply solved by set-
ting µ2

F = Q2, that is to say by evaluating the PDF at the energy level of the
hard scale.
What looks to be a computational trick can be justified formulating rigor-

ously factorization in DIS. In this context one can see that by imposing in-
variance of the physical hadronic cross section on the scale µ, PDFs satisfy a
renormalization group equation. The equation links PDFs at different scales.
The solution at the desired perturbative order that links f(ξ,Q2) and f(ξ, µ2)
displays exactly the same analytical structure of the collinear universal fac-

tor. Thus all the logarithms lnk Q2

µ2 multiplied by splitting functions make up

exactly for the factors necessary to evolve the PDFs from µ2 to Q2. Evolving
PDFs absorb the logarithms into the solution of the renormalization group
equation. This is the first example of resummation we encounter: logarith-
mic contributions are resummed at all order through renormalization group
equations.
The remaining logarithm, ln (1− x) is singular for x → 1. Close to the

threshold limit it is very large, thus causing again instability in the perturba-
tive series. Resummation of these logarithms, which is the motivation for this
thesis, is discussed in the next chapter.

1.8 Dimensional regularization

For higher order computations it is convenient to regularize divergent inte-
grals adopting dimensional regularization. Not only this regularization scheme
preserves Lorentz invariance and gauge symmetry, it also proves to be more
efficient in computations, highlighting the structure of singularities appearing
in calculations. In this section we give its definition and state how, through
a fundamental distributional identity, it gives rise to plus distributions and
logarithms
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In dimensional regularization every integral computed in 4 dimensions, be
it a loop integral or a phase space integral, is computed in d = 4 − 2ϵ dimen-
sions, where ϵ must be taken negative to have infrared divergences regular-
ized. The limit ϵ → 0 is always implicit and it is crucial that it be taken only
at the end of the calculation. We will now see some explicit recurrent com-
putation in order to understand readily the structure of calculations in next
chapters.
The phase space measure in d-dimension 1.1.1 is replaced with

dϕn(ϵ) =Πn
i=1

dd−1pi
(2π)d−1(2p0i )

δ(d)(p1 + p2 −
∑

pi). (1.8.1)

Divergent integrals become finite but they acquire a term proportional 1/ϵ. ϵ-
finite terms comes from the interference of poles with exponentials in ϵ. Take
for example the regularized collinear-divergent integral

Icoll =
∫ k2T,max

0

dk2T
(k2T )

1+ϵ
, (1.8.2)

Using again k2T,max = Q2(1− x) and solving

Λsoft =
1

ϵ
[Q2(1− x)]ϵ. (1.8.3)

We have obtained the predicted exponential. Now by simple Taylor expansion
the pole is isolated

1

ϵ
[Q2(1−x)]ϵ =

1

ϵ

[
1+ϵ lnQ2(1−x)+O(ϵ2)

]
=

1

ϵ
+lnQ2(1−x)+O(ϵ). (1.8.4)

The pole cancels with PDFs renormalization, leaving only finite terms.
In this context plus distributions in any variable, say 1 − z, arise from the

following distributional identity (proof in the appendix)

(1−z)−1−ϵ =
δ(1− z)

ϵ
+

(
1

1− z

)
+

+ϵ

(
ln(1− z)

1− z

)
+

+
ϵ2

2!

(
ln2(1− z)

(1− z)

)
+

+ . . . .

(1.8.5)
Depending on the order of the pole multiplying the identity a different finite
logarithm survives and the remaining terms are cancelled or disappear with
ϵ → 0.
A final note on dimensional analysis. In dimensional regularization the cou-

pling constant acquires a mass dimension dα = 2ϵ. In order to keep the con-
stant adimensional the renormalization energy scale is introduced so that α is
replaced with the combination αµ2ϵ.
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Chapter 2

Resummation

2.1 Large logarithms and resummation . . . . . . . . . . . . . . . . . 20
2.2 Threshold resummation of total cross sections . . . . . . . . . . . 22

2.2.1 Phase space analysis . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Mellin space . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Derivation of resummation formulae . . . . . . . . . . . . 29

2.3 From total to differential cross sections resummation . . . . . . . 32

We have seen how IR divergences give rise to logarithmic contributions as
residue of their cancellation and how such logarithms spoil the convergence of
the perturbative series. In this chapter we discuss the technique of resumma-
tion, which solves this problem by resumming the large logarithms at all or-
ders in perturbation theory. First we formally introduce the problem of large
logarithms and discuss resummation in full generality. Then, focusing on
threshold resummation, we present a derivation of resummation formulae of
total cross sections of Drell-Yan production and deep inelastic scattering, fol-
lowing [3]. To accomplish this, we first present a factorization of phase space
that will finally establish the form and the origin of threshold logarithms in
terms of soft scales. After a small detour on the Mellin transform and its util-
ity, we apply renormalization group equations to get to the final formulae in
Mellin space. Finally the formalism is briefly generalized to differential cross
sections [6]. A practical application will be given in the next section to resum
the rapidity distribution of Higgs boson production.

2.1 Large logarithms and resummation

In this section we return to the question of large logarithms introduced in
section 1.7, stating formally the problem and how resummation provides a
solution. Resummation is a broad topic: we define and differentiate with gen-
erality different types of resummation and their features.
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Discussing cancellation of IR divergences in section 1.7 we have pointed
out the rise of logarithms potentially spoiling the perturbative expansion. We
have already identified two types of such logarithms

L(Q2) = ln
Q2

µ2
, L(x) = ln(1− x). (2.1.1)

Both appear at higher powers in the case of a greater number of parton emis-
sions.
The first type of logarithm spoils the perturbative series because, by equa-

tion 1.3.5, the combination αk(Q2) lnk Q2

µ2 is of order 1. It can be dealt by
evolving PDFs at the hard scale of the process as briefly exemplified in the
previous chapter. The second logarithm belongs to the family of large or en-
hanced logarithms, logarithms that are divergent on the boundary of phase
space. Close to these regions every term of the power expansion becomes very
large thus making the truncation of the perturbative series ineffective.
Resummation makes possible to sum over all such logarithmic contributions

appearing at every order. Summing terms at all orders, increases the preci-
sion of the prediction. For this reason resummation has an important role in
precision phenomenology at particle accelerators, as discussed in the introduc-
tion.
Several resummation techniques exist depending on the kinematics of the

process considered (i), the observables (ii) , whether differential or not, and
most importantly in which regions of the phase space are resummed loga-
rithms singular in (iii).
Consider for example a process with a relevant final set of products and

take its cross section differential respectively to their combined tranverse mo-
mentum, dσ

dp2T
. A set of independent variables is made up by the hard scale

Q2, the threshold variable x and the transverse momentum p2T . We differenti-
ate three main types of resummation. Threshold,soft or high-x resummation,
referring to logarithms singular in the threshold limit x → 1, high-energy or
small-x resummation, that resums logarithms enhanced in the high-energy
limit x → 0, and finally transverse momentum or small-pT resummation with
logarithms singular when the transverse momentum is small. These three re-
gions are depicted in figure 2.1.
Resummation of different kinematical region is usually performed sepa-

rately, but several successful attempts have been made for joint resummation.
In this thesis we will only focus on threshold resummation.
When considering any resummation formula another point must be consid-

ered. As we have mentioned, at higher-orders logarithms with higher powers
appear, but the result generally also displays logarithms with smaller pow-
ers, i.e. subleading logarithms. The first resummation formulae that had been
derived were able to resum only leading logarithms (LL), that is to say loga-
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Figure 2.1: Phase space diagram for the transverse momentum distribution of
a production process. x is the threshold variable. The three kinematic limits
relevant for resummation are highlighted: threshold (in red), transverse mo-
mentum (in orange) and high-energy (in blue). Figure adapted from [7].

rithms that carry the highest power at any order. The resummation formulae
we derive include all logarithmic contributions, both leading and subleading.

2.2 Threshold resummation of total cross sections

In this section threshold resummation is formulated for total cross sections for
partonic processes. The result will be generalized to differential cross sections.
Consider the total cross section of a process involving two particles in the

initial state. Let the total cross section be specified by a single hard scale Q2

and by the threshold variable x. Kinematically such processes belong to two
archetypes:

• Deep inelastic scattering (DIS): γ∗(q) + P(p1) → P(p2) +X

• Drell-Yan (DY): P(p1) + P(p2) → γ∗(q) +X,

where P is a parton and X is the collection of inclusive strongly interacting
radiation. The main difference between the two processes is that the hard
scale Q2 is the virtuality of an initial-state particle in the case of DIS and
of the final product in the case of Drell-Yan production. In the DY family
falls also Higgs production, where γ∗ is replaced by an Higgs boson and the
hard scale is its mass m2

H . We have seen in the previous chapter the exact
definition of the hard scale and of the threshold variable for each process.
Threshold resummation refers to the resummation of large logarithms sin-

gular in the limit x → 1. Different formalisms exist to perform resummation.
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One of the main approaches is based on factorization of the amplitudes and
of the phase space in a product of singular terms which explicitly exponenti-
ates in the threshold limit. We follow a different approach based on the ap-
plication of the renormalization group equation presented in [3]. Particularly,
the derivation proceeds in two stages:

1. Determination of the origin and of the exact dependence of large loga-
rithms on the threshold variable by identification of the soft scale aris-
ing from the phase space;

2. Use of renormalization group equations to determine the resummation
formulae.

2.2.1 Phase space analysis

In this section we will show how soft logarithms arise from d-dimensional
phase space calculation for DIS and DY total cross sections. We will consider
in detail only the phase space for Drell-Yan production, the case of DIS is
analogous. Further details for any passage may be found in [3].
Take a DY process with two incoming partons with momenta p and p′. Let

Q be the four-momentum of the weak boson and k1, . . . , kn the four-momenta
of the extra emissions. The regularized phase space measure is

dϕn+1(p+ p′;Q, k1, . . . , kn) =
dd−1Q

(2π)d−12Q0

dd−1k1
(2π)d−12k01

. . . (2.2.1)

dd−1kn
(2π)d−12k0n

(2π)dδ(d)(p1 + p2 −Q− k1 − · · · − kn).

To get the total cross section all components of every momenta must be inte-
grated. At the end, as discussed in the previous chapter, the remaining vari-
ables must be x and Q2. They can be made explicit without performing any
explicit integration rewriting all integration variables in terms of dimension-
less quantities. To accomplish this the phase space is factorized into 2-body
phase spaces applying the following identity recursively

dϕn(P ; k1, . . . , kn) =

∫ M2
n−1,sup

M2
n−1,inf

dM2
n−1

(2π)
dϕ2(P ;Pn−1, kn)dϕn−1(Pn−1; k1, . . . kn−1).

(2.2.2)
In practice an intermediate momentum Pn−1 = k1 + · · ·+ kn−1 with virtuality
M2

n−1 has been introduced to separate the n-th emission from others. The
extrema of the virtuality are

(m1 + · · ·+mn−1)
2 ≤ M2

n−1 ≤ (
√
P 2 −mn)

2.
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Applying recursively on 2.2.1

dϕn+1(p+ p′;Q, k1, . . . , kn) =

∫ s

Q2

M2
n

2π
dϕ2(p+ p′; kn, Pn)

∫ M2
n

Q2

M2
n−1

2π
dϕ2(p+ p′; kn−1, Pn−1)

· · ·
∫ M2

3

Q2

M2
2

2π
dϕ2(k1; k2, P2)dϕ2(P2; k1, Q).

Because each two-body phase space is Lorentz-invariant, they can be evalu-
ated using difference frame of references. Choosing the center-of-mass frame
the two-body phase spaces are

dϕ2(Pi+1;Pi, ki) = N(ϵ)M−2ϵ
i+1

(
1− M2

i

M2
i+1

)1−2ϵ

dΩi. (2.2.3)

Where N(ϵ) = 1
2(4π)2−2ϵ . Now we exchange the dimensional integration vari-

ables with the adimensional fractions

zi =
M2

i −Q2

M2
i+1 −Q2

(2.2.4)

so that M2
i − Q2 = (s − Q2)zn . . . zi, where i = 2, . . . n, Pn+1 := p + p′ and

P1 := Q. Combining all together

dϕn+1(p+ p′;Q, k1, . . . , kn) = 2π

[
N(ϵ)

2π

]n
s−n(1−ϵ)(s−Q2)2n−1−2nϵdΩn . . . dΩ1∫ 1

0
dznz

n−2+(n−1)(1−2ϵ)
n (1− zn)

1−2ϵ· · ·
∫ 1

0
dz2z

1−2ϵ
2 (1− z2)

1−2ϵ.

The only kinematic variables that remain after integration are s and Q2. Now
focus on the ϵ exponentials in these variables. We have seen in section 1.8
that these give rise to logarithms. Exchanging s with x these exponentials
become

s−n(1−ϵ)(s−Q2)2n−1−2nϵ =
1

s−Q2

[
(s−Q2)2

s

]n−nϵ

= x1−2n+2nϵ [Q
2(1− x)2]n−nϵ

Q2(1− x)
.

(2.2.5)
We have finally isolated the soft scale we have mentioned studying collinear
singularities in the IR cutoff and dimensional regularization (eqs. 1.7.6 and
1.8.2). We see that, in the case of DY total cross section, the soft scale is
Q2(1−x)2. Physically it is contained in the extrema of integration of collinear
and soft emissions, and for this reason we managed to extract it by writing
all integrals in terms of adimensional variables on a constant range.
To get the correct exponent, this factor must be combined with dimen-

sional factors coming from the integration of the squared amplitude
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|Mn+1(Q
2, s; z2, . . . , zn; Ω1, . . . ,Ωn)|2. Factors of [Q2(1 − x)2]−n must come

out from tree diagrams contributing to soft singularities, while loop diagrams
may also carry a [Q2(1 − x2)]−ϵ factor for each loop integration computed in
dimensional regularization1. This finally leaves a factor of

Λsoft = (Q2)−1−kϵ[(1− x)]−1−2kϵ, (2.2.6)

where k ranges from 1 to n. We have thus found the form of the distribu-
tional identity 1.8.5. Plus distributions arise through interference of ϵ factors
in the identity with ϵ poles coming from divergent integrals. Therefore to un-
derstand the final structure of logarithms the expected order of poles must
be determined. Considering tree diagrams, poles arise only from phase space
integrals. Clearly, each zk and Ωk integration produces at most2 one pole, so
that counting the number of integrals we find that maximum pole order is
ϵ2n−1. IR divergent loops must carry two more poles so that they can be can-
celled by the two poles arising from an extra soft emission.
Consider now the bare partonic cross section and its perturbative coeffi-

cients

C(0)(x,Q2, α0, ϵ) =
∞∑
n=0

αn
0C

(0)
n (x,Q2, ϵ). (2.2.7)

The coefficient C
(0)
n is found by summing squared tree amplitudes with n

emission, times the corresponding phase space, with squared 1-loop ampli-
tudes with n − 1 emissions times its phase space and so on, up to squared
amplitudes with purely virtual diagrams. From the first contribution (purely
real) we have just derived the factor [Q2(1 − x2)]−1−nϵ from the phase space.
Because there are no loops no additional corrections must be made. Consider
the next contribution, with n − 1 emissions and one loop. Applying the same
arguments, phase space gives [Q2(1 − x)2]−1−(n−1)ϵ with at most a ϵ2(n−1)−1

pole from phase space and an ϵ2 pole from the loop diagram. Adding the op-
tional loop factor the possible results are [Q2(1 − x)2]−1−(n−1)ϵ and [Q2(1 −
x)2]−1−nϵ, and so on for other contributions. Finally the purely virtual contri-
bution has simpler phase space proportional to δ(1 − x), but the n loops still
contribute with up an ϵ2n pole. Notice that the order of poles is consistent
with IR divergences cancellation.
Combining all these considerations we obtain the final structure of soft logs

1Of course not all diagrams contribute the same, real emissions from internal line for
example do not carry IR singularities and so do not some loop integrals, such as the first in
figure 1.4

2See previous footnote.
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for the C
(0)
n coefficient

C(0)
n (x,Q2, ϵ) = (Q2)−nϵ

[
C0(ϵ)δ(1− x) +

n∑
k=1

Ck(ϵ)(1− x)−1−2kϵ

]
+O[(1−x)0]

(2.2.8)
where O[(1 − x)0] includes terms that are not singular for x → 1 but may be
singular for ϵ → 0, such as purely collinear singularities cancelled by PDFs
renormalization or UV singularities. The coefficients Ck(ϵ) as argued must
contain at most a pole of order 2n − 1 for k > 0, while C0(ϵ) must contain a
pole of order 2n. The dependency on Q2 is fixed by dimensional analysis fol-
lowing from the mass dimension of αs in dimensional regularization discussed
in section 1.8.
Finally, using equation 1.8.5, we can apply this result to see in practice the

rise of soft logs. Consider for example the case n = 2. The final result is the
sum on two real emission contributions with no loops (2R), 1 real emissions
with 1 loop (1R1V) and no real emissions with two loops (2V),

C(0)
n (x,Q2, ϵ) = (Q2)−2ϵ

[
C0(ϵ)δ(1−x)+C1(ϵ)(1−x)−1−2ϵ+C2(ϵ)(1−x)−1−4ϵ

]
+O[(1−x)0].

(2.2.9)
The last factor comes from the sum of 2R contributions with the 1R1V con-
tributions having the loop integral IR divergent. The second comes from the
1R1V contribution with no IR divergent loop integrals and the first from
the 2V contributions. The second and the third coefficients, containing a
ϵ3 pole, combined with the distributional identity give the finite logarithm(
ln3(1−x)

1−x

)
+
, all remaining terms must cancel. Because we expect coefficients

Ck(ϵ) to contain also poles of smaller order, logarithms of the same type but
with smaller powers must also originate. We have thus learnt that at a given
order αn

s we have the following sequence of logarithms

Dn(x) := αn
s

(
lnk(1− x)

1− x

)
+

0 ≤ k ≤ 2n− 1. (2.2.10)

We define Leading Logarithms (LL) those of the form αk
sD2k−1(z), Next-to-

Leading logarithms (NLL) αk
sD2k−2(z) and so on. We will soon see why also

k = 0 terms are being included as logarithms. Notice that our preliminary
analysis of large logarithms in section 1.7 did not predicted neither the (1−x)
denominator nor the plus distribution. The distribution in particular regu-
larizes the integral on the parton momentum fraction ξ which is contained
implicitly in x.
The analysis that has been done for Drell-Yan can be repeated for DIS,
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Process hard scale threshold variable soft scale

DY: P(p) + P(p′) → γ∗(q) +X final state x = Q2/s (s−Q2)2/Q2 → Q2(1− x)2

DIS γ∗(q) + P(p) → P(p′) +X initial state x = Q2/2(pq) s → Q2(1− x)

Table 2.1: DY and DIS phase spaces

leading to the following result

dϕn+1(p+ q; k1, . . . kn, p
′) = 2π

[
N(ϵ)

2π

]n
sn−1−nϵdΩn . . . dΩ1 (2.2.11)∫ 1

0
dznz

n−2+(n−1)ϵ
n (1− zn)

1−2ϵ· · ·
∫ 1

0
dz2z

1−2ϵ
2 (1− z2)

1−2ϵ.

q is the four-momentum of the incoming virtual photon and p′ is the momen-
tum of the emitted parton at LO. Exchanging s with x we get the prefactor
[Q2(1−x)]n−1−nϵ, so that the soft scale in this case is simply Q2(1−x). Thus,
repeating the same considerations made for DY, the O(αn

s ) coefficient is

C(0)
n (x,Q2, ϵ) = (Q2)−nϵ

[
C0(ϵ)δ(1− x) +

n∑
k=1

Ck(ϵ)(1− x)−1−kϵ

]
+O[(1−x)0].

(2.2.12)
Let us sum up what we have understood by now (table 2.1). Drell-Yan and
deep inelastic scattering phase spaces for n emissions can be written making
explicit the dependence on the hard scale and on the threshold variable by
rewriting all the integrals in terms of adimensional integration variables. Do-
ing this we found the soft scales Q2(1 − x)a, where a = 1 for DIS and a = 2
for DY. Physically such factors come from the extrema of integration on four-
momenta of extra emissions. Counting the number of poles coming from soft
and collinear integrals we found using identity 1.8.5 that imperfect cancel-
lation of real and virtual contribution give rise at any order new powers of
logarithms in the threshold variables. This led us to define leading logarithm
and nextk-to-leading logarithms.

2.2.2 Mellin space

Before getting to the derivation of resummation formulae, in this section we
introduce the necessary Mellin transform, detailed in the appendix. We first
see its definition and how plus distributions in real space become simple loga-
rithms in Mellin space. Next, we see how under a Mellin transformation fac-
torization equations become products and, finally, how the results of the pre-
vious section can be rewritten in Mellin space.
The Mellin transform exchanges the threshold variable x with a complex
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variable N such that, given a function f(x), its Mellin transform is

M[f ](N) :=

∫ 1

0
dxxN−1f(x). (2.2.13)

First notice that in the limit |N | → ∞ the only finite contribution to the
integral is given by f(1) so that the two limits x → 1, that is the threshold
limit, and |N | → ∞ yield the same result.
We can see this immediately by Mellin transforming the plus distributions

Dp(x) (see [3])

∫ 1

0
dxxN−1

(
lnp(1− x)

1− x

)
+

=
1

p+ 1

p+1∑
k=0

Γ(k)(1)

(
ln

1

N

)p+1−k

+O
(

1

N

)
.

(2.2.14)
The lnp(1− x) plus distributions are transformed into lnp+1N plus subleading
logs and N → ∞ suppressed terms. Employing this, 2.2.10 becomes

Dn(N) = lnk N 1 ≤ k ≤ 2n. (2.2.15)

Secondly, under a Mellin transformation factorization formulae becomes sim-
ple products. Starting from DIS, the factorization formula 1.6.7 has exactly
the form of a Mellin convolution, so that under Mellin transform we have

σ(τ,Q2) = (f ⊗ σ̂)(τ,Q2) → σ(N,Q2) = f(N)σ̂(N,Q2). (2.2.16)

This can be generalized to processes with two incoming partons such as DY.
Starting from the factorization formula in x-space (also called real space),
equation 1.6.9, defining ξ = ξ1ξ2 and the parton density luminosity

L(ξ) =
∫

dξ1f1(ξ1)f2(ξ/ξ1) = (f1 ⊗ f2)(ξ), (2.2.17)

The equation

σ(τ,Q2) = (L ⊗ σ̂)(τ,Q2) → σ(N,Q2) = L(N)σ̂(N,Q2). (2.2.18)

Finally, we notice that in Mellin space equations 2.2.8 and 2.2.12 become

C0
n(N,Q2, ϵ) =

n∑
k=0

Ck(ϵ)(Q
2)−(n−k)ϵ

(
Q2

Na

)−kϵ

+O
(

1

N

)
, (2.2.19)

where now the coefficients Ck(ϵ) have been redefined so that each of them
contains an ϵ pole of order 2n. Notice that the soft scale Q2(1 − x)a has been
mapped onto Q2/Na.

28



2.2.3 Derivation of resummation formulae

Finally, in this section we briefly derive the threshold resummation formulae
for DY and DIS. Starting from the factorization formula in Mellin space we
apply renormalization group equations to the partonic cross section to get
the resummed result in terms of the unknown physical anomalous dimension
of the hadronic cross section. By assuming a particular factorization of the
partonic cross section, we are finally able to write the anomalous dimension
in terms of the hard and soft scales of the process and in terms of a set of
coefficients that can be determined by comparing the resummation formula
with fixed order results. This section will not be detailed, for technicalities
always refer to [3].
The derivation employs renormalization group techniques, that is to say the

study of the dependence, called anomalous dimensions, of different quantities
on the renormalization scales µ2 = µ2

R = µ2
F . First start from the factoriza-

tion formula in Mellin space with now dependence on µ explicit

σ(N,Q2, αs(µ
2)) = L(N,µ2)C(N,Q2/µ2, αs(µ

2)). (2.2.20)

Inside L has been included the LO result so that the perturbative expansion
of the partonic cross section, renamed C, starts by a 1. In this context C is
also called coefficient function. The hadronic cross section does not depend
on µ2 because it is the actual physical observable, so it cannot depend on an
arbitrary scale, only on the hard scale. The dependence on the hard scale is
called physical anomalous dimension and it is defined by

γ(N,Q2/µ2, αs(µ
2)) =

d

d lnQ2
lnσ(N,Q2). (2.2.21)

This of course applies also to the partonic cross section because the parton
luminosity does not depend on the hard scale

γ(N,Q2/µ2, αs(µ
2)) =

d

d lnQ2
lnC(N,Q2/µ2, αs(µ

2)). (2.2.22)

Interpreting the definition as a differential equation we obtain

C

(
N,

Q2

µ2
, αs(µ

2)

)
= C(N, 1, αs(Q

2))exp

{∫ Q2

µ2

dk2

k2
γ(N,αs(k

2))

}
. (2.2.23)

This equation is analogous to PDFs evolution equations mentioned in sec-

tion 1.7 that made resumming of ln Q2

µ2 logarithms possible. Also in this case
the exponential performs the task of resumming logarithms, that is to say
by expanding it at the desired order in α the resummed NkLL are retrieved.
However in this form it is not very meaningful because it is not easy to say
what exactly is γ in such full generality, while, in the case of PDFs, anoma-
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lous dimensions can be shown to be the Mellin transform of splitting func-
tions. Scope of the next steps will be finding an expression for γ which can
be determined order-by-order comparing the resummation formula with fixed
order results. Firstly we can write γ also in terms of the bare partonic cross
section. Suppose WLOG C is multiplicatevely renormalized in dimensional
regularization

C(N,Q2/µ2, αs(µ
2)) = Z(N,αs(µ

2), ϵ)C(0)(N,Q2, α0
s, ϵ), (2.2.24)

where α0
s is the bare coupling constant and C(0) the bare partonic cross sec-

tion. Then, γ is

γ(N,Q2/µ2, αs(µ
2)) = −ϵα0

s

d

d lnα0
s

lnC(0)(N,Q2, α0
s, ϵ), (2.2.25)

where we have used that Z does not depend on Q2, since it is a process-independent
function, and to change the variable of the derivative we have used the fact
that for dimensional reasons we have already mentioned dependence on α0

s

and Q2 must be through the combination Q−2ϵα0
s.

Next we will assume that the bare partonic cross section can be factorized
in Mellin space into the product of a bare coefficient function C(0,c) including
all the purely virtual contributions to the process, i.e having Born kinemat-
ics, and a bare coefficient function C(0,l) including all contributions with real
emissions. Using finally the result of the lengthy phase space analysis this
translates to

C(0)(N,Q2, α0
s, ϵ) = C(0,c)(Q2, α0, ϵ)C

(0,l)(Q2/Na, α0, ϵ); (2.2.26)

C(0,c)(Q2, α0, ϵ) =
∑
n

C(0,c)
n (ϵ)Q−2nϵαn

0 ; (2.2.27)

C(0,l)(Q2/Na, α0, ϵ) =
∑
n

C(0,l)
n (ϵ)

(
Q2

Na

)−nϵ

. (2.2.28)

Applying the factorization to 2.2.25 we get straightforwardly

γ(N,Q2/µ2, αs(µ
2)) = γc(Q2/µ2, αs(µ

2), ϵ) + γ(l)
(
Q2/Na

µ2
, αs(µ

2), ϵ

)
(2.2.29)

where

γ(c)(Q2/µ2, αs(µ
2)) = ϵα0

s

d

d lnα0
s

lnC(0,c)(Q2, α0, ϵ) (2.2.30)

γ(l)
(
Q2/Na

µ2
, αs(µ

2), ϵ

)
= ϵα0

s

d

d lnα0
s

lnC(0,l)(Q2/Na, α0, ϵ). (2.2.31)

Recalling the definition of the physical anomalous dimension we infer that it
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cannot depend on µ, therefore by deriving with respect to µ2 both sides of
2.2.29 we get two renormalization group equations for γ(l) and γ(c)

− d

d lnµ2
γ(l)

(
Q2/Na

µ2
, αs(µ

2), ϵ

)
=

d

d lnµ2
γ(c)(Q2/µ2, αs(µ

2)) = ḡ(αs(µ
2))

(2.2.32)
where

ḡ(αs(µ
2)) =

∑
n

ḡnα
n
s (µ

2). (2.2.33)

Summing both solutions we finally find an expression for γ that depends per-
turbatively only on a set of coefficients

γ(N,αs(Q
2)) = ḡ0(αs(Q

2)) +

∫ Q2/Na

Q2

dλ2

λ2
ḡ(αs(µ

2)), (2.2.34)

where ḡ0(α) can also be expressed a series in α. Substituting in 2.2.23 we find

C

(
N,

Q2

µ2

)
= C(c)

(
Q2

µ2
, αs(Q

2)

)
exp

{∫ Q2

µ2

dk2

k2

∫ k2/Na

k2

dλ2

λ2
ĝ(αs(λ

2))

}
.

(2.2.35)
Two equivalent formulae are

C

(
N,

Q2

µ2

)
= C(c)

(
Q2

µ2
, αs(Q

2)

)
exp

{∫ Na

1

dn

n

∫ Q2

nµ2

dk2

k2
ĝ(αs(k

2/n)

}
(2.2.36)

C

(
N,

Q2

µ2

)
= C(c)

(
Q2

µ2
, αs(Q

2)

)
exp

{
a

∫ 1

0
dz

zN−1 − 1

1− z

∫ Q2(1−z)a

µ2

dk2

k2
ĝ(αs(k

2))

}
(2.2.37)

Resummation for DY and DIS total cross sections is thus settled. Multiply-
ing the hard coefficient function C(c) by the resumming exponential the full
coefficient function in the threshold limit is obtained. All threshold enhanced
logarithms, leading and subleading, are resummed in the exponential and can
be retrieved by expanding in α both the hard coefficient function C(c) and the
function g. Expanding each of these consistently at any order one can find
the structure of leading logarithms, according to table 2.2.

The coefficients gi can be determined by comparison with fixed-order re-
sults. The higher the order the more coefficients can be found. Substituting
back in the exponential, resummation is accomplished up to the logarithmic
accuracy determined by the known coefficients.

To get resummation in real space it is necessary to compute the inverse
Mellin tansform of the resummation formulae. This integral however is diver-
gent and extra theoretical effort is needed to deal with this problem, however
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NkLL gi up to C(c) up to Accuracy (αn lnk N)

LL i = 1 α0
s k = 2n

NLL i = 2 α1
s 2n− 2 ≤ k ≤ 2n

NNLL i = 3 α2
s 2n− 4 ≤ k ≤ 2n

Table 2.2: Expansions necessary to get the desired logarithmic accuracy.

this is out of the scope of this thesis.
Remember that equations 2.2.36 give the resummed partonic cross sec-

tion in the threshold limit. The complete NkLO+NjLL correction is found
by adding to the resummed cross section the fixed order without large loga-
rithms that are already included in the resumming exponential.

2.3 From total to differential cross sections resum-
mation

In this section we deal in generality with the problem of resumming differen-
tial cross sections. We discuss the crucial differences with the total cross sec-
tions and explain how they can be resummed by generalizing the procedure of
the previous section.

We have so far only considered total cross sections. Resumming differential
cross sections is more delicate because they have a more complex phase space,
which we have seen playing a fundamental role in resummation. The reason
for this is manifest: differential cross sections depend on one more variable so
in principle there are more hard and soft scales, that is to say possibly more
logarithms to resum.
The two steps outlined in the previous sections must be generalized. Iden-

tification of soft scales from phase space analysis must be done case-by-case,
we will see an example in the next chapter where the results for DY and DIS
cross sections will be cleverly recycled. Derivation of resummation formulae
can be repeated identically by generalizing the soft and hard decomposition
(eq. 2.2.26). Take for example a process with two soft scales Λ2

1(Q
2
1, N) and

Λ2
2(Q

2
2, N), equation 2.2.26 becomes

C0(N,Q2
1, Q

2
2, α0, ϵ) = C(0,c)(Q2

1, Q
2
2, α0, ϵ)C

(0,l1)(Λ2
1(Q

2
1, N), α0, ϵ)C

(0,l2)(Λ2
2(Q

2
2, N), α0, ϵ),

(2.3.1)
so that the final resummation formulae are

C(N,Q2
1/µ

2, Q2
2/µ

2, αs(µ
2)) = C(c)(Q2/µ2, αs(Q)2)

exp

{∫ Na

1

dn

n

∫ Q2
1

nµ2

dk2

k2
ḡ1(αsk

2
1) +

∫ Nb

1

dn

n

∫ Q2
2

nµ2

dk22
k22

ḡ2(αs(k
2))

}
,

(2.3.2)
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and

C(N,Q2
1/µ

2, Q2
2/µ

2, αs(µ
2)) = C(c)(Q2/µ2, αs(Q)2)

exp

{∫ 1

0
dz

zN−1 − 1

1− z

(∫ Λ1(Q2,z)

µ2

dk2

k2
ḡ1(αsk

2
1) +

∫ Λ2(Q2
2,z)

µ2

dk22
k22

ḡ2(αs(k
2))

)}
.

(2.3.3)

Consider for example the resummation of transverse momentum distribution
of a DY-like process, shown in [6]. The two soft scales are Λ1(Q

2
1, x) = Q2(1−

x)2 and Λ2(Q
2
2, x) = QpT (1 − x), that in Mellin space become respectively

Q2/N2 and QpT /N . The two equivalent resummation formulae therefore are

C(N,Q2
1/µ

2, Q2
2/µ

2, αs(µ
2)) = C(c)(Q2/µ2, αs(Q)2)

exp

{∫ N2

1

dn

n

∫ Q2

nµ2

dk2

k2
ḡ1(αsk

2
1) +

∫ N

1

dn

n

∫ QpT

nµ2

dk22
k22

ḡ2(αs(k
2))

}
,

(2.3.4)

and

C(N,Q2
1/µ

2, Q2
2/µ

2, αs(µ
2)) = C(c)(Q2/µ2, αs(Q)2)

exp

{∫ 1

0
dz

zN−1 − 1

1− z

(∫ Q2(1−z)2

µ2

dk2

k2
ḡ1(αsk

2
1) +

∫ QpT (1−z)

µ2

dk22
k22

ḡ2(αs(k
2))

)}
.

(2.3.5)

We have thus established how to perform resummation of differential cross
sections generalizing the procedure presented for total cross sections. While
the formulae are always the same, the key point of the derivation is under-
standing in detail the phase space in order to get the soft scales. In the next
chapter we present a derivation of the soft scales for rapidity distributions
and subsequent threshold resummation formulae following [1].
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Chapter 3

Resummation of rapidity
distributions

3.1 Higgs boson production at hadron colliders . . . . . . . . . . . . 35
3.2 Fully differential distribution . . . . . . . . . . . . . . . . . . . . 36
3.3 Threshold variables of the rapidity distribution . . . . . . . . . . 38

3.3.1 Kinematical configurations in the threshold limit . . . . . 41
3.4 Factorization in Mellin space . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Hadronic kinematics . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Factorization in Mellin-Fourier space . . . . . . . . . . . . 43
3.4.3 Factorization in Mellin-Mellin space . . . . . . . . . . . . 44
3.4.4 Threshold limit in (N,M) and (N1, N2) . . . . . . . . . . 45

3.5 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Resummation of the rapidity distribution . . . . . . . . . . . . . 50

3.6.1 Singular scales in Mellin-Mellin space . . . . . . . . . . . 50
3.6.2 Resummation formulae: doubly soft limit . . . . . . . . . 51
3.6.3 Resummation formulae: singly soft limit . . . . . . . . . . 52

3.7 The question of verification . . . . . . . . . . . . . . . . . . . . . 53

In this chapter we introduce the QCD-induced Higgs boson production
and discuss the threshold resummation of its rapidity distribution following
the derivation in [1].
Firstly, we present the Higgs boson production process and its most rele-

vant partonic subprocess, gluon fusion, in the infinite top mass approxima-
tion. Next, we introduce the basics of Higgs boson production kinematics,
discussing the differential cross section in both transverse momentum and
longitudinal rapidity of the Higgs and the relevant independent variables in-
volved. This is helpful for the subsequent discussion on the rapidity distribu-
tion, where we define the threshold limits, singly and doubly soft, both eluci-
dating their physical meaning and highlighting the differences with respect to
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the threshold limit of the total cross section. We find that the classic thresh-
old variable x is no longer suitable and the new threshold variables x1 and x2
must be defined. Having understood which are the regions of the phase space
that must be resummed, we get to the problem of factorization for the rapid-
ity distribution and see how the Mellin-Fourier and Mellin-Mellin transfor-
mations solve it. Finally, we find the two hard and soft scales singular in the
threshold limits by studying the general structure of the phase space. This
is the core of the derivation that naturally takes us to the final resummation
formulae by application of the formalism developed in the previous chapter.
This not the only way to derive threshold resummation of rapidity distribu-

tion. In the last section we briefly describe the effective field theory approach
developed in an unpublished paper by F.J. Tackmann et alii [8] and the prob-
lem of verifying and comparing the two approaches, which is the motivation
of this work that will be dealt in the next chapter.

3.1 Higgs boson production at hadron colliders

One of the most physically interesting processes at hadron colliders is the
Higgs boson production

p+ p → H +X. (3.1.1)

The process is important to study the properties of the Higgs boson and, sub-
sequently, of the spontaneous symmetry breaking. In particle accelerators the
Higgs boson decays in other particles, which are those that are actually mea-
sured, such as weak boson pairs or leptons, so the momentum of H in equa-
tion 3.1.1 is not on shell. However, we will always refer to its virtuality as
m2

H : keep in mind that this value is not fixed but it is a variable of the pro-
cess. We can now understand the remark made in section 2.2, Higgs boson
production is kinematically equivalent to DY production: in both cases the
final state boson is not on-shell and the remaining particles are partons. As
in DY production, the hard scale of the process is taken to be m2

H .
The partonic subprocess we will consider in subsequent sections is the gluon

fusion induced production
g + g → H +X. (3.1.2)

The gluons and the Higgs boson are mediated by a quark loop (see LO dia-
gram 3.1) so in principle all the contributions with the six different quarks
flavours in the loop should be considered, however the top quark, being the
most massive, (table 1.1) is dominant. Because of the intermediate loop, the
LO diagram carries a power of αs, one order more than the LO of the quark
scattering induced production qq̄ → H. However, numerically, at LHC gluon
fusion, differently from DY production, turns out to be the dominant contri-
bution, since the coupling between the Higgs boson and the top quark is pro-
portional to its mass, that is very large. For a comparison between different
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Figure 3.1: LO diagram for gluon fusion initiated Higgs boson production.

partonic process see for example figure 4.5 in [5].
As briefly discussed in section 1.5, the mass of the top quark can be con-

sidered infinite. This means in principle that final results can be simplified by
taking the limit m2

t → ∞, but in practice one can do this systematically by
substituting the top mass Lagrangian with an effective low-energy Lagrangian
coupling the gauge field (the gluon) and the Higgs boson. Diagrammatically
the top mass loop collapses into three possible effective vertices that couples
two, three or four gluons to the Higgs boson. For reference, the LO cross sec-
tion is

σ =
α2
s

576πv2
δ(1− x) = σ0δ(1− x) (3.1.3)

where v is the vacuum expectation value of the Higgs field and x =
m2

H
s . Con-

sistently with the discussion in section 1.6.2, because of the conservation of
energy the dependence on x is trivial. Since the effective vertex is propor-
tional to σ0, at N

kLO, σ0 can always be factorized.

3.2 Fully differential distribution

In this section we will determine the independent variables necessary to de-
scribe the completely inclusive differential cross section of the Higgs boson
production. We will also collect a series of kinematical relations that will be
useful in the next chapter.
Consider again gluon fusion

g(p1) + g(p2) → H(pH) +X(pX). (3.2.1)

Applying the same reasoning used in section 1.6.2 the process, after integrat-
ing on extra radiations, must depend on four variables. Two of these can be
taken to be the same of the total cross section, that is to say s and m2

H , the
other two can be chosen in different ways. First of all, calculating the fully
differential total cross section, observe that the Higgs boson momentum mea-
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sure d3pH is not integrated. It is therefore natural to choose as variables the
transverse component p2T and the longitudinal component pz of the space
momentum. The last one is always replaced by the longitudinal rapidity1

y =
√
m2

H + p2T sinh y2. Then, the fully differential distribution is written

explicitly d2σ
dp2T dy

(s,m2
H , p2T , y). We mention that in older works in place of the

rapidity one can also find the Feynman-x xF , the ratio between the longitu-
dinal momentum and its maximum value (for details see [9]). This variable
however will not be relevant for subsequent discussions.
Another choice [10] for the two variables is picking the Mandelstam invari-

ants t = (p2 − pH)2 and u = (p1 − pH)2. Because both of the final states are
off-shell, the Mandelstam invariants are not necessarily dependent, since the
usual Lorentz-invariant energy conservation relation is

s+ t+ u = m2
H +Q2 (3.2.2)

where Q2 := p2X . The relation between rapidity and transverse momentum
and the two Mandelstam variables can be found explicitly from the defini-
tions. First in the partonic center-of-mass the four-momenta p1 and p2 are

p1 =

√
s

2
(1, 0, 0, 1) (3.2.3)

p2 =

√
s

2
(1, 0, 0,−1) , (3.2.4)

while, by definition of rapidity and transverse momentum, pH is

pH = (
√

m2
H + p2T cosh y, p⃗T ,

√
m2

H + p2T sinh y). (3.2.5)

The four-momentum pX can be found trivially by applying conservation of
total four-momentum p1 + p2 = pX + pH . Substituting such parametrization
of four-momenta in the definition of Mandelstam invariants we find

t = m2 −
√
s
√
m2

H + p2T e
−y

u = m2 −
√
s
√
m2

H + p2T e
y.

(3.2.6)

This set of equations gives explicitly the transformation (m2
H , s, t, u) → (m2

H , s, p2T , y).

1Starting from this point we will always refer to the longitudinal rapidity simply as ra-
pidity.

2Recall that, by definition of rapidity, sinh yz = βzγz where βz = vz = pz
E

and γz =

1/

√
1− p2z

E2 . Using E2 = m2 + p2T + p2z and isolating pz from the definition we obtain the
mentioned relation.
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The Jacobian relates the two cross sections:

d2σ

dp2Tdy
=

∣∣∣∣∣det ∂(t, u)

∂(p2T , y)

∣∣∣∣∣ d2σdtdu
= s

d2σ

dtdu
. (3.2.7)

Relations 3.2.6 can also be used to determine Q2 in terms of p2T and y using
3.2.2. This yields

Q2 = s+m2 − 2
√
s
√
m2

H + p2T cosh y. (3.2.8)

Through this relation Q2 can be exchanged with p2T or y. This equation also
makes possible to calculate the limits of Q2 and p2T . By setting3 Q2 ≥ 0 and
solving for p2T we find the maximum of the transverse momentum. Vice versa,
isolating the transverse momentum and setting p2T ≥ 0 we find the maximum
of Q2. We report the results for later purposes

0 ≤ p2T ≤ (s+m2)2

4s cosh2(y)
−m2

0 ≤ Q2 ≤ s+m2 − 2m
√
s cosh y.

(3.2.9)

3.3 Threshold variables of the rapidity distribution

In this section we focus on the rapidity distribution. In particular, we define
the threshold limits, showing the differences with the total cross section case,
and discuss, correspondingly, new variables appropriate for its parametriza-
tion. A final note will elucidate the actual kinematical configurations of the
phase space that contribute to the threshold limits.
Integrating the fully differential cross section with respect to the rapidity

y or the transverse momentum p2T , one calculates respectively the tranverse
momentum spectrum or the rapidity distribution. Now, because we are in-
trested in resumming the rapidity distribution, we will study in detail the
boundaries of the kinematic variables left out by the integration on p2T , that
is to say the variables s, m2

H , and y. We expect a crucial difference regard-
ing the total cross section case studied for the equivalent DY production. In
that context we have seen that in the threshold limit x → 1, all the extra
emissions had to be soft. In the rapidity distribution, fixing rapidity, this is
not possible in principle because at least one extra emission must recoil to the
Higgs boson, so the limit x → 1 is not accessible, if not when y = 0. Equiv-
alenty, the threshold limit was defined as the limit where the center-of-mass
energy is barely sufficient to produce an Higgs boson. The energy is clearly
the least when the Higgs boson is produced at rest, but this limit is not pos-

3Q2 must be positive because Q2 = (k1 + · · · + kn)
2 =

∑
2(kikj) = 2

∑
(k0

i k
0
j − k⃗ik⃗j) =

2
∑

k0
i k

0
j (1− cos θij) ≥ 0.
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sible when the rapidity is fixed to any value. Therefore the threshold limit
must generalized so that it is defined as the limit where the center-of-mass
energy is barely sufficient to produce an Higgs boson with fixed rapidity. We
will see in this section how to define analitically the newly settled threshold
limit.
Having integrated on p2T , or, alternatively, on Q2, equations 3.2.9 become

s+m2 − 2m
√
s cosh y ≥ 0. (3.3.1)

Now, solving for
√
s we find the limits of x = m2/s, having fixed rapidity.

First notice that the solutions of the associated equation are

x = cosh y ± | sinh y| (3.3.2)

so that when y ≥ 0, x ≤ e−2y ∨ x ≥ e2y, viceversa for y ≤ 0. Combining with
0 ≤ x ≤ 1 we finally find (see figure 3.2)

0 ≤x ≤ e−2y if y ≥ 0

0 ≤x ≤ e2y if y ≤ 0
(3.3.3)

We have already interpreted physically this result: with fixed rapidity the

Figure 3.2: Phase space of rapidity distribution in the variables z = m2
H/s

and y.

center-of-mass energy must be greater than m2
H in order to produce an Higgs

moving longitudinally, thus x cannot be equal to 1, if not when y = 0.
For completeness we report the extrema of rapidity, fixing x, found by solv-

ing eq. 3.3.1

−1

2
ln

1

x
≤ y ≤ 1

2
ln

1

x
. (3.3.4)

Now, we still would like to have a variable ranging from 0 to 1 that in the
threshold limit approaches to 1. For this reason we define the new scaling
variables x1 and x2 that interpolates on the extrema of x (we will actually
work with the square root for reasons that will be clear later) in the two cases
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found {
x1 :=

√
xey

x2 :=
√
xe−y.

(3.3.5)

In the case of positive rapidity the threshold limit is x → e−2y and therefore
x1 → 1. Vice versa in the case of negative rapidity x2 → 1. This limit is also
called singly soft limit. For y = 0 both variables approach to 1 and so does
x. This case is called doubly soft limit and it is physically equivalent to the
threshold limit of the cross section.
We have thus found a new set of variables (x1, x2,m

2
H) that can be ex-

changed with the original set (s,m2
H , y). The inverse relation is{

x = x1x2

y = 1
2 ln

x1
x2

, (3.3.6)

where the Jacobian of the transformation is 1, so that the differential cross
section does not acquire any additional multplicative factor in the trans-
formaton. In this new set of variables the phase has simply the shape of a
square (see figure 3.3) In literature it can also be found a variable, u (not

Figure 3.3: Phase space of rapidity distribution in the variables x1 and x2.
The threshold region have been highlighted with different colors: singly soft
limit for positive rapidity (blue), negative rapidity (green), doubly soft limit
(superposition).

to be confused with the Mandelstam invariant), ranging from 0 to 1 that in-
cludes both singly soft limits in its extrema:

u :=
e−y − xey

2(1− x) cosh y
. (3.3.7)

40



Notice that in terms of x1 and x2

u =
x2(1− x21)

(1− x1x2)(x1 + x2)
,

1− u =
x1(1− x22)

(1− x1x2)(x1 + x2)
,

(3.3.8)

so that x1 → 1 implies u → 1 and x2 → 1 implies to u → 0. Physically it can
be shown u to be simply related to the angle of the emitted Higgs boson θ in
the center-of-mass frame

u =
1 + cos θ

2
. (3.3.9)

The equation shows that x1 → 1 implies θ → π and x2 → 1 implies θ → −π,
which implies that in the singly soft limit the Higgs boson is collinear. This
has an obvious physical interpretation: in the threshold limit the transverse
momentum of the Higgs boson must be 0 because the center-of-mass energy
is barely enough to produce the Higgs with that given rapidity, so no energy
is available for transverse momentum. In the doubly soft limit, since y = 0,
x1 = x2 = x and therefore u → 1/2.
Now the rapidity distribution can be computed also in terms of the set of

variables (x, u,m2
H), where the Jacobian of the transformation is

dσ

du
=

dy

du

dσ

dy
=

(1− x)(1 + x)

2(1− u+ ux)(−u− x+ ux)

dσ

dy
. (3.3.10)

3.3.1 Kinematical configurations in the threshold limit

We have defined the appropriate threshold limits for the rapidity distribu-
tion and discussed their physical interpretation, now we would like to know
what actual kinematical configurations of the final products contribute to the
threshold limits. In the case of the total cross section we have already men-
tioned that threshold limit implies at rest production of the Higgs boson and
that all extra-emissions are soft. For the rapidity distribution we have also
observed that fixing the rapidity these two conditions cannot be satisfied, the
first trivially, the second because, for momentum conservation, one parton
must recoil against the Higgs and so it cannot be soft. In addition, discussing
the u variable, we have shown that in the threshold limit p2T → 0. It is left to
discuss the possible behaviour of the other partons k1, . . . , kn−1.
Using four-momentum conservation p1 + p2 = pH + k1 + · · · + kn and the
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explicit four-momenta parametrization, we have

(k1 + · · ·+ kn)
2 =(p1 + p2 − pH)2 = s− 2

√
s
√
m2

H + p2T cosh y +m2
H + p2T

(3.3.11)

=
∑
i,j

k0i k
0
j (1− cos θij).

Since p2T = 0 in the threshold limit, the first line can simply be factorized as a
polynomial in the variable

√
s to finally give∑

i,j

k0i k
0
j (1− cos θij) = s(1− x1)(1− x2). (3.3.12)

We see that x1 → 1 is satisfied not only if all the partons are soft, but also if
they are all collinear. Of course integrating on the phase space both of these
configurations are covered and they will give rise to different logarithmic con-
tributions. This is studied in the following sections.

3.4 Factorization in Mellin space

In section 2.2.2 we have introduced the Mellin transform and its role in fac-
torizing the factorization formulae. This factorization was the starting point
in section 2.2.3 to derive resummation formulae. In this section we find will
find how to get factorization for rapidity distribution using a double Mellin
transform. In order to do this it is first necessary to define the variables of
the hadronic rapidity distribution and their relation with the partonic ones.

3.4.1 Hadronic kinematics

We first start from the four-momenta in the hadronic center-of-mass frame of
reference

P1 =

√
S

2
(1, 0, 0, 1), P2 =

√
S

2
(1, 0, 0,−1)

PH = (
√

m2
H + p2T coshY, p⃗T ,

√
m2

H + p2T sinhY ),

(3.4.1)

where P1 and P2 are the four-momenta of the incoming protons and Y and S
are the rapidity and hadronic center-of-mass energy in this frame. Clearly the
two frames of reference are related by a boost in the longitudinal direction,
for this reason the transverse momentum is unchanged. Let as usual ξ1 and
ξ2 be the two parton momentum fractions, so that pi = ξiPi. Applying this
definition s = (p1 + p2)

2 = ξ1ξ2S, thus the partonic threshold variable x is

trivially related to the hadronic threshold variable τ =
m2

H
S with x = τ

ξ1ξ2
.
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The rapidities are related by the boost between the two frame of references.
Now because the rapidity is additive, being w = 1

2 ln
ξ1
ξ2

the rapidity of the
boost between the two frame of references, the partonic rapidity is simply
y = Y −w. Finally notice that fixing τ and Y the momentum fractions ξ1 and
ξ2 cannot range freely from 0 to 1. If they are too small there is not enough
energy to produce the Higgs boson. The minimum value is found by setting
x = τ

ξ1ξ2
= 1 and y = Y − w = 0. Solved (the equations are analogous to

3.3.6) we get the minimum values τ1 =
√
τeY and τ2 =

√
τe−Y .

As for partonic cross sections, also hadronic cross sections can be described
in terms of the two threshold variables τ1 and τ2. Substituting in their defi-
nition τ and Y in terms of x and y, we get the physically transparent result
x1 =

τ1
ξ1

and x2 =
τ2
ξ2
.

3.4.2 Factorization in Mellin-Fourier space

Now we are ready to write the parton formula in the variables (τ, Y,m2
H). We

will adopt the same convention used in the previous chapter to name the par-
tonic cross section C.

dσ

dY
(τ, Y,m2

H) =
∑

i,j=g,q,q̄

∫ 1

τ1

dξ1 fi(ξ1, µ
2
F )

∫ 1

τ2

dξ2 fj(ξ2, µ
2
F ) (3.4.2)

dCij

dy

(
x =

τ

ξ1ξ2
, y = Y − w,m2

H , µ2
F

)
.

By comparison with equation 1.6.9 we notice that it is not obvious how this
should factorize under a Mellin transformation. First we rewrite the two kine-
matical constraints with δ functions (the sum symbol and the dependences on
the factorization scale will now be omitted)

dσ

dY
(τ, Y,m2

H) =

∫ 1

0

∫ 1

0
dξ1dξ2

∫ 1

0

∫ ymax

ymin

dxdy (3.4.3)

[fi(ξ1)fj(ξ2)δ(τ − ξ1ξ2x)δ(Y − y − w)
dCij

dy

(
x, y,m2

H

)
].

Now, the first δ has the correct structure for factorization in Mellin space,
while the second is appropriate for factorization in Fourier space. This sug-
gests to rewrite the differential cross section in Fourier-Mellin space, where
τ is mapped into N through a Mellin transformation and Y is mapped to M
through a Fourier transformation

dσ

dY
(N,M,m2

H) =

∫ 1

0
dτ τN−1

∫ Ymax

Ymin

dY eiMY dσ

dY
(τ, y,m2

H). (3.4.4)
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Substituting inside this definition the factorization formula one gets the de-
sired factorization by simply applying the δ functions on τ and Y

dσ

dY
(N,M,m2

H) = fi

(
N + i

M

2

)
fj

(
N − i

M

2

)
dCij

dy
(N,M,m2

H), (3.4.5)

where dC
dy (N,M,m2

H) is the Fourier-Mellin transform of the partonic cross
section with respect to x and y and the PDFs have been Mellin trasformed
mapping ξ1 and ξ2 into the variables N ± iM2 .

3.4.3 Factorization in Mellin-Mellin space

We could also work out factorization in terms of the threshold hadronic vari-
ables (τ1, τ2,m

2
H). Using this the factorization formula becomes

dσ

dY
(τ1, τ2,m

2
H) =

∫ 1

τ1

dξ1 fi(ξ1)

∫ 1

τ2

dξ2 fj(ξ2)
dCij

dy

(
x1 =

τ1
ξ1
, x2 =

τ2
ξ2
,m2

H , µ2
F

)
.

(3.4.6)
This equation can now manifestly be factorized defining the doubly Mellin
transformed hadronic cross section

dσ

dY
(τ1, τ2,m

2
H) =

∫ 1

0
dτ1τ

N1−1
1

∫ 1

0
dτ2τ

N2−1
2

dσ

dY
(x1, x2,m

2
H). (3.4.7)

Substituting inside the factorization formula we have

dσ

dY
(N1, N2,m

2
H) = fi(N1)fj(N2)

dCij

dY
(N1, N2,m

2
H), (3.4.8)

with obvious definitions. Comparing 3.4.4 and 3.4.7 we get the relation be-
tween the two sets of transformed variables

N1 = N + i
M

2
,

N2 = N − i
M

2
.

(3.4.9)

N1 and N2 are two complex variables so they have in principle four degree of
freedoms, while N and M , since M is real, only three. However separating
the real and imaginary part of N it is straightforward to see that they are
constrained to have the same real part

N1 = ℜ(N) + i[ℑ(N) +M/2]

N2 = ℜ(N) + i[ℑ(N)−M/2].
(3.4.10)
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Sets Definitions Singly soft limit Doubly soft limit

(x, y,m2
H) x = m2

H/s x → e−2y ∨ x → e2y x → 1

(x1, x2,m
2
H)

{
x1 =

√
xe−y

x2 =
√
xey

{
x1 → 1

x2 → x
∨

{
x1 → x

x2 → 1
x1, x2 → 1

(x, u,m2
H) u =

x2(1−x2
1)

(1−x1x2)(x1+x2)
u → 1 ∨ u → 0 u → 1

2

(N,M,m2
H)

{
N Mellin of x

M Fourier of y

{
ℑ(N) → ∞
M → +∞

∨

{
ℑ(N) → ∞
M → −∞

|N |,M → ∞

(N1, N2,m
2
H)

{
N1 = N + iM2
N2 = N − iM2

|N1| → ∞∨ |N2| → ∞ N1, N2 → ∞

Table 3.1: Possible set of independent variables for the partonic rapidity dis-
tribution and their limits in the singly soft limit (y ̸= 0) and in the doubly
softly limit (y = 0).

3.4.4 Threshold limit in (N,M) and (N1, N2)

Because we are ultimately interested in resumming in factorizing spaces, it is
useful to ask what the singly and doubly soft limits correspond to in Mellin-
Fourier and Mellin-Mellin spaces.
We have already discussed in 2.2.2 that the x → 1 limit in real space cor-

responds to the |N | → ∞ limit in Mellin space. Consider therefore the map-
ping (x1, x2) → (N1, N2). In the singly soft limit with x2 fixed and x1 → 1,
N2 must be fixed too and |N1| → ∞. However, consistently with equations
3.4.10, it is the imaginary part of N1 that must go to infinity. In particular
we cannot take in principle neither ℑ(N) or M fixed and the other to +∞
because it would in both cases imply N2 → ∞, so they must both go to ∞
but such that ℑ(N) ≈ M/2 so that N2 stays fixed and finite. The reasoning
can of course be applied conversely when x1 is fixed and x2 → 1.
In the doubly soft limit x → 1 or, equivalently, x1, x2 → 1, therefore

N,N1, N2 → ∞. From a well-known property of Fourier transformations
we also have M → ∞: Since y = 0 in the doubly soft limit, in order to get
a finite transformed function, the Fourier variable M must get to +∞ too to
compensate for the increasingly oscillating factor eiMY

Table (3.1) sums up all the variables we have introduced and their relative
limits.

3.5 Phase space

We are finally ready to set up the first of the two steps necessary to derive
the resummation formulae: the determination of the soft scales from the phase
space structure. This is the most subtle point of the derivation and for this
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Figure 3.4: Decomposition of the phase for Higgs boson production and n+m
emissions in n collinear extra emissions recoiling against the Higgs boson and
m soft emissions.

reason its check will essentially be the objective of the next chapter. We fol-
low the derivation in [1], which adopts the approach already applied in [6]
and [11], which all stem from [3]. The general strategy is singling out from
the phase space the independent variables of the rapidity distribution by writ-
ing all phase space integrals in terms of dimensionless variables on a fixed
range. We discover two singular scales, m2

H(1− x1)(1− x2) and m2
H(1− x1)

2,
respectively related to collinear and soft emissions.
We have shown in section 3.3.1 that configurations contributing to the

threshold limit include both soft and collinear emissions. This motivates to
differentiate among the toal n + m emitted partons m that are soft in the
threshold limit and n that in the threshold limit are collinear. This distinc-
tion is technically artificial since to calculate the rapidity distribution we
integrate on all possible configurations, however it will soon prove to be ex-
tremely insightful. Firstly we write the four-momentum conservation as

p1 + p2 = pH + k1 + · · ·+ km + k′1 + · · ·+ k′n, (3.5.1)

where the prime marks the collinear partons. By definition the phase space
measure regularized in d = 4− 2ϵ dimensions is

dϕn+m+1(p1, p2; pH , k1, . . . km, k′1, . . . , k
′
n) = (3.5.2)

=
dd−1pH

(2π)d−12p0H

dd−1k1
(2π)d−12k01

. . .
dd−1k′n

(2π)d−12k′n
(2π)dδ(d)(p1 + p2 − pH − k1 − · · · − k′n).

Now we can employ equation 2.2.2 to decompose the total phase space as (see
figure 3.4)

dϕn+m+1 =

∫
dl2

2π
dϕm+1(p1, p2; l, k1, . . . , km)

∫
d(k′)2

2π
dϕ2(l; pH , k′)dϕn(k

′; k′1, . . . , k
′
n),

(3.5.3)
where dϕm+1(p1 + p2; l, {ki}) is the phase space with an incoming momentum
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p1 + p2 producing a massive state l with m extra emissions, dϕ2(l; pH , k′) is
the phase space for the production of an Higgs boson with incoming and out-
coming massive states l and k′ and, finally, dϕn(k

′; {k′j}) is the phase space
for the production of n partons.

Up to now there is no particular physics involved in this decomposition,
this is just a rewriting of the phase space measure 3.5.2. Notice that by inte-
grating on all partonic four-momenta, dϕm+1 and dϕn behave like total cross
sections, so that the differential variables p2T and y arise only from the phase
space dϕ2, whence the Higgs is emitted. Now we will consider all the three
phase spaces separately. In the following explicit integration symbols on par-
tonic momenta are omitted and, employing Lorentz invariance, all the phase
spaces will be computed in the respective center-of-mass frame of reference.
The phase space dϕ2 can be calculated explicitly. Starting from the defini-

tion

dϕ2(l; pH , k′) =
dd−1pH

(2π)d−12p0H

dd−1k′

(2π)d−12(k′)0
(2π)dδ(d)(l − pH − k′), (3.5.4)

the delta function can be used to eliminate integration on the space momenta
of k′ and the Higgs boson measure can be written as

dd−1pH = dd−2p⃗Tdp⃗z =
1

2
dp2T |pT |d−4dΩd−2dpz =

π1−ϵ

Γ(1− ϵ)
dp2T |pT |−2ϵdpz,

(3.5.5)

where dΩd = 2πd/2

Γ(d/2) . Combining all together

dϕ2(l; pH , k′) =
(4π)ϵ|pT |−2ϵ

16πΓ(1− ϵ)

δ(
√
l2 − p0H − k′0)

p0Hk′0
dp2Tdpz. (3.5.6)

Now dpz can be written straightforwardly in terms of dy, and the integra-
tion on the transverse momentum can be eliminated rewriting the Dirac δ as

δ(p2T − p̃2T ), The final result is

dϕ2(l; pH , k′) =
(4π)ϵ|p̃T |−2ϵ

32π2Γ(1− ϵ)
√
l2

√
m2

H + p̃2T cosh (y)dy. (3.5.7)

So far we have got

dϕm+n+1

dy
(p1, p2; pH , k1, . . . , k

′
n) =

(4π)ϵ

32π2Γ(1− ϵ)
cosh (y)

∫
dl2√
l2

dϕm+1(p1, p2; l, k1, . . . , km)

∫
d(k′)2

2π
|p̃T |−2ϵ

√
m2

H + p̃2Tdϕn(k
′; k1, . . . , k

′
n),

(3.5.8)

where the integration on the transverse momentum of the Higgs boson has
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been computed.
We have already noticed that

∫
dϕm+1 and

∫
dϕn are equivalent to the

phase space of a total cross section. Consider the first phase space. It is the
production of a massive state l2 with the emission of m partons: we have al-
ready studied in depth this total cross section, it is exactly that of Drell-Yan
production. In the threshold limit all the partons go soft, exactly as in DY.
In section 2.2.1 we have shown that the associated soft soft scale is

Λ2
DY =

(s− l2)2

s
. (3.5.9)

Similarly dϕn is equivalent to the total cross section of a process with a mas-
sive initial state and only massless final products: this is exactly the case of
deep inelastic scattering. This phase space produces the soft scale

Λ2
DIS = (k′)2. (3.5.10)

Notice that in the threshold limit also DIS total cross section is going to its
threshold since all extra emissions are going collinear, which for DIS is suffi-
cient to get to this limit.
These two soft scales however are not enough to establish the correct soft

scales of the rapidity distribution since they depend on the integration vari-
ables l2 and (k′)2. It is therefore necessary to use the same strategy employed
in section 2.2.1: the integration variables are written in terms of dimension-
less variables on fixed ranges so to single out the explicit dependence of phase
space on its independent variables.

Consider first l2. Working with energy conservation of dϕm+1 and dϕ2 we
find

(
√
m2

H + p2T ) + |pz|)2 ≤ l2 ≤ s, (3.5.11)

that in the limit p2T → 0 reduces to

m2(cosh y + | sinh y|)2 ≤ l2 ≤ s. (3.5.12)

In the threshold limit x1 → 1 we have y ≥ 0 so that

m2e2y ≤ l2 ≤ s, (3.5.13)

which in terms of threshold variables 3.3.5 it becomes

x21s ≤ l2 ≤ s. (3.5.14)

Now we define the dimensionless slider variable w ∈ [0, 1] interpolating be-
tween the extrema of l2

l2 = x21s(1− w) + sw = x21s+ w(s− x21s), (3.5.15)
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and change subsequently the integration variable∫
dl2√
l2
dϕm+1 =

√
s(1− x21)

∫ 1

0

dw√
x21 + w(1− x21)

dϕm+1. (3.5.16)

In terms of this variable the quantity (s − l2) simply factorizes as m2
H(1 −

x1)
2(1− w)2 and so the soft scale factor arising from the integral is

1

s− l2

[
(s− l2)2

s

]m−mϵ

∝
[m2

H(1− x1)
2]m+mϵ

m2
H(1− x1)

(1− w)−1+2m−2mϵ, (3.5.17)

as already argued when studying Drell-Yan production, we expect the inte-
grals on the squared amplitude to carry contributions of the form [m2

H(1 −
x1)

2]−m which leave factors of [1 − x1]
−1+2mϵ that, by interfering with poles,

produce plus distributions with increasingly high powers as the order of poles,
and so the number of soft emissions, increases.
Consider now the integral on (k′)2. Using again energy conservation we can

show that

0 ≤ (k′)2 ≤ l2 +m2
H − 2

√
l2
√

m2
H + p2z. (3.5.18)

Writing the RHS in terms of x1 and x2 and expanding in x1 we find

0 ≤ (k′)2 ≤ sw(1− x1)(1− x2). (3.5.19)

Introducing again a dimensionless slider variable v

(k′)2 = vsu(1− x1)(1− x2) (3.5.20)

the integral on (k′)2 becomes∫ k′max

0
dk′2dϕn = (1− x1)(1− x2)su

∫ 1

0
dvdϕn. (3.5.21)

In terms of the slider variable the soft scale is

(k′2)−1+(n−1)−(n−1)ϵ ∝ [m2
H(1− x1)(1− x2)]

−1+(n−1)−(n−1)ϵ, (3.5.22)

that, again, combined the squared amplitudes, gives singular factors of [(1 −
x1)(1 − x2)]

−1−(n−1)ϵ that, by interference with ϵ poles, produces plus distri-
butions.
To sum up, using the techniques and the results of section 2.2.1 we have

shown that the Higgs boson rapidity distribution depends on two singular
scales

• Λ2
DY = m2

H(1 − x1)
2, rising from the DY-like phase subspace of soft

emissions;
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• Λ2
DIS = m2

H(1 − x1)(1 − x2), rising from the DIS-like phase subspace of
collinear emissions.

Of course in the case the singly soft limit x2 is fixed so for the DIS scale m2
H(1−

x2) is the hard scale, while in the doubly soft limit the only hard scale is m2
H .

As already observed, the phase space decomposition we have employed is
just a rewriting of the total phase space. Integrating on all partonic four-
momenta all the possible kinematical configurations contributing to the thresh-
old limit are covered, such as the case in which all the extra-emissions are
collinear or the case in which they are all soft. The difference among these
configurations is the maximum power of the singular logarithms they give rise
to. For example, the integration region of the phase space where n + m par-
tons are collinear, squared amplitudes coming from diagrams with n+m par-
ton emissions on external legs will give the correct factors and poles to origi-
nate a logarithm of power n + m in the Λ2

DIS scale. In the total phase space
however it is also included the region where one of those parton is soft. Be-
cause softness implies collinearity, integration will give one more ϵ pole that,
by interference, may contribute to one more power of the collinear logarithm
or to a single logarithm in the Λ2

DY case. Tree diagrams where all partons are
emitted on internal legs and region of phase spaces where no emission is soft
or collinear do not originate to any logarithm and are therefore subleading in
the threshold limit.

3.6 Resummation of the rapidity distribution

In this section finally write and discuss resummation formulae for the rapidity
distribution applying equations 2.3.2 and 2.3.3. Firstly we discuss the explicit
form of the singular scales in Mellin-Mellin space and their consequence on
the resummation formulae. Secondly, we write the resummation formulae in
the duobly soft limit, which is well known in literature and, finally, we write
the resummation formulae for the singly soft limit, whose check is the final
scope of this thesis.

3.6.1 Singular scales in Mellin-Mellin space

We have seen explicitly in the previous chapter that resummation must be
performed in Mellin space, that is in the case of rapidity distributions the
Mellin-Mellin space. Under this transformation we have observed that plus
distributions become logarithms in Mellin space, which are the contributions
that are materially resummed. Working with two Mellin variables the situa-
tion is slightly different and so it is worth to briefly discuss it.
Consider the DIS scale in the doubly soft limit (1 − x1)(1 − x2). We have

observed that combination of phase space and and squared amplitude factors
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give expressions of the form [(1− x1)(1− x2)]
−1+ϵ that, interfering with poles,

give rise to plus distributions. In Mellin-Mellin space these factors become∫ 1

0
dx1 x

N1−1
1

∫ 1

0
dx2 x

N2−1
2 (1− x1)

−1+ϵ(1− x2)
−1+ϵ = (3.6.1)

=

∫ 1

0
dx1x

−1+N1
1 (1− x1)

−1+ϵ

∫ 1

0
dx2x

−1+N2
2 (1− x2)

−1+ϵ = β(N1, ϵ)β(N2, ϵ),

where we have used the definition of the β function. Using the equivalence of
x → 1 and N → ∞ limit, shown in the previous chapter, we can apply the
Stirling approximation on β functions

β(N, ϵ) ≈ 1

ϵ

Γ(1 + ϵ)

N ϵ
+O

(
1

N

)
. (3.6.2)

Combining together, the Mellin-Mellin transform of the Λ2
DIS scale gives con-

tributions of the form∫ 1

0
dx1 x

N1−1
1

∫ 1

0
dx2 x

N2−1
2 (1− x1)

−1+ϵ(1− x2)
−1+ϵ =

1

ϵ2
Γ(1 + ϵ)2

(N1N2)ϵ
. (3.6.3)

We see explicitly that interference with poles gives logarithms of the type
lnp(N1N2). This argument does not work in the singly soft limit since, keep-
ing fixed x2, the soft scale will be multiplied by a certain function of x2 with
a generic Mellin transform. In this case the Mellin DIS scale is simply lnN1.

Consider now the DY scale (1 − x1)
2. In dimensional regularization it

emerges as (1 − x1)
−1+2ϵ. Focusing on the doubly soft limit the Mellin-Mellin

transform in the threshold limit gives∫ 1

0
dx1 x

N1−1
1

∫ 1

0
dx2 x

N2−1
2 (1− x1)

−1+2ϵ =
1

N2
β(N1, 2ϵ) ≈ (3.6.4)

≈ 1

N2

1

2ϵ

Γ(1 + 2ϵ)

N2ϵ
1

+O
(

1

N1

)
.

Now the large logarithm is of the form lnpN2
1 . However, since |N2| → ∞,

these contributions are subleading with respect to the Mellin DIS scale lnN1N2.
In the singly soft limit, since N2 is fixed, these terms are not subleading and
are resummmed together with the N1N2 logarithms.

3.6.2 Resummation formulae: doubly soft limit

In section 2.3 we have discussed the derivation of threshold resummation for-
mulae in the case of differential distribution. The main complication with re-
spect to total cross sections is the greater number of soft scales and therefore
of singular logarithms that must be resummed. We have observed that by
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generalizing the factorization assumption 2.2.26, resummation formulae can
be derived straightforwardly. Now, for the case of rapidity distributions we
have identified the scales from the phase space analysis, so it is sufficient to
apply 2.3.2 and 2.3.3,
Consider first the doubly soft limit. From the first equation we have

C

(
N1, N2m

m2
H

µ2
, αs(m

2
H)

)
= C(c)

(
m2

H

µ2
, αs(m

2
H)

)
(3.6.5)

exp

{∫ N2
1

1

dn

n

∫ m2
H

nµ2

dk2

k2
ĝ1(αs(k

2/n), N2) +

∫ N1N2

1

dn

n

∫ m2
H

nµ2

dk2

k2
ĝ2(αs(k

2/n))

}
.

Following the previous discussion, the first integrals produces subleading con-
tributions in the doubly soft limit so that consistently the resummation for-
mula is simply

C

(
N1, N2m

m2
H

µ2
, αs(m

2
H)

)
= C(c)

(
m2

H

µ2
, αs(m

2
H)

)
exp

{∫ N1N2

1

dn

n

∫ m2
H

nµ2

dk2

k2
ĝ2(αs(k

2/n))

}
,

(3.6.6)

That is practically the total cross section formula with N1N2 = N . This sug-
gests that resummation in the doulby soft limit could have also been derived
in Mellin-Fourier space. Indeed one can show [12] that Fourier transforming
the coefficient function C(x, y) with respect to rapidity, expanding the Fourier
exponential and reverting back the transformation, the coefficient function in
the doubly soft limit factorizes as C(x, y) = C(x)δ(y) plus subleading terms
in x. Thus the resummation of the differential cross section can be reduced to
that of the total.

This final formula we have obtained can be shown to be equivalent to the
following formula already known for a long time [13]:

C
(
N1, N2,

m2
H

µ2
, αs(m

2
H)
)
= C(c)

(m2
H

µ2
, αs(m

2
H)
)

exp

{∫ 1

0

∫ 1

0
dx1dx2

xN1−1
1 xN2−1

2 − 1

(1− x1)(1− x2)
g2(αs(m

2
H(1− x1)(1− x2)))

(3.6.7)

Θ(m2
H(1− x1)− µ2)Θ(m2

H(1− x2)− µ2)

}
.

3.6.3 Resummation formulae: singly soft limit

We finally get to the original result presented in [1], that is the first fully an-
alytical resummation of the singly soft limit of Higgs boson production. The
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result follows by applying the resummation formulae shown in 2.3.
The two hard scales are m2

H and m2
H(1 − x2). In Mellin-Mellin space they

become m2
H and m2

H/N2. The two soft scales are found by multiplying the
hard scales by (1−x1)

2 and (1−x1) respectively, In Mellin-Mellin space these
factors become 1/N2

1 and 1/N1. Using this identifications, the two resumma-
tion formulae are

C

(
N1,

m2
H

µ2
,
m2

H/N2

µ2
, αs(µ

2)

)
= Cc

(
m2

H

µ2
, αs(µ

2)

)
(3.6.8)

exp

{∫ N2
1

1

dn

n

∫ m2
H

nµ2

dk2

k2
g1(αs(k

2/n), N2) +

∫ N1N2

1

dn

n

∫ m2
H/N2

nµ2

dk2

k2
g2(αs(k

2/n))

}
,

and

C

(
N1,

m2
H

µ2
,
m2

H/N2

µ2
, αs(µ

2)

)
= Cc

(
m2

H

µ2
, αs(µ

2)

)
(3.6.9)

exp

{∫ 1

0
dx1

xN1−1
1 − 1

1− x1

∫ m2
H(1−x1)2

µ2

dλ2

λ2
ĝ1(αs(λ

2), N2)+

+

∫ 1

0
dx1

xN1−1
1 − 1

1− x1

∫ m2
H

N2
(1−x1)

µ2

dλ2

λ2
ĝ2(αs(λ

2), N2)

}
.

Clearly, the resummation formula for x2 → 1 can be obtained by exchanging
x1 and x2.

3.7 The question of verification

Having derived the resummation formulae, the next natural steps are two.
Firstly, check the predicted logarithms with the singular logarithms in the
fixed order expression, secondly compare with other existing resummation
results.
As mentioned, the only other resummation result for threshold rapidity dis-

tribution available in literature was derived in an unpublished paper by F.J.
Tackmann et alii [8]. The formula is derived in the context of Soft-Collinear
Effective Theory (SCET), in an implicit form which can be solved only nu-
merically. Perturbative solutions however can give explicitly the resummed
logarithms order-by-order. This was done in [14], where expressions in the
SCET formalism were translated into the standard, or direct, QCD frame-
work. The results shows that the resummation we have just presented has
some logarithmic contributions that are in missing in [8], particularly relating
the soft scale m2

H(1− x1)
2.

This motivates us to first check our formula with the first non-trivial fixed
order result of Higgs boson production, the next-to-next leading order. This
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cannot be done by simple comparison neither in Mellin-Mellin space or in
real space, since the soft scale we predicted, ln(1 − x1)

2, differs from sim-
ple ln(1 − x1) by a factor of 2. For this reason in the fixed-order expression
we will not only check the explicit form of the singular logarithms, but also
how they arise from calculations, in order to check whether their origin is the
same predicted by our phase-space argument.
Eventually, to finally establish the resummation formula, it is necessary

to fully understand the reason of the different results in our direct QCD ap-
proach and in the SCET formalism.
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Chapter 4

Gluon fusion at NNLO

4.1 Gluon fusion at LO . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Gluon fusion at NLO . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Virtual contribution at NLO . . . . . . . . . . . . . . . . 57
4.2.2 Real contribution at NLO . . . . . . . . . . . . . . . . . . 57
4.2.3 NLO in (x, u,m2

H) . . . . . . . . . . . . . . . . . . . . . . 60
4.2.4 NLO in (x1, x2,m

2
H) . . . . . . . . . . . . . . . . . . . . . 62

4.3 Gluon fusion at NNLO . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Relevant variables . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Phase space at NNLO . . . . . . . . . . . . . . . . . . . . 64
4.3.3 The fully differential distribution at NNLO . . . . . . . . 69
4.3.4 Retracing logarithms . . . . . . . . . . . . . . . . . . . . . 75

In this section we study both the phase spaces and the final results of Higgs
boson production through the gluon fusion channels at LO, NLO and NNLO
in light of the phase space analysis conducted in the previous chapter. The
scope is to verify whether the large logarithms predicted in section 3.5 and
resummed by eqs. 3.6.8 and 3.6.9 do actually appear in the fixed order calcu-
lation and whether the origin is the same of the one predicted.
In the first two sections we derive the LO and NLO result from the squared

amplitudes, discussing both the rapidity distribution and the fully differen-
tial cross section. In the last section we focus on the final result of the NNLO
fully differential distribution published in [2]. After a brief discussion on the
relevant variables, we apply the phase space machinery of the previous chap-
ter in the special case of two emissions. This makes possible to predict the
form of the singular logarithms in terms of the Mandelstam invariants t and
u and in terms of the maximum mass of the extra radiation Q2

max. In par-
ticular, we see that the collinear scale arises as lnQ2

max and the soft scale as
ln t (or, symmetrically, lnu). The phase space argument is finally verified in
two steps: firstly, checking the actual form of singular logarithms from [2].
In order to study the threshold limit of the rapidity distribution on the fully
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differential distributions, all variables are written in terms of a set of indepen-
dent variables with extrema independent on x1 and x2. Secondly, after having
passed the first test, the actual origin of the logarithm is retraced from inter-
mediate results contained in [5] and it is compared with the corresponding
predictions.

4.1 Gluon fusion at LO

We have already discussed in section 3.1 the fundamentals of Higgs boson
production. The most relevant partonic subprocess at LHC is gluon fusion

g + g → H(pH) +X(pX), (4.1.1)

that can be computed in the infinite top mass approximation. In this context
the top loop (figure 3.1) collapses into an effective vertex proportional to the
total cross section at this order (eq. 3.1.3).
The LO rapidity distribution is trivial since the Higgs boson is necessarily

produced at rest. To review the variables defined in the previous chapter we
write explicitly the result. First, in terms of (x, y,m2

H), at rest not only x = 1
but y = 0, therefore

dσ(0)

dy
= σ0δ(1− x)δ(y). (4.1.2)

At rest x1 and x2 (eqs. 3.3.6) are 1, so in terms of theses variables the LO
rapidity distribution is

dσ(0)

dy
= 2σ0δ(1− x1)δ(1− x2). (4.1.3)

Finally, in terms of x and u the rapidity distributions reads

dσ(0)

dy
=

1

2
σ0δ(1− x)δ(u(1− u)). (4.1.4)

Clearly, the result does not display any large logarithms since at this order
there are no QCD emissions. Notice that the doubly differential cross sec-
tion would have in addition a δ(p2T ) that is left also after integration on the
partonic momentum fractions ξ1 and ξ2. For this reason, the fully differential
distribution at LO is often ignored and the actual LO is taken to be the fully
differential distribution at the next order.

4.2 Gluon fusion at NLO

In this section we derive the NLO gluon fusion rapidity distribution start-
ing from the squared amplitude. This will serve mainly as a first application
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to the basics of perturbative QCD presented in chapter 1 and for an intro-
duction to some features we will see in the NNLO calculation, such as the
p2T singularity. The final results will also clarify the discussion of the previ-
ous chapter on the dependence of the result on N1N2 in the doubly soft limit,
elucidating what it does imply in the real space. Results are checked with ex-
isting literature [15].
As discussed in the first chapter, beyond LO inclusive cross sections are

calculated by combining real and virtual contributions. The first is made up
integrating on the phase space the sum of all the squared amplitudes of the
2 → 2 process, that in this case is only gg → Hg, while, similarly, the second
comes from the squared amplitude of the 1-loop contributions to gg → H.
Physically, we are already able to predict some features of the result. First,

the extra radiation is an on-shell gluon that in the center-of-mass frame of
reference it must recoil with the Higgs, so its momentum is completely deter-
mined by conservation laws. For this reason the transverse momentum and
the rapidity of the Higgs are not independent: energy conservation constraint
them to keep the gluon on-shell. Analytically, the virtuality of the extra ra-
diation Q2 is 0, so the number of variables reduces and equation 3.2.2 fix the
remaining.

4.2.1 Virtual contribution at NLO

We take the virtual contribution from [16].

σ
(1)
virt = σ0δ(1− x)

[
αs

2π

(
4πµ2

m2
H

)ϵ
Γ(1 + ϵ)Γ(1− ϵ)2

Γ(1− 2ϵ)

(
− 2

ϵ2
+ π2

)]
(4.2.1)

Expanding gamma functions in ϵ

σ
(1)
virt = σ0δ(1− x)

[
αs

2π

(
4πµ2

m2
H

)ϵ

(1− ϵγE)

(
− 2

ϵ2
+ π2

)]
. (4.2.2)

To get the rapidity distribution just add the correct δ function in the desired
variable. For later use we write explicitly

σ
(1)
virt

du
= σ0δ(u(1− u))δ(1− x)

[
αs

2π

(
4πµ2

m2
H

)ϵ

(1− ϵγE)

(
− 2

ϵ2
+ π2

)]
. (4.2.3)

4.2.2 Real contribution at NLO

We compute the real contribution to the NLO cross sections starting from the
squared amplitude of the process

g(p1) + g(p2) → H(pH) + g(k). (4.2.4)
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Amplitudes are calculated considering four tree diagrams: two of these carry
the extra emission on the two legs of the incoming partons. These are the
origin of soft and collinear singularities we will regularize in d-dimensions.
Notice that the collinear singularity comes from an initial-state emission,
therefore we also expect poles proportional to splitting functions cancelled
by PDFs renormalization. The unpolarized squared amplitude is [16]

|M|2unp =
3α3

72πv2(1− ϵ)2

[
m8

H + s4 + t4 + u4

stu
(1− 2ϵ) +

ϵ

2

(m4
H + s2 + t2 + u2)2

stu

]
.

(4.2.5)
Notice that, even if coming from the computation of tree diagrams, the result
displays a dependency on ϵ. Computing quantities in d-dimensions, all func-
tions depending on the number of dimensions, such as polarizations and spin,
carry a dependency on d and hence on ϵ. The squared amplitude is regular
for ϵ = 0, but this limit must be taken only at the end of calculations because
O(ϵ) terms contribute to the final result combining with order one ϵ poles.
The total real contribution is

dσ
(1)
real

dy
= Φ

∫
dϕ2|M|2unp, (4.2.6)

where Φ = 1/2s. The regularized two-body phase space integral of the pro-
cess is

dϕ2(s; pH , k) =
dd−1pH
(2π)32p0H

dd−1k

(2π)32k0
δ(d)(p1 + p2 − pH − k)(2π)d. (4.2.7)

This can be computed in different ways. Firstly, the phase space is equiva-
lent to the result for the Higgs emission phase space dϕ2, so the result can be
recycled

dϕ2 =
(4π)−ϵ|pT |−2ϵ

16πΓ(1− ϵ)p0Hk0
dp2Tdpzδ(

√
s− p0H − k0)|M|2 (4.2.8)

Choosing as variables (s,m2
H , y), the Dirac δ can be written in order to elimi-

nate the integration on the transverse momentum,

dϕ2 =
(4π)ϵ|pT |−2ϵ

16πΓ(1− ϵ)

s+m2

2s cosh2 y
dp2Tdyδ(p

2
T − p2T,max), (4.2.9)

Notice that at this point we have integrated on the gluon momentum measure
dd−1k, so one could naively ask where are the soft and collinear poles that we
have repeatedly mentioned in previous chapters. We will see how these miss-
ing poles arise later, but we can understand physically what it is going on.
The momentum of the gluon is fixed by conservation laws, this made pos-
sible to eliminate the corresponding differential with the Dirac delta. For
this reason the actual configuration of the gluon is determined by p2T and y,
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and therefore we expect the squared amplitude to be singular for p2T → 0
(collinear limit) and for p2T , y → 0 (soft limit), as we will shortly verify. Be-
cause of this, if we were calculating the fully differential cross section the re-
sult would already be established out of the collinear region, since it is not
necessary to compute any divergent integral producing poles, and the virtual
contribution, as mentioned in the previous section, does not exists since it has
a completely trivial kinematics. The limit ϵ → 0 can be safely taken, and the
final result is

d2σ(1)

dp2Tdy
=

1

2s

1

16π
J

3α3
s

72πv2
m8

H + s4 + t4 + u4

stu
=

σ0
s
αs

m8
H + s4 + t4 + u4

stu
δ(Q2)

(4.2.10)
where σ0 is given by equation 3.1.3 and for brevity the Jacobian (s+m2

H)/2s cosh2 y
coming from the variable transformation has been simply renamed J .
Getting back to the the rapidity distribution, combining what we have

found so far

dσ
(1)
real

dy
=

(4π)ϵ|pT,max|−2ϵ

Γ(1− ϵ)

s+m2

2s cosh2 y

σ0αs

2(1− ϵ)2
1

s2tu
(4.2.11)

[(m8
H + s4 + t4 + u4)(1− 2ϵ) +

ϵ

2
(m4

H + s2 + t2 + u2)2).

Now it is time to choose a consistent set of independent variables. We choose
two sets, (x, u,m2

H) and (x1, x2,m
2
H). The first one is needed to check the

calculation with [15], the second one is the natural one to study resummation.
From equations 3.2.6 and3.2.2 we find the Mandelstam invariants t and u, the
Jacobian J and p2T,max in terms of (s, y,m2

H)

t = m2 − s+m2 −Q2

2 cosh y
e−y,

u = m2 − s+m2 −Q2

2 cosh y
ey.

(4.2.12)

These relations are valid at any order, but at LO they simplify because Q2 =
0. From these relations it is now straightforward to get t and u in terms of
(x1, x2,m

2
H)

t = −m2 1− x21
x1(x1 + x2)

J =
2(1 + x1x2)x1x2

(x1 + x2)2
(4.2.13)

u = −m2 1− x22
x2(x1 + x2)

p2T,max = m2
H

(1− x1)
2(1− x2)

2

(x1 + x2)2
,

notice that t and u are correctly negative.
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Equations 3.3.8 give the corresponding relations1

t = −m2 1− x

x
u J =

2[1 + u(x− 1)][x+ u(1− x)]

1 + x
(4.2.14)

u = −m2 1− x

x
(1− u) p2T,max =

m2(1− u)u(1− x)2

x
,

4.2.3 NLO in (x, u,m2
H)

First let us carry on the computation in the variables (x, u,m2
H). In this set

it is also necessary to consider the Jacobian given by changing the differential
variable y into u written in equation 3.3.10. This greatly simplifies the mul-
tiplicative factors given by the other Jacobian in equation 4.2.14. Combining
together

dσ
(1)
real

dy
=
3σ0αs

2

(
4πµ2

m2
H

)ϵ

[1− ϵγE ](1 + 2ϵ)[lnx]ϵ[u(1− u)]−1−ϵ[1− x]−1−2ϵ

(4.2.15){[
1 + x4 + (1− x)4(y4 + (1− u)4)

]
(1− 2ϵ) +

ϵ

2

[
1 + x2 + (1− x)2(u2 + (1− u2))

]2}
.

Firstly, we have introduced the renormalization scale µ2 regularizing the di-
mension of αs. Secondly, the expansion of the Γ function led to the Euler
constant γE . These two factors can be ignored since, following the MS can-
cellation scheme, they are always cancelled by the virtual contribution. Fi-
nally, notice that the Mandelstam invariants s, t and u in the denominator
of the squared amplitude, being proportional to (1 − z), (1 − u) and u, have
been included in the same factors that appeared in |p2T,max|−ϵ. Clearly, these

are divergent in the singly and doubly soft limit and are exactly the p2T diver-
gence we mentioned in the previous section, since at LO

p2T =
tu

s
. (4.2.16)

Applying the distributional identity 1.8.5, these terms give plus distributions
that regularize the u integrals, necessary to get the total cross section, and
the integrals on the parton momentum fractions ξ1 and ξ2, since x = τ/ξ1ξ2
and τ = ξ1ξ2 in the inferior limit of the integration range. The same distribu-
tional identity gives an ϵ pole from u(1 − u) and another pole from (1 − x).
Obviously, these are respectively the collinear and the soft pole. These are
the missing poles we have mentioned in the previous section. Expanding the

1The Mandelstam variable and the angular variable u can be easily told apart from the
context
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relevant exponentials we find

dC
(1)
real

dy
∝ [1 + ϵ log x]

[
−δ(u(1− u))

ϵ
+

(
1

u(1− u)

)
+

− ϵ

(
log(u(1− u))

u(1− u)

)
+

]
[
−δ(1− x)

2ϵ
+

(
1

1− x

)
+

− 2ϵ

(
log(1− x)

1− x

)]
(1 + 2ϵ) (4.2.17){[

1 + x4 + (1− x)4(u4 + (1− u)4)
]
(1− 2ϵ) +

ϵ

2

[
1 + x2 + (1− x)2(u2 + (1− u2))

]2}
.

The result contains both second order and first order poles. The double pole
is proportional to δ(u(1 − u))δ(1 − x) and cancels with the pole in the virtual
contribution 4.2.3, that has the same kinematics. The virtual contribution
however carries also a finite term proportional to π2 which contributes to the
final result. The first order poles are only proportional to δ(u(1 − u)). First
order poles from δ(1 − z) cannot rise, since it implies u = 0 ∨ u = 1, and so
every term proportional to δ(1− x) must also be proportional to δ(u(1− u)) .
This is equivalent to say that the first order poles can only be collinear, since,
if they were soft, they would also carry the collinear pole, since softness im-
plies collinearity. The first order poles are cancelled by the Altarelli-Parisi
term (see equation 1.3.28 in [16]), that is proportional to the gluon-gluon
splitting function

Pgg(x) = 3

[
1 + x4 + (1− x)4

(1− x)+x

]
+ β0δ(1− x). (4.2.18)

Clearly, the second term cancels single ϵ poles coming from terms propor-
tional to δ(1− x)δ(u(1− u)). Notice that the numerator of the splitting func-
tion exactly matches the expressions appearing in the squared amplitudes for
u = 0 ∨ u = 1.

Applying partial fraction decomposition the final result is [15]

dσ(1)

du
= 3σ0

{
1

2
δ(u(1− u))δ(1− x)

(
π2

3
+

11

6

)
+

+ δ(u(1− u))

[
2

(
log(1− x)

1− x

)
+

− (x2 − x+ 1)2
log(x)

1− x
− 2x(x2 − x+ 2) log(1− x)

]
+ 2

(
1

1− z

)
+

(
1

u(1− u)

)
+

− x(x2 − x+ 2)

(
1

u(1− u)

)
+

− (1− x)3[2− u(1− u)]

}
.

(4.2.19)
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4.2.4 NLO in (x1, x2,m
2
H)

We now shortly derive and interpret the same result in terms of the threshold
variables (x1, x2,m

2
H).

The starting point is

dσ
(1)
real

dy
=
3σ0αs

2
J(x1, x2)

(
4πµ2

m2
H

)ϵ

[1− ϵγE ](1 + 2ϵ)

[
(x1 + x2)

2

(1 + x1)(1 + x2)

]ϵ
[1− x1]

−1−ϵ[1− x2]
−1−ϵ{

(x1 + x2)
4(1 + x41x

4
2) + x42(1− x1)

4 + x41(1− x2)
4](1− 2ϵ)+

+
ϵ

2

[
(x1 + x2)

2(1 + x21x
2
2) + (1− x1)

2x22 + (1− x2)
2x21

]2}
.

(4.2.20)

Now the the distributional identity 1.8.5 give rise to plus distributions in x1
and x2 regularizing the collinear and soft divergences in the denominator stu
of the square amplitudes. While in terms of the variables x and u each type
of divergence was clearly explicit, in terms of x1 and x2 the collinear diver-
gence is obtained in the limit x1 → 1 keeping x2 fixed and vice versa, while
the soft divergence when x1, x2 → 1, which of course implies the collinear
divergence.
The result has the following structure

dσ
(1)
real

dy
=

3σ0
2

J(x1, x2)

{
f00(x1, x2)δ(1− x1)δ(1− x2)+

δ(1− x2)

[
f01(x1)

(
1

1− x1

)
+

+ f02(x1)

(
ln(1− x1)

1− x1

)
+

]
+ (x1 ↔ x2)+

+ f11(x1, x2)

(
1

1− x1

)
+

(
1

1− x2

)
+

}
.

(4.2.21)

fij are regular functions of x1 and x2 in the threshold limit involving poly-
nomials and logarithms. This structure comes naturally from expanding the
product (1 − x1)(1 − x2) with the distributional identity 1.8.5. Under Mellin-
Mellin transform this result displays terms which are not subleading in the
doubly soft limit: this implies that at this order resummation formulae for
the doubly soft limit 3.6.6 and for the singly soft limit 3.6.8 resum the same
type of logarithms. In this context we can also test the argument made in
the previous section, that is that the doubly soft limit logarithms must de-
pend only on N1N2. To simplify the calculation the doubly soft limit can be
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directly taken from equation 4.2.20. This gives a result proportional to

32(1 + ϵ)(1− x1)
−1−ϵ(1− x2)

−1−ϵ (4.2.22)

Expanding and transforming the logarithms with equation 2.2.14 we notice
that they exactly combine so to form a binomial square (compare with [17])

C
(1)
doublysoft

dy
(N1, N2) ∝ ln2N1N2 + 2γE lnN1N2. (4.2.23)

We have seen that at this order we can gain no insight in the subleading loga-
rithms resummed by the singly soft limit formula. For this reason, it is neces-
sary to get to NNLO.

4.3 Gluon fusion at NNLO

In this section we finally study the NNLO threshold scales of the rapidity dis-
tribution. Since the explicit result does not exist in literature, we study the
doubly differential cross section in [2] comparing it to the phase space anal-
ysis of section 3.5 applied to the case of two emissions. In order to study the
rapidity distribution in terms of the doubly differential cross section we must
first study with more details the threshold behaviour of the variables intro-
duced in section 3.2. Secondly, following section 3.5, we study the possible
decomposition of the phase space for two extra-emissions, singling out the
DY and DIS scale predicted and, most importantly, writing them in terms
recognizable in the result from [2]. Finally, we get to the fully differential dis-
tribution. Some manipulations will highlight the singular scales in threshold
limit revealing the predicted logarithms. Their origin is retraced from [5] and
compared with the phase space argument for resummation.

4.3.1 Relevant variables

Up to now, we have always preferred sets of variables including x1 and x2 in
order to study threshold properties of the results. However, in order to check
our knoweledge on Higgs boson production acquired through phase space
analysis, we will have to compare our result to those of [2] which uses mainly
Mandelstam invariants. As a useful reference we provide here some relations
between variables and their behaviour in the threshold limit. The variable we
are interested in are x1, x2, p

2
T , Q

2, s, t, u and m2
H . Definitions and some re-

lations were already determined in the previous chapter, particularly section
3.2. First consider the set (s, t, u,m2

H), the other variables in terms of these
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are

p2T =
(t−m2

H)(u−m2
H)

s
−m2

H , (4.3.1)

y =
1

2
ln

u−m2
H

t−m2
H

, (4.3.2)

Q2 = s+ t+ u−m2
H . (4.3.3)

Consider now the threshold limit for the rapidity distribution. Since at NNLO
we only know the doubly differential distribution, it is important to consider
that some variables, such as Q2 and p2T , are not adequate since their kine-
matic boundaries depend on the threshold variables x1 and x2. For this rea-
son we define dimensionless variables ranging on fixed intervals. We have al-
ready determined the limits of Q2 in equation 3.2.9 . Defining in an obvious
way Q2

max, let q be the slider variable

Q2 = qQ2
max, (4.3.4)

such that for q = 0 Q2 is minimum and for q = 1 Q2 is maximum. Consider
now the set (x1, x2, q,m

2
H). This is special among the possible sets since in

the threshold limit their boundaries are all effectively fixed and makes possi-
ble studying how the other variables behave in the threshold limit. In partic-
ular, consider the following relations

t = −m2 (1− x1)

x1(x1 + x2)
[1 + x1 + q(1− x2)], (4.3.5)

u = −m2 (1− x2)

x2(x1 + x2)
[1 + x2 + q(1− x1)], (4.3.6)

Q2
max = m2

H

(1− x1)(1− x2)

x1x2
, (4.3.7)

p2T = m2 (1− q)(1− x1)(1− x2)

(x1 + x2)2
[(1 + x1)(1 + x2)− q(1− x1)(1− x2))].

(4.3.8)

Notice that t and u are singular for the two possible singly soft limit, while
Q2

max and p2T are always singular.

4.3.2 Phase space at NNLO

At NNLO processes with two emissions start contributing. These have a more
complex phase space that makes finally possible to see in practice some fea-
tures of the space phase decomposition argument presented in section 3.3.1.
Since in the threshold limit for any given value of the rapidity at least one
gluon must be collinear to the Higgs boson for momentum conservation, the
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two singular kinematical configurations contributing to the threshold limit
that are integrated on are when the second emitted gluon is either collinear
or soft.
Since the rapidity is fixed, the case where also the recoiling parton is soft

manifests as a divergence in y → 0. Similarly, in the doubly differential
cross section, where p2T is fixed, the configuration where the recoiling gluon
is collinear manifests as a divergence in p2T → 0.

Following section 3.5, we compute the phase space in two ways, highlight-
ing the two different configurations we mentioned. Firstly, we include the ex-
tra gluon with the recoiling one in a DIS-like phase space (fig. 4.1), then we
separate the extra emission in a DY-like phase space (fig. 4.2). We see the
emergence of the two singular scales that we had already discovered in the
previous chapter, and, most importantly, we rewrite them in terms of vari-
ables that will make them manifest in the result we will compare. Of course,
the two phase spaces are still simplified relatively to the decomposition made
in the previous chapter, but they are still enough to gain insight.
Consider the process

g(p1) + g(p2) → g(k1) + g(k2) +H(pH), (4.3.9)

the phase space is

dϕ3 =
dd−1k1

(2π)d−12k01

dd−1k2
(2π)d−12k02

dd−1pH
(2π)d−12p0H

(2π)dδ(p1 + p2 − k1 − k2 − pH)

(4.3.10)

Now we employ the first factorization that will highlight the collinear scale:
the two gluons are included in a two-body DIS-like phase space. (Fig. 4.1).

Figure 4.1: Phase space for Higgs boson production with two emissions. The
three-body phase spaced is factorized into two two-body phase spaces. The
first is the Higgs boson production phase space, the second is a DIS-like phase
space with two emissions.
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Using equation 2.2.2 this becomes

dϕ3(p1, p2; k1, k2, pH) =

∫
dQ2

2π
dϕ2(p1 + p2; pH , Q)dϕ2(Q; k1, k2). (4.3.11)

Where Q2 = (k1 + k2)
2 according to the notation introduced in section 3.2.

The technique to calculate the first phase space is well-known

dϕ2(p1 + p2; pH , Q) =
(4π)ϵ|p2T |−ϵ

16πΓ(1− ϵ)

dp2Tdy√
Q2

δ(
√
Q2 − p0H −

√
s). (4.3.12)

The natural set of independent variables in this context, as explained in sec-
tion 3.2, is (m2

H , s, y, p2T ) or (m
2
H , s, y,Q2) . In both cases p2T and Q2 are not

independent and the Dirac δ can be used to eliminate the integral dp2T or
dQ2. If we were calculating the doubly differential cross section, the natural
choice is the second, leaving thus

dϕ2

dp2Tdy
=

(4π)ϵ|p2T |−ϵ

16π2Γ(1− ϵ)

∫
dϕ2(Q; k1, k2), (4.3.13)

where we have made explicit the integral on partonic momenta k1 and k2.
Calculating the rapidity distribution, following the approach in section 3.5,
we may already eliminate the measure in dp2T using the Dirac δ, leaving the

integral in Q2 multiplied and the Jacobian of the δ transformation | dp
2
T

dQ2 |.
Now consider the two-body phase space dϕ2(Q; k1, k2). Exploiting Lorentz

invariance we compute it in the partonic center-of-mass frame of reference
applying equation 2.2.3.

dϕ2(Q; k2, pH) =
1

(4π)2−2ϵ
(Q2)−ϵdΩϵ. (4.3.14)

Notice that, since this phase space is DIS-like, the soft scale emerging is (Q2)−ϵ,
that is equivalent to the (k′)2 scale found in section 3.5 and the scale s in sec-
tion 2.2.1. Combining together we get

dσ
(2)
real

dy
(s, y,m2

H) =
1

2s

1

512π3Γ(1− ϵ)

∫
dQ2

∣∣∣∣∣ dp2TdQ2

∣∣∣∣∣
(
4π

p̃2T

)ϵ( 4π

Q2

)ϵ ∫
dΩϵ|M(Ωϵ, s, y,m

2
H , Q2)|2,

(4.3.15)
Where p̃2T specifies that we are considering p2T in terms of the other 4 inde-
pendent variables. If interested in getting the fully differential cross section,

dσ
(2)
real

dydp2T
(s, y,m2

H , p2T ) =
1

2s

1

512π3Γ(1− ϵ)

(
4π

p̃2T

)ϵ( 4π

Q2

)ϵ ∫
dΩϵ|M(Ωϵ, s, y,m

2
H , Q2)|2.

(4.3.16)
As both discussed and verified in the previous section, (p2T )

ϵ combined with
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collinear divergences in the squared amplitude regularizes them introducing
a collinear pole proportional to δ(p2T ) and plus distributions. This makes the
integral on p2T finite in the inferior extremum (or, as we will see shortly, the
integral on Q2 finite in the superior extremum). If only interested in the fully
differential hadronic cross section these factors can be ignored, as the inte-
grals on partonic momentum fractions require regularization only with re-
spect to longitudinal variables. such as x1, x2, x, u , y. Regularization or not,
the fully differential distribution is of course divergent for p2T → 0, a problem
that can be solved with pT resummation. Now, following the strategy applied
in section 3.5, we write the Q2 integral in terms of the slider variables q de-
fined in the previous section. The scale (Q2)−ϵ becomes

(Q2)−ϵ = q−ϵ(Q2
max)

−ϵ. (4.3.17)

The exponential q regularizes the Q2 integral for q → 0, the remaining quan-
tity is the DIS scale discussed in the previous chapter, as the explicit form of
Q2

max shows

Q2
max = m2

H

(1− x1)(1− x2)

x1x2
. (4.3.18)

Considering p2T in terms of the threshold variables and q in eq. 4.3.5, we no-
tice that q → 1 implies p2T → 0, that is to say that the (p2T )

ϵ makes possible
the regularization the q integral in its other extremum. .
Now we get to the second factorization of the phase space, that will high-

light the soft scale. The second gluon is produced with the massive state
l = k1 + k2 in a DY-like phase space (Fig. 4.2). Employing the usual fac-

Figure 4.2: Phase space for Higgs boson production with two emissions. The
three-body phase spaced is factorized into two two-body phase spaces. The
first is a DY-like phase space with a single emission, the second is the Higgs
boson production phase space.

torization identity 2.2.2, the phase space is

dϕ3(p1 + p2; k1, k2, pH) =

∫
dl2

2π
dϕ2(p1 + p2; k1, l)dϕ2(l; pH , k2), (4.3.19)

67



the second term is the usual Higgs boson production phase space,

dϕ2(l; k2, pH) =
(4π)ϵ

8(2π)2Γ(1 + ϵ)
|p2T |−ϵdp

2
Tdy√
k02

δ(k02 + p0H −
√
l2). (4.3.20)

The first phase subspace can be computed with equation 2.2.3

dϕ2(p1 + p2; k2, pH) =
1

2(4π)2−2ϵ
s−ϵ

(
1− l2

s

)1−2ϵ

dΩi (4.3.21)

Combining all together

dσ
(2)
real = ΦC(π, ϵ)

∫
dl2
(
4π

p2T

)ϵ

sϵ
(
1− l2

s

)1−2ϵ
dp2Tdy√

k02
δ(k02+p0H−

√
l2)

∫
dΩi|M|2.

(4.3.22)
Now we use the Dirac delta to eliminate the integration on p2T (or, if inter-
ested in computing the doubly differential cross section, to eliminate the l2

integration), thus leaving

dC2

dy
= ΦC(π, ϵ)

∫
dl2√
l2

∣∣∣∣∣dp2Tdl2

∣∣∣∣∣
(
4π

p̃2T

)ϵ 1

s− l2

(
(s− l2)2

s

)1−ϵ ∫
dΩi|M(Ω, s, y,m2

H , l2)|2,

(4.3.23)
where we have rewritten the soft scale emerged from the DY-like phase. No-
tice that this is really a soft scale since in the threshold limit, when k1 is soft,
l2 = s. Now we exchange l2 with the dimensionless slider variable w. We have
already determined the maximum and minimum of l2 in section 3.5, however
we will now repeat the computation in terms of the variables relevant for [2],
that is s, t and u. We had obtained for l2min in the case y > 0

l2min = m2e2y. (4.3.24)

Writing the exponential of rapidity in terms of (s, t, u,m2
H) we have

l2min = m2u−m2

t−m2
, (4.3.25)

So w is defined such that

l2 = m2u−m2

t−m2
+ w

(
s−m2u−m2

t−m2

)
= s

[
m2

s

u−m2

t−m2
+ w

(
1− m2

s

u−m2

t−m2

)]
(4.3.26)
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Scale Origin logarithms (x1, x2) logarithms (t, u,Q2
max)

Collinear DIS ln (1− x1)(1− x2) lnQ2
max

Soft DY ln (1− x1)
2 ln t2

Table 4.1: Soft and collinear scales arising from the two different phase space
factorizations depicted in figure 4.1 and 4.2.

And the ϵ exponential becomes

(s− l2)2

s
=

s2[1− m2

s
u−m2

t−m2 + w
(
1− m2

s
u−m2

t−m2

)
]2

s
= s (1− w)2

(
1− m2

s

u−m2

t−m2

)2

.

(4.3.27)

Notice that (1 − w) regularizes the extremum w = 1. We know that the left-
over must be singular for x1 → 1, but it is not manifest in the way it is writ-
ten. However we know t to be singular in the threshold limit. This suggests
to factorize t from the expression so that

(s− l2)2

s
= s(1− w)2

t2

(t−m2)2

(
1−m2 s+ u−m2

st

)2

, (4.3.28)

and, indeed, the last factor is finite for x1 → 1, so that the final singular scale
is t2ϵ.

We have thus learnt that in the configuration of the threshold limit where
one gluon is soft, a divergent scale in t, and symmetrically in u, must arise.
Notice that in such configuration Q2 = k22 = 0, hence, in the doubly differ-
ential cross section, only terms proportional to δ(Q2) feature logarithms in t.
This prediction is not trivial and will be explicitly checked in NNLO result.
It is worth to repeat an important point. The two factorization we have

employed (figs. 4.1 and 4.2) are just two different ways of writing the same
phase space. However, they highlight two different configurations in the thresh-
old limit that contribute to two different enhanced logarithms, lnQ2

max, from
the collinear configuration, and ln t2, from the soft configuration. Table 4.1
sums up these findings. Eventually, from both phase spaces both singular log-
arithm must arise. In the next sections we see explicitly how from the first
factorization the t logarithms arise.

4.3.3 The fully differential distribution at NNLO

NNLO result of the doubly differential cross section for Higgs boson pro-
duction has been computed for the first time in [10] and a year later was
repeated in [2], succeeding in obtaining the results in a totally explicit and
compact way. As already noted, the computation in this references is referred
to as NLO, since the LO doubly differential distribution is completely trivial,
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however for uniformity we will keep calling it NNLO. The result by [2], which
from now on we will simply call GS, is detailed, for the production channel
gg → Hgg, in J.C. Glosser’s Ph.D. thesis [5]. In this section we first present
the result of the computation and inspect it to check our phase space analy-
sis. Finally, the kinematical origin of the logarithms is retraced using [5].

First, define the coefficients of the perturbative expansion

d2σgg
dp2Tdy

=
σ0
s

[
αs(µR)

2π
C(1) +

(
αs(µR)

2π

)2

C(2)

]
, (4.3.29)

This gives the hadronic cross section by the usual convolution on parton mo-
menta fractions. The NLO is

C(1) = gggδ(Q
2) =

s4 + t4 + u4 +m8
H

stu
δ(Q2), (4.3.30)

which we have already discussed in depth.
The NNLO of the fully differential distribution is found by combining the

real contribution C
(2)
real from gg → Hgg and gg → Hqq̄ , with the one loop

contribution from gg → Hg, C
(1)
virt. As discussed, the gg → H contribution

is not included. In order to cancel collinear poles, the Altarelli-Parisi contri-

bution C
(2)
AP must also be added. Each of these functions is computed in d di-

mensions, so they depend on the regularization parameter ϵ. Only their sum
is finite for ϵ → 0.
Concerning the doubly differential cross section, in order to get the finite

hadronic cross section, integration on parton momenta requires regularization
on Q2, therefore, through the usual identity 1.8.5, the final result will display
distributions in Q2. In practice, however, integration on partonic momenta
can be carried easily in terms of the dimensionless variables (see appendix B
of GS)

zt =
−t

Q2 − t
, zu =

−u

Q2 − u
, (4.3.31)

so that the results also displays plus distributions in terms of these two. No-
tice that for x1 → 1 zu → 1 while for x2 → 1 zt → 1
Terms singular in p2T needs to be regularized only if interested in the rapid-

ity distribution. Moreover, poles arising from δ(p2T )/ϵ can be cancelled only
by adding the gg → H contribution. For this reason, from the final result
only the rapidity distribution cannot be really obtained, but it can be used to
study its threshold behaviour.
To isolate the most prominent numerical contributions to the hadronic

cross section, the result in GS is presented separating non singular and sin-
gular terms. We are interested in the second. The result is the following
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C
(2)
sing =δ(Q2)

{
(11 + δ +NcU)ggg

+ (Nc − nf )
Nc

3

[
m4

H

s
+

m4
H

t
+

m4
H

u
+m2

H

]}

+

{(
1

−t

)[
−Pgg(zt) log

µ2
F zt
−t

+ pgg(zt)

(
log(1− zt)

1− zt

)
+

]
ggg,t(zt)

+

(
1

−t

)[
−2nfPqg(zt) log

µ2
F

Q2
maxq

+ 2nfzt(1− zt)

]
gqg,t(zt)

+

(
zt
−t

)[(
log(1− zt)

1− zt

)
+

− log
Q2

T zt
−t

(
1

1− zt

)
+

]
· N

2
c

2

[
m8

H + s4 + t4 + u4 +Q8 + ztzu(m
8
H + s4 +Q8 + (u/zu)

4 + (t/zt)
4)

sut

]
−
(

zt
−t

)(
1

1− x1

)
+

β0
2
Nc

(
m8

H + s4 + ztzu((u/zu)
4 + (t/zt)

4)

sut

)
+ (t ↔ u)

}

+N2
c

[
(m8

H + s4 +Q8 + (u/zu)
4 + (t/zt)

4)(Q2 +Q2
T )

s2Q2Q2
T

+

+
2m4

H((m2
H − u)4 + (m2

H − t)4 + t4 + u4)

sut(m2
H − t)(m2

H − u)

]
1

p2T
log

p2T
Q2

T

(4.3.32)

where Pgg and Pqg are the splitting functions

Pgg(z) = NC

[
1 + z4 + (1− z)4

(1− z)+ z

]
+ β0δ(1− z), Pqg(z) =

1

2
[z2 + (1− z)2],

(4.3.33)

pgg is the regular coefficient of Pgg. If gij are the partonic NLO functions,
gij,t(zt) := gij(ztξ1, ξ2), gij,u(zu) := gij(ξ1, zuξ2), where ξ1 and ξ2 are partonic
momentum fractions. Clearly, in the singly soft limits they reduce to the ordi-
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nary functions. Explicitly

ggg,t(zt) =
m8

H + (zts)
4 + t4 +

(
ztsp2T

t

)4
z2t s

2p2T
ggg,u(zu) =

m8
H + (zus)

4 + u4 +
(
zusp2T

u

)4
z2us

2p2T

gqg,t(zt) = CF
(t2 + z2t s

2)t

−ztsp2T
gqg,u(zt) = CF

(
zusp2T

u

)2
+ z2us

2

−u

(4.3.34)

Finally,

δ =
3β0
2

(
ln

µ2
R

−t
+ ln

µ2
R

−u

)
+

(
67

18
Nc −

5

9
nf

)
, (4.3.35)

U =
1

2
ln2

−u

−t
+

π2

3
(4.3.36)

− ln
s

m2
H

ln
−t

m2
H

− ln
s

m2
H

ln
−u

m2
H

− ln
−t

m2
H

ln
−u

m2
H

ln2
m2

H

s
+ ln2

m2
H

m2
H − t

+ ln2
m2

H

m2
H − u

+ Li2

(
s−m2

H

s

)
+ Li2

(
m2

H

m2
H − t

)
+ Li2

(
m2

H

m2
H − u

)
,

Q2
T = Q2 + p2T (4.3.37)

and Nc = 3, nf = 5 (remember the infinite top mass approximation). First
notice that all the singularities in Q2 have been regularized2 . Because we
are interested in the behaviour of the result in threshold limit of the rapidity
distribution, we must set up the integration on transverse momentum, even
if we cannot compute it explicitly. We have already discussed that the best
variables to write the integral are (x1, x2, q,m

2
H) therefore the integration is

written in the q variable through the variable changes p2T → Q2 → q∫ p2T,max

0
dp2T =

∫ Q2
max

0
dQ2

∣∣∣ dp2T
dQ2

∣∣∣ = ∫ 1

0
dq

dQ2

dq
J =

∫ 1

0
dqJ(x1, x2, q)Q

2
max,

(4.3.38)
where J is the regular function

J =
2x1x2

(x1 + x2)2
[1 + x1x2 − q(1− x1)(1− x2)]. (4.3.39)

The plus distributions in zt and zu can be rewritten in terms of q by applying

2The 1
Q2 ln

p2T
Q2

T
terms in the last line are finite
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the following identities, proved in the appendix,

δ(1− zt) =
−t

Q2
max

δ(q), (4.3.40)

zt
−t

(
1

1− zt

)
+

=
1

Q2
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{(
1

q

)
+

+ δ(q) ln

(
Q2

max

−t

)}
,

zt
−t

(
ln(1− zt)

1− zt

)
+

=
1

Q2
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{(
ln q

q

)
+

+ ln
Q2

maxzt
−t

(
1

q

)
+

δ(q)

2
ln2

Q2
max

−t

}
.

Now, defining obviously the coefficients V,At,u,Bt,u, Ct,u,Dt,u, E, we finally
rewrite the result as

C
(2)
sing,rap =

∫ 1

0
dqJ(x1, x2, q)Q

2
max

{
δ(q)

Q2
max

V+

1

−t
At

[
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)
+

+ ln
µ2zt
−t

(
1

1− zt

)
+

)
− β0 ln

µ2zt
−t

δ(q)

Q2
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]
+

1

−t

[
B1,t ln

1

qQ2
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+ B2,t

]
+
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−t

Ct
[(

ln(1− zt)

1− zt

)
+

− ln
Q2

T zt
−t

(
1

1− zt

)
+

]
−

zt
−t

Dt

(
1

1− zt

)
+

+ (t ↔ u)

+ E

}
(4.3.41)
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Expanding distributions in zt and zu and rearranging

C
(2)
sing,rap =

∫ 1

0
dqJ(x1, x2, q)

{

Q2
max

[
E +

B2,t

−t
− B1,t

−t
ln

1

qQ2
max

]
+ δ(q)

[
Atβ0 ln t+

Atpgg
2

ln2Q2
max −

Atpgg
2

ln2 t− Ct lnQ2
max ln p

2
T,max +

1

2
Ct ln2Q2

max
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2
Ct ln2 t+ Ct ln p2T,max −Dt lnQ

2
max +Dt ln t+ V

]

+

(
1

q

)
+

[
Atpgg
zt

lnQ2
max + Ct lnQ2

max − Ct lnQ2
T −Dt

]
+

(
ln q

q

)
+

[
Atpgg
zt

+ Ct
]
+ (t ↔ u)

}
(4.3.42)

Where in the parenthesis proportional to δ(q) we have set zt = zu = 1 and
Q2

T = p2T,max and the coefficients A, C,D are all proportional to (1−x1)
−1(1−

x2)
−1. Keeping in mind eqs. 4.3.5, the threshold logarithms that appear in

the final result are

L1 = ln t, L2 = lnu, L3 = lnQ2
max. (4.3.43)

Or, in terms of the threshold variables

L1 =
ln(1− x1)

1− x1
, L2 =

ln(1− x2)

1− x2
, L3 =

ln(1− x1)(1− x2)

(1− x1)(1− x2)
. (4.3.44)

These are exactly the kind of logarithms we have predicted in the previous
section (table 4.1).
Moreover, logarithms in t and u appear only in terms proportional to δ(q),

in the second line of the result, as we expected, since we know that they should
come from the kinematic configuration where one gluon is soft, and hence
Q2 = 0.

These logarithms do not feature any plus distribution for the reasons we
have discussed. In a complete calculation of the fully differential distribution
they must appear as plus distributions, since the rapidity distribution must
be finite.
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4.3.4 Retracing logarithms

We have thus verified that the result has the predicted logarithms. It is now
interesting to retrace their origin following the calculations in [5], to confirm
that they do appear from the expected kinematical configurations. In this
work, only details on the gg → Hgg channel are given, no intermediate results
are available for gg → Hqq̄, but for our scope this is sufficient.
The computation is carried following the usual steps, that is adding the

real and virtual coefficient functions with the Altarelli-Parisi term that can-
cels the collinear poles

C(2) = lim
ϵ→0

[
C

(2)
real + C

(2)
virt + C

(2)
AP

]
. (4.3.45)

To get the real contributions, squared amplitudes are integrated using the
phase space decomposition 4.3.16. The explicit angular integration is

1

2π

∫ π

0
dϕ

∫ π

0
dθ(sin θ)1−2ϵ(sinϕ)−2ϵ|M(θ, ϕ)|2, (4.3.46)

where θ and ϕ are the polar angles of the back-to-back gluons jet in their
center-of-mass frame of reference. Details on their calculations can be found
in [5], [10] and subsequent older articles. Terms proportional to ϵ−1 and (Q2)−1

give the singular part of the real contribution

C
(2)
real = σϵ

{
− 1

Ncϵ

pgg(zt)

−t
ggg,t(zt)

− 1

ϵ

[(
Q2

Q2
T

)−ϵ(
1 +

π2ϵ2

6

)
− 1

]
ggg,t(zt)

Q2
(4.3.47)

− 1

2

(
11

6
+

67ϵ

18

)
ggg,t(zt)

Q2
+ (t ↔ u) + Regular terms

}
,

where σϵ collects all the remaining factors from the phase space. These in-
clude (Q2)−ϵ and (p2T )

−ϵ. The first factor combined with the Q2 singularities
gives the Q2

max logarithms, exactly as predicted by the phase space argument.
The second exponential is necessary to regularize collinear divergences. As
discussed, these are ignored by GS, thus resulting in poorly behaved expres-
sions for p2T → 0. We could in principle repeat the calculation considering the
full regularization, but in order to cancel the new ϵ poles arising, we should
include the two-loop calculation of gg → H, which in turn gives also finite
contributions. We have thus understood the origin of the lnQ2

max appear-
ing in the GS final result 4.3.42: it is exactly the one predicted by the phase
space decomposition depicted in fig. 4.1.
After combining exponentials and singularities, the expression can be summed
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to the AP contribution

C
(2)
AP =

1

Ncϵ

Pgg(zt)

−t
ggg,t(zt) +

1

Ncϵ

Pgg(zu)

−u
ggg,u(zu), (4.3.48)

that is calculated considering the cross section in the limit of a single collinear
gluon emission from the first or second initial-state gluon, carrying a momen-
tum fraction, fixed by conservation of energy, of (1 − zt) or (1 − zu). Since
Pgg(zt) contains plus distributions in zt, to make the cancellation explicit, in
place of the usual 1.8.5 identity, the following expansion was adopted(

1

Q2

)1+kϵ

= − 1

kϵ
(−t)−kϵδ(Q2)+

(
zt
−t

)1+kϵ{( 1

1− zt

)
+

− kϵ

(
ln(1− zt)

1− zt

)
+

}
,

(4.3.49)
which can be easily verified at any fixed order by expanding both sides in ϵ.
This finally introduces the t−ϵ scale which we expected from the phase space
analysis. Thinking back to its meaning it is not a surprise that we could find
it in this place. The t (or u) scale arises writing the phase space in such a
way to highlight an initial soft emission (fig. 4.2) which reduces the energy
of the process from s to l2 while the other is collinear. Thus, the kinematical
configuration that contributes to the singularity is exactly the one considered
in 4.3.48, where there is a single collinear emission.
Now, the sum of the two terms leave only poles proportional to δ(q), that

are cancelled by the virtual contribution from the 1-loop of single emissions
diagrams, that indeed has exactly a kinematics proportional to δ(q). Adding
all together we get all the singular terms of the gg → Hgg process contribut-
ing to 4.3.32.
In conclusion, from the resummation argument we have predicted the two

kinds of logarithmic contributions (table 4.1), the collinear lnQ2
max and the

soft ln t, coming respectively from the region of the phase space where both
gluons are collinear to the Higgs boson and from the region of the phase space
where one gluon is collinear and the other is soft. These two regions can be
highlighted by writing the phase space in two different ways (figs. 4.1 and
4.2).
In the NNLO fully differential distribution we have effectively observed

these two logarithms (eqs. 4.3.42), in particular we have seen ln t being pro-
portional only to δ(q), as expected from the phase space region where it arises.
Following [5], we have explicitly seen that lnQ2

max in the final results do come
from the first phase space factorization (fig. 4.1). From the same reference
we have seen that ln t comes from the cancellation of singular poles with the
Altarelli-Parisi contribution, that are calculated from the phase space region
where we expect these logarithms to come from.
It should be noted, however, that, even if the kinematical origin of the soft

scale is clearly the one predicted, we could not observe in the complete cal-
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culation the factor of 2 that the phase argument predicts from the DY-like
phase spaces (tables 2.1, 4.1 and eq. 4.3.28). We mentioned in section 3.7
that this is important in order to understand the difference with the resum-
mation by Tackmann in [8]. We do not expect this to be due to an error in
the phase space argument, but only in the way the calculation is actually per-
formed that does not make the factor of 2 evident.
We have thus confirmed the appearance and the origin of the enhanced

logarithms resummed by the resummation formulae 3.6.8 and 3.6.9, making
progress in the verification of this approach to the resummation of the rapid-
ity distribution.
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Conclusions

In this thesis we considered the rapidity distribution of Higgs boson produc-
tion through gluon fusion. The threshold limit is the limit where the center-
of-mass energy is barely enough to produce an Higgs boson with fixed mass
and rapidity. We parametrized the threshold limit with the scaling variables
x1 and x2 and, particularly, we defined the singly soft limit, where x1 → 1
and x2 is fixed (or vice versa), and the doubly soft limit, where both x1, x2 →
1, that is when the rapidity is 0.
Following the approach in [1], we derived the resummation formulae for ra-

pidity distribution identifying the threshold enhanced logarithms lnm2
H(1 −

x1)
2 and lnm2

H(1− x1)(1− x2) arising respectively from the DY-like phase
subspace of soft emissions and the DIS-like phase subspace of collinear emis-
sions in the threshold limit.
In order to verify these findings we moved onto the analysis of the first

leading orders of Higgs boson production. To identify the two singular scales
we wrote them in terms of natural kinematical quantities appearing in actual
calculations. We found the soft scale m2

H(1 − x1)
2 to be proportional to the

Mandelstam invariant t, and the collinear scale m2
H(1 − x1)(1 − x2) to be re-

lated to the maximum energy of the emitted radiation Q2
max. In particular at

NNLO we observed that the soft scale must always be multiplied by a δ(Q2),
since in the kinematical configuration where we expect it to arise, Q2 must be
0.
Since the first two leading orders are trivial, we considered the NNLO ra-

pidity distribution starting from the only complete result in literature, the
fully differential distribution in [2]. We first found that in order to study the
threshold limit of the rapidity distribution from the fully differential distri-
bution, the transverse momentum integration must be exchanged with the
integration on the dimensionless variable q defined in the fixed range [0, 1].
Rewriting the result in terms of this variable we could finally single out the
soft and collinear logarithms in the form we predicted, lnQ2

max and ln t.
Finally, to further support our findings, we retraced the origin of these two

logarithms in the computation of the fully differential distribution detailed in
[5]. The origin of Q2

max logarithms can be clearly identified from the phase
calculation, and it is fully corresponding to the phase space decomposition

78



we employed to predict its origin. t logarithms appear from the Altarelli-
Parisi contribution to the cross section. We argued that the kinematics of
such terms is really the same of the kinematical configuration where we pre-
dicted ln t factors to come from in the phase space argument.

To fully establish the resummation formula, it must be compared with the
results in SCET obtained by F.J. Tackmann et alii [8], where some differences
have been observed, likely by virtue of factorization scheme-dependent fac-
tors. If the resummation approach we adopted passes also this test, it is nat-
ural to extend it to the threshold resummation of the fully differential distri-
bution, where both the rapidity and the transverse momentum of the Higgs
boson are fixed.
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Appendix A

Mathematical tools

A.1 Plus distribution

Given a logarithmic divergent function f(x) in x = a, we define the the plus
distribution (f(x))+, such that on any test function g(x)∫ a

0
dx g(x) (f(x))+ =

∫ a

0
[g(x)− g(a)]f(x). (A.1.1)

If f(x) is divergent in x = 0, then∫ xmax

0
dx g(x) (f(x))+ =

∫ xmax

0
dx [g(x)− g(0)]f(x). (A.1.2)

In this thesis the correct definition is always implicit in the properties of f ,
for example in equation 4.3.40 plus distributions on the LHS are defined in
the first way for a = 1, while on the RHS in the second way.
Integrals with plus distributions are finite, since the difference in the square

brackets cancels the logarithmic divergence in f . For the same reasons higher
divergences are not regularized.
Plus distributions can be also written straightforwardly in terms of other

distributions. In the first case, for example, if a = 1

(f(x))+ = lim
∆→0

[
Θ(1−∆− x)f(x)− δ(1− x)

∫ 1−∆

0
dξf(ξ)

]
, (A.1.3)

where the parameter ∆ separates the regular and the divergent regions of
the integral on x. Sometimes, cross sections are written in terms of ∆, rather
than plus distributions [10, 18].
Plus distribution arise from d-dimensional regularized calculations from the
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following identity

x−1+ϵ =
δ(x)

ϵ
+

(
1

x

)
+

+ ϵ

(
lnx

x

)
+

+O(ϵ2), (A.1.4)

for divergences in x = 0, or, alternatively, exchange x with 1 − x for diver-
gences in x = 1. The identity can be derived acting on a test function g(x)
and with a few expansions∫ 1

0
dxx−1+ϵg(x)dx =

∫ 1

0
dxx−1+ϵ[g(x)− g(0)] +

g(0)

ϵ
= (A.1.5)

=

∫ 1

0
dx

[
1

x
+ ϵ

lnx

x
+O(ϵ2)

]
[g(x)− g(0)] +

g(0)

ϵ
=

=

∫ 1

0
dx

[(
1

q

)
+

+ ϵ

(
lnx

x

)
+

+
δ(x)

ϵ

]
g(x).

This identity can also be used to compute change of variables in plus distri-
butions. Consider in particular the relations we are interested in, eqs. 4.3.40.
The relation between the two variables is

q =
−t

Q2
max

1− zt
zt

. (A.1.6)

Consider now

q−1+ϵ =

(
−t

Q2
maxzt

)−1+ϵ

(1− zt)
−1+ϵ, (A.1.7)

the LHS and the second factor of the RHS can be expanded in ϵ using the
distributional identity we have just shown, while the first can be expanded
into ordinary logarithms. Since the relation holds for all values of ϵ, equating

in the LHS and in the RHS terms in the same ϵ order we relate all
(
lnk q
q

)
+

distributions with
(
lnk(1−zt)

1−zt

)
+
distributions and vice versa, if we started

from the inverse variable transformation.

A.2 Mellin transform

Given a function f(x) with x ∈ [0, 1], its Mellin transform M[f ](N) is

M[f ](N) :=

∫ 1

0
dxxN−1f(x), (A.2.1)

where N ∈ C. Notice that, since in the limit |N | → ∞ xN−1 → δ(1 − x), the
equivalence

lim
|N |→∞

M[f ](N) = lim
x→1

f(x) (A.2.2)
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holds.
Analogously to the Fourier transform, we can define a convolution between

two functions that factorizes under a Mellin transform. Given the functions f
and g we define the Mellin convolution

(f ⊗ g)(x) :=

∫ 1

x

dy

y
f(y)g

(
x

y

)
. (A.2.3)

Rewriting it as

(f ⊗ g)(x) =

∫ 1

0
dy

∫ 1

0
dz f(y)g (z) δ(x− yz), (A.2.4)

it is obvious to see how it factorizes under a Mellin transform

M[f ⊗ g](N) =

∫ 1

0
dxxN−1

∫ 1

0
dy

∫ 1

0
dz f(y)g (z) δ(x− yz)

=

∫ 1

0
dy yN−1

∫ 1

0
dz zN−1f(y)g(z) = M[f ](N)M[g](N).

(A.2.5)
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